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It is shown with the use of a model of scalar fields how canonical quantization can be carried out when the
free part of the Lagrangian density involves only the first derivatives, while the coupling terms involve higher

derivatives. Cancellation of noncovariant terms in the scattering operator is found to occur for such couplings

provided that 8{0)terms are eliminated with the use of dimensional regularization.

I. INTRODUCTION

Canonical formalism for fields involving higher
derivatives in the free part of the Lagrangian den-
sity has been extensively investigated. ' We shall
here consider a related but different problem. We
shall show with the use of a model of scalar fields
how the canonical quantization can be carried out
when the free part of the Lagrangian density in-
volves only the first derivatives, while the cou-
pling terms involve higher derivatives. It will then
be demonstrated that cancellation of noncovariant
terms in the scattering operator, which is well
known for first-derivative couplings, ' also occurs
for higher-derivative coupiings provided that 5(0)
terms are eliminated with the use of dimensional
regularization. '

Although our quantization procedure for higher-
derivative couplings is mathematically more com-
plicated than that for first-derivative couplings, it
does notpresent any difficulty in principle. Apart
from providing an interesting generalization of the
canonical formalism, this investigation is useful be-

cause higher-derivative couplings are encountered
in some physical problems. '

II. CANONICAL FORMALISM

Let us consider a Lagrangian density of the form

f =f (}t', e,@„e eA', e,e.e}4}, . (2.1)

BL BL

a{a„e„y ) e(e„e,y„) '

while the variation in L is expressible as

(2.3)

where r=1, 2, . . . , n. It is convenient to define par-
tial derivatives as
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where the summation extends over the m! permu-
tations of the indices p„p,„.. . , p . This defini-
tion of partial derivatives ensures that
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The resulting field equations are
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and the canonica. l (unsymmetrized} energy-momentum tensor is given by
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with

B„S„„=0.
When the free pa, rt of the Lagrangian density is

I.,= --,' g [(e„y„)'+m„'y„'],
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it is possible to remove second and higher time derivatives from (2.1) by carrying out either covariant or
noncovariant field transformations, so that the transformed Lagrangian density involves only higher space
derivatives. In the absence of higher time-derivatives in L, the energy density takes the form

= -~ ' Z 8(a 4 )
"4 "8(s s 4 )

"4 s(a~—e 4 )
"'4 )

BL BL BL
+ 8 ~ 8' ~ a(a, a, a,y )

'-" ' a(a, a,a4y ) ~ '"~ a(a, a, a4y )
' ' 4""8 ch —8 8.8 9 ~

or, since three-divergences can be added to H without altering the total energy,

H= -L+ BL Bl BL=-"&(sIs4) -' ~8(884)" ~ ~8(~ss4) -' ' '28 +38 8 84ft

Further, by defining m„, the canonical conjugate of p„, as
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the energy density can be expressed in the usual form

(2.9)

(2.10)

~g„B @„—I . (2.11)

As a specific example, we shall take a system of three interacting scalar fields with the Lagrangian
density

L=L +L(,t
with
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The second time derivative in the coupling term can be removed by subjecting (2.12) to the transformation

43 43 -g944x9442 ~
(2.15)

and remembering that the Lagrangian density can be simplified by dropping terms of the form B,A, or
B,A4. This procedure generates second-order coupling terms involving second time derivatives, which can
again be removed by an appropriate field transformation. Thus, it is possible to remove second and high-
er time derivatives from the coupling terms up to any desired order by successive applications of field
transformations. Accordingly, (2.12) is transformed into

2gA
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where

+ 0(g'), (2.16)

(2.17)

a, = 9,.' 2 2a =8& —~, a =8,. (2.18)

From {2.16), we can derive the canonical conjugates of Q„p„and p, as defined by (2.10), and ex-
press the energy density (2.11) in terms of the canonical variables and their space derivatives. Then,
passing over to the interaction picture in the usual manner, we obtain for the interaction energy density

H„,=H,",,'+H,'„"+H,",, o( '), (2.19)
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where
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III. LORENTZ INVARIANCE OF SCATTERING OPERATOR

For the evaluation of the contributions of the scattering operator with the interaction energy density
(2.1S), we require the contractions

y(x)'dt(x')'= -~a,(x -x', m),

a,y(x) y(x'} = -~a.r,(x -x', m),

a„dt](x)'a'dt](x') = -ia„a'n (x -x', m}+i5„,5„5(x -x'),
a„a„y(x)'y(x')'= ia, a„z (» x;m)-i5„,5„,5(»»'),
a„a„y(x}'a'tf (x')'= -ia, a„a'n (» «', m}+i5„5„,5,a,5(x» }

+i(5„5 5, + 5 5„5,+ 5„5„,5 )a 5(»»'),
a„a„y(x)'a' a]]if](x')' = -ia, a„a'a'g (x -x', m} z(5,~5„-,5,5,+ 5,q5„,5,5,

(3.l)

-i5„5„,5„,5~,(a,' —a, '+ m'}5(x —x'),

where P is a scalar field of mass m, and

a~(x; m) = lim, dk e
0 ~+0 7T A'+ m' -ie

Let us consider the second-order term in the scattering operator
2

(3.2)

After carrying out single contractions, the contribution involving the noncovariant parts of the contractions
can be expressed, after some integrations by parts, as

S,'=i d H"'(x)

which is canceled by the contribution of H,",t' to the scattering operator.
%e next consider the third-order term

(3.4)

(3.5)
(-&)'

S3= ]
[ dx dx' t dx"T[H" (x)H" (x')H ' (»")]

Carrying out double contractions, we find that the contribution involving the noncovariant parts of the con-
tractions is expressible, after some integrations by parts, as

S,'=-id' dx dx'[Xtx, x'I ~ Ftx, x ]] id dx[dtx'i -Gtx']]+i f d,',xd,]tx) (3.6)
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where

E(»,x ') = [8„B„y „(x)B,y, ( x) 8, + a„B„y,(x)8,y, (x) 8„

+ 28( 8~@,~(x) 8~@2(x)8~+ 28( 8~$ )~(x)8~$2(x) 8~

-(8'-m, ')y„(x}a,y, (x)8, —B,(x)a, a, if&,(x)8, ]h {x-x', m, )8,'& (x')

+ e,(x)a.y, (x)8, 8,~„(x-x', m, )8„'8,'y„„(x')

and

G = 2(e„e„@„„—e'@„+nz, 'y„}8,@,e, + 2e„e,@„a„@,8,

+ 48, 8,y.„.a, y, e, (28,y „+8,@„)B,y, B,e, g,e,a,'P, ,

(3.7)

(3.8)

while F and G can be obtained from F and G by in-
terchanging P„m„and 0„with P„m„and 8„,
respectively. The first two integrals in (3.6) are
canceled by the contribution arising from single
contractions in

(-i)' dx dx'TIH"'(x)H")(x')]

while the third integral in (3.6) is directly can-
celed by the contribution of 8,"„' to the scattering
operator.

In the above treatment of the cancellation of non-
covariant terms, we have considered only the tree

+crt = -g ~ufi~u42~f ~v%3~ (3.9)

and drop noncovariant terms in the contractions
of the field operators.

diagrams. However, cancellation of noncovariant
terms for tree diagrams ensures their cancella-
tion also for closed loops except for residual B(0)
terms, which can be eliminated with the use of di-
mensional regularization. '

%'e have demonstrated by explicit calculations of
the contributions of the scattering operator up to
third order that we can take the effective interac-
tion energy density for the system as
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It is interesting to note that higher-derivative couplings
are unavoidable in the treatment of higher-spin fields
with the use of ghost fields.

5This result holds whenever the free part of the Lag-
rangian density is of the conventional form, because
the effect of field transformation' is equivalent to
simplifying coupling terms of a given order with the
use of free-field equations and adding higher-order
terms.


