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Perturbation theory at large orders for a potential with degenerate minima
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Perturbation theory at large orders for a potential with degenerate minima differs from other cases
discussed in previous works. The pseudoparticle which interpolates between the two classical minima does not
correspond to a periodic path, and one has to consider here pseudoparticle-antipseudoparticle configurations.
As expected, the result is a divergent perturbation series with no sign alternance at large orders.

I. INTRODUCTION

In recent articles' it has been shown how to char-
acterize the large-order behavior of perturbation
theory in the (t)~ field theory through the contribu-
tion of pseudoparticles to the path integral. This
method has been generalized' to a polynomial in-
teraction for arbitrary boson theories. In partic-
ular an explicit formula has been given in the case
of quantum mechanics for the ground-state energy.
In this study an important case had remained un-
solved, the case of a classical potential with degen-
erate minima, in which a divergent result was
found. In this article we show how the expression
found in the general case has to be modified when
the potential has nearly degenerate minima.

The main problem was the following: The pseu-
doparticle solution to the classical Euclidean equa-
tion of motion for the anharmonic oscillator, which
governs the large-order behavior, has to give a
finite contribution to the action, and to satisfy
periodic boundary conditions. In the case of degen-
erate minima such a solution does not exist. In
particular the well-known pseudoparticle which
interpolates between the two minima and corres-
ponds to the quantum-mechanical tunneling does
not satisfy this last condition. Also if one removes
the degeneracy by adding a small term of order c
to the potential one finds now a classical solution
which has no limit when ~ goes to zero.

We shall show that if we expand around an inter-
acting pseudoparticle-antipseudoparticle path con-
figuration, we can obtain the correct result after
we integrate over a parameter describing the sep-
aration of the pseudoparticle- antipseudoparticle
pair. By the same method a formula which inter-
polates when e goes to zero between the degener-
ate and nondegenerate case is obtained.

The pseudoparticle-antipseudoparticle path con-
figuration does not correspond to a solution of the
equation of motion, but the derivative of the action
with respect to the path vanishes exponentially when
the separation between the pseudoparticles goes
to infinity. This more precise analysis confirms

the result, indicated in Ref. (2), that the pertur-
bation series in the case of degenerate minima is
not Borel-summable, all terms at large orders
having the same sign, so that the following problem
remains: Howdoes one extract the true ground-state
energy from perturbation series 7

Numerical calculations have been made in order
to check the results. For the simplest double-well
potential V(x) = —,'x'(I-gx)', the first V3 terms of the
expansion of the ground-state energy have been
computed and they are listed in Table I. They
agree with the asymptotic formula (see Table II)
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in which the coefficient of I/K is merely a numer-
ical estimate while the other terms will be derived
below.

Let us write

I 1
H= —,p'+ ~V(gx),g'

in which x=0 is a minimum of V normalized to

(2)

V(x) ~ —,'x',
x 0

(3)

and H, =-,'(p'+x') .
The ratio of traces (1) is expressed by the Feyn-

man-Kac path integral over periodic trajectories
of period P ("motions" here refer to imaginary
time). The order K of perturbation theory is pro-
jected out by a contour integral in the g plane:

II. PSEUDOPARTICLE-ANTIPSEUDOPARTICLE PAIR

IN A SIMPLE MODEL

The principles of the large-order calculations of
energy levels have been described in previous art-
icles,"to which the reader is referred for a more
detailed exposition. The ground-state energy is
taken as the zero-temperature limit

1 Tre '0
F. =E,+ lim —-ln

P Tre ~~0
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=N sx(()f2. „„exp -f d( —,'(."(()+ gv-(((x(())
dg (
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r~-BHO (r ) x{B/a)~(-B/2& 2$1fg W/2 g

x', = V'(x,),
B/a

g,'= & df —,'x', + V(x,)
~/2

(5a)

(5b)

Periodic motions correspond to fixed energies 8

For large K we have to solve the equations of mo-
tion

an infinite time and would never come back.
Therefore we have to use, instead of a solution to
the equations of motion (7), something which is
very close to a solution in which the particle is
allowed to come back to the origin. This leads to
the pseudoparticle-antipseudoparticle picture which
we shall describe in a simple example.

Consider the double-well potential
"+ dg

[2V(x)+ 8]'i2

in which x and x, are the zeros of 2V+ 8,

—.'x'= V(x)+ 8,

(6)

(7a)

V(x) = —.'x'(1 -x)'.

The pseudoparticle solution

xr=(1+e " '0') '

(6)

(9)

=2 B/2

g,2= —P+ 2 V(x)dfE (7b)

If the potential had a lcnver minimum at some
other location x = 1, in the large-P limit we would
select the zero-energy trajectory which leaves
the origin at time -~, reGects over the potential,
and returns to the origin at time+ ~. However,
if the potential has a minimum at x= 1 degenerate
with x=Q, i.e., V(l)=0, V'(1)=Q, V~(1)&0, the
particle leaving the origin would reach x= 1 after

A(xi) = 1/6,

in which the action of a path is defined as

~(x) = ( e[y'+V(x(].

Let us thus consider the motion

(10)

leaves @=0 at t=-~ and reaches x=1 at I,=+~.
The Euclidean action corresponding to this partic-
ular path is equal to (a factor 1/g' given by the
rescaling x-x/g is left over)

TABI E I, . The 73 first g& s.

1 1
2 4 ~ 5
3 4.45 x 10
4 6.266 25 x 102

5 1.103 1375x 104

6 2.288 8556 x 10
7 5.419 8081 x 1Q6

8 1.435 9941 x 108

9 4.201 5543 x 10
10 1.344 8427 x 10"
11 4.675 5394 x 10
12 1.755 4S56 x 10'4

13 7.083 9072 x 10'~

14 3.059 3930x 10"
15 1.408 8306 x 10'9
16 6.893 9952 x 10~0

17 3.573 7663 x 10
18 1.956 9S89 x 10
19 1.129 0671 x 10
20 6.846 5421 x 10"
21 4.353 8669 x 10
22 2.897 5942 x 103'

23 2.014 3376 x 1Q33

24 1.46O134Ox 1O"
25 1.1018308 x 103~

26 8.642 4175 x1038

27 7.0362748 x 10 0

28 5.938 359S x 10
29 5.188 8735 x 1044

30 4.688 8201 x 1046

31 4.376 9367 x 1048

32 4.216 5181x 10~0

33 4.187 9506 x 10
34 4.284 7327 x 1054

35 4.511 8344 x 1056

36 4.885 8777 x 1Q

37 5.437 0504 x 10"
38 6.213 0365 x 10"
39 7.285 6538 x 1064

40 8.7614543 x 10"
41 1.079 S402 x 10"
42 l.363 2129 x 10
43 1.761 7563 x 10"
44 2.329 5604 x 10"
45 3.150 1152x 107~

46 4.354 0274 x 10~9

47 6 148 4421 x 108
48 8.866 5286 x 108

49 1.305 1790x 108s

50 1.960 3573 x 10

51 3.003 1494 x 10~'

52 4.690 6127 x 10
53 7.466 7886 x 10 4

54 1.210 9783 x 10
55 2.000 2728 x 10
56 3.363 9531 x 10'
57 5.758 1229 x 10'
58 1.002 8810x 10~06

59 1.776 7532 x 10'
60 3.201 0318x 10'

5.862 9761 x 10"
62 1.0914290 x 10
63 2.0644751 x 10
64 3.966 9052 x 10
65 7.741 3461 x 10 ~'

66 1.5339152x 10' 4

67 3.085 3696 x 101 6

68 6.29S 5082 x 10'
69 1.304 6661 x 10'3'
70 2.741 5829 x 10'33

71 5.843 2635 x 10'"
72 1.262 9199x 10'
73 2.767 4449 x 10'
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( (1+e " '0') ' t&-,'(t, + t, )

1(1+z" '~')-', t& .'(t.-+t,).
(12a)

(12b)

problems the P factor of Eq. (1), and once we have
integrated over the g' fluctuations we are left with
a one-variable integral over 0 for EK:

The value of the corresponding action is very
close to 2A(x~) =-,' if the pseudoparticle (12a) and
antipseudoparticle (12b) are widely separated and

3 is the limit of the action for periodic paths of
long period and vanishingly small energy. If we
eall 8 the separation

B=(t, t,), -
for large 0

A(x, „)= e-e (14)

Let us now substract from the potential V(x) a
small ~x' term which removes the degeneracy be-
tween the two minima. The solution of the equa-
tions of motion remains very close to (12) snd,
since x, „differs from zero only on a region of
size 8, we have now

A(x~ „)= —,
' -e e-eB. (15)

For & finite we have studied in a previous article'
the large-order behavior of the ground-state energy

EK ~ NK/
da

K 3-e"~-&8 K
(18)

in which the normalization constant N will be de-
termined later.

The g integration implies that a complex con-
tour, which will be specified below, is chosen in
the 0 plane. lt is convenient to use the variable
z= e~, in which the integral (18) reads

EK ~ NK&
K~

—(-, -z+ elnz)
dz K
z

(18')

%hen K goes to infinity at fixed & there is a sad-
dle point at z, = E. However, if & goes to zero first
the integrand becomes singular at the saddle point
and the steepest-descent method is no longer ap-
plicable. For eK finite the relevant range of in-
tegration in the z plane is of order c. Up to neg-
ligible corrections one can thus integrate in the
variable t =z/» along a contour C which surrounds
the whole cut across the negative real f axis:

g 2K

0
(16) E» ~ ted%! —(e+ e in» »r. +»-in&) . (19)

df K
KK

~-3/2
E» ~ — I'(E+ —,')(e+» ln») '«e'~" (17)K K~~

The quantity

A, (~) = —.'+ e inc+ 0(e) (2o)

This result increases without bound if E goes to
zero. However, we are interested in the limit in
which e goes to zero before K goes to infinity, and
in fact we shall determine the crossover region in
which K is large, e is small, but K& is finite. We
shall not worry in the following about constant nor-
malization factors which will be fixed at the end in
order to reproduce the result (17).

The quasisolution (12) depends on two collective
variables t0 and ty or rather on the center of mass
—,'(to+ t, ) and on the separation B=t, -t,. The Jacob-
ian of the change of variables to collective coordin-
ates in the path integral mill have off-diagonal
terms involving the scalar product of
Biz/Bto with Bxzz/Bt~. For large 8 the overlap of
these two functions is exponentially small and thus,
up to exponentially small terms, the Jacobian is
8 independent. Small fluctuations around (12) in-
volve, apart again from exponentially small fac-
tors, the square of the determinant corresponding
to the integration over the fluctuations around the
one-pseudoparticle solution. Since this determin-
ant is a pure constant, we find that the measure of
the integration over the bvo collective variables is
essentially constant. This is specific to this sim-
ple potential as will be shown below. The integra-
tion over the center of mass suppresses as in all

is the action for the periodic zero-energy pseudo-
particle, and in the large-K, finite-cK limit we
obtain

&[8K/X, (6) ](C-1IIC)NKf d"
»»-- [A,(z)]» c &

This last integral is elementary and yields

Kf EK

» ~ [A (»)]» Ae(»)

Xg X

F(")="1(x+1)
.

(21)

(22)

(22)

EK ~ -K)3K—1+0K3 (25)

We see that, as had been anticipated in Ref. 2,
at high orders all the terms of the series have the
same sign, and thus the Borel transform of the

If we now use (17) to fix the normalization we
end up with

1 KI zK
» e« fiette» [&» ln(I/»)]» IAe(t)

(24)

In particular for the &=0 limit of broken symme-
try we obtain
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TABLE II. Ug=-Eg/3 E! and Vg
——(K+ 1)Ug,g

—KUg.
The large-X limit of Vz and U& are identical but the
1/K corrections are absent in Vz', they should both ap-
proach the limit 3/~ = 0.954 930. At order 73 the ex-
pected error is a few percent in U& and less than 10+

Vx.

pseudoparticle-antipseudoparticle separation.
Consider the Hamiltonian

H = —,'p'+ ~V(gx) (26)

with a potential V possessing two lowest minima

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

0.883 2445
0.885 0323
0.886 7328
0.888 3522
0.889 8963
0.891 3702
0.892 7785
0.894 1257
0.895 4155
0.896 6516
0.897 8372
0.898 9756
O.SOO 0693
0.901 1209
0.902 1330
0.903 1076
0.904 0468
0.904 9526
0.905 8265
0.906 6705
0.907 4858
0.908 2740
0.909 0365
0.909 7723
0.9104888
0.9111810
0.9118520
0.912 5026
0.913 1339
0.9137466
0.914 3417
0.914 9197
0.9154815
0.9160278

0.956 544
0.956 453
0.956 367
0.956 293
0.956 222
0.956 152
0.956 097
0.956 036
0.955 984
O.S55 932
0.955 896
0.955 848
0.955 804
0.955 774
0.955 736
0.955 703
0.955 677
0.955 639
0.955 623
0.955 589
0.955 566
0.955 549
0.955 518
0 ~ 955 502
0.955 482
0.955 467
0.955 442
0.955 431
0.955 410
0.955 404
O.S55 380
0 ~ 955 369
0.955 361

x=0, V'(0)=0, V"(0)=l,

x=a, V'(a) =0, V"(a) =~
(27)

Again, the zero-energy pseudoparticle tunneling
from 0 to a does not come back to the origin, and
1st A(x~)/g' be the value of the corresponding ac-
tion

a

A(x~) = dx[2V(x)]' (23)

As before we consider a pseudoparticle going
from 0 to a staying at x = a for a large time 8 and
returning to the origin. The corresponding action
is

A, = ~[2A(x~) -ce~], (29)

in which c is some constant which depends on the
details of the potential.

If we add again a small -~x' to the potential the
action becomes

A, = ~ [2A(xz) -Ce ~-c8a'], (30)

det — 2+ V (x~„)
L

since the particle is near x=a during a time inter-
val of size B.

The only problem is to determine the measure
of the 8 integration. Since the curvature around
the two minima 0 and a are different, the deter-
minant of the fluctuations,

energy has a singularity on the integration path.
As a final remark let us note that the continuation
of (24) for e &0 does describe the crossover to the
stable oscillating regime studied in Ref. 2. Indeed
& e- )~(e"A,(~)-a-fv(e) =«""~, inwhtch
a = —,'+

[ & [ln [ c [, the phases of A» and of x" in E(x}
[Eqs. (22), (23)] cancel each other; 1/I'(1+ x} is
replaced by -I'(-x)(sinxx/w). Thus in the cK- ~
limit we do recover the limit studied in (2):

2 1/2
Z = — a '«" "'sin3wff'

~
e

~
.

v ff'fcfv

III. GENERAL POTENTIAL

For a general analytic potential possessing bvo
degenerate minima the calculations are very sim-
Qar. The only difference lies, as we shall see, in
the character of the integration measure over the

contains in addition to the two wells around Ip and
I,, a square-well part of width 8.

The integration over the fluctuations around

tp and t, give a 8-independent contribution absorbed
into the normalization. In addition there is a third
piece given by the scattering off the square well
(Fig. 1). The phase shifts are easy to compute

V ————

r

to

FIG. 1. The potential for the small fluctuations
around the classical path.
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and they give a Fredholm determinant proportional
to e""".

The measure of the 0 integration is thus the in-
verse of the square root of this number, i.e.,

(1-vy . Therefore the Eth order contribution to
the ground-state energy (expanded in powers of g')
is

in which

0
A, (e) = 2A(»z)+ —&in&,

& Ea2

vA, (e)
' (33b)

e(1 v)8/2
E» ~ XK! ds . (31)

[2A (x,) Ce-~' »ea-')

Translating 8 of -(1/v)inc, and taking the limit
E- , with &E finite, we obtain

dg et (1-v)/2v18
~g t &(v-1)/2v e~(84 e»l)

g-+ oo [A,(e)]"
(32)

~(v-1) /2v ~P+(1m) /2ve ~
pgt

[A (&)]» 1'(p +(1 +)v/2v}
(34)

The normalization of (34) may be obtained from
the knowledge of the p- ~ limit given in (2). The
result is

The integration over (9 may be performed as before
and we obtain

21 /2v 1/2g2
A=—

1egdkmg 7T Dg A
saddle
yoints

For the potential

v(») = —,'»'(1-»")'

(- a 1 1
exp ,

dx +
" 0 [2V(»)]'/' »[(»/a)" -1] .

(36)

there are two degenerate saddle points for M even and only one for M odd.
In the degenerate case &=0 we thus obtain

Et 21/2v 1/2gl+1/v [.a 1
+

[2A(x)]" ""' mal )'(,'+1/2w) ~, [2v-(x)]'~' x[(x/a)" (])
saddle
uoiats

For the potential (36) this gives

1 3+ (-)" K!K" "'/2" 21/m-1/2

«»=- 2,M /~ r(-,'+1/2M) [M/(M+2)]+'/'"+'/' '

(37)

(38)
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