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Perturbation theory at large orders for a potential with degenerate minima differs from other cases
discussed in previous works. The pseudoparticle which interpolates between the two classical minima does not
correspond to a periodic path, and one has to consider here pseudoparticle-antipseudoparticle configurations.
As expected, the result is a divergent perturbation series with no sign alternance at large orders.

I. INTRODUCTION

In recent articles' it has been shown how to char-
acterize the large-order behavior of perturbation
theory in the ¢* field theory through the contribu-
tion of pseudoparticles to the path integral. This
method has been generalized? to a polynomial in-
teraction for arbitrary boson theories. In partic-
ular an explicit formula has been given in the case
of quantum mechanics for the ground-state energy.
In this study an important case had remained un-
solved, the case of a classical potential with degen-
erate minima, in which a divergent result was
found. In this article we show how the expression
found in the general case has to be modified when
the potential has nearly degenerate minima.

The main problem was the following: The pseu-
doparticle solution to the classical Euclidean equa-
tion of motion for the anharmonic oscillator, which
governs the large-order behavior, has to give a
finite contribution to the action, and to satisfy
periodic boundary conditions. In the case of degen-
erate minima such a solution does not exist. In
particular the well-known pseudoparticle which
interpolates between the two minima and corres-
ponds to the quantum-mechanical tunneling does
not satisfy this last condition. Also if one removes
the degeneracy by adding a small term of order ¢
to the potential one finds now a classical solution
which has no limit when € goes to zero.

We shall show that if we expand around an inter-
acting pseudoparticle-antipseudoparticle path con-
figuration, we can obtain the correct result after
we integrate over a parameter describing the sep-
aration of the pseudoparticle-antipseudoparticle
pair. By the same method a formula which inter-
polates when € goes to zero between the degener-
ate and nondegenerate case is obtained.

The pseudoparticle-antipseudoparticle path con-
figuration does not correspond to a solution of the
equation of motion, but the derivative of the action
with respect to the path vanishes exponentially when
the separation between the pseudoparticles goes
to infinity. This more precise analysis confirms
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the result, indicated in Ref. (2), that the pertur-
bation series in the case of degenerate minima is
not Borel-summable, all terms at large orders
having the same sign, so that the following problem
remains: How does one extract the true ground-state
energy from perturbation series?

Numerical calculations have been made in order
to check the results. For the simplest double-well
potential V(x)=3x2(1-gx)? the first 73 terms of the
expansion of the ground-state energy have been
computed and they are listed in Table I. They
agree with the asymptotic formula (see Table II)

3r, 1031 /1
=_K!13K=_ - — — —_
E,=-K!3 7r[l = K+0<K2>]

in which the coefficient of 1/K is merely a numer-
ical estimate while the other terms will be derived
below.

II. PSEUDOPARTICLE-ANTIPSEUDOPARTICLE PAIR
IN A SIMPLE MODEL

The principles of the large-order calculations of
energy levels have been described in previous art-
icles,’? to which the reader is referred for a more
detailed exposition. The ground-state energy is
taken as the zero-temperature limit

. 1. Tre™®#
E—Eo+§112<— Elnw) . (1)
Let us write
1
H=3p%+ ?V(gx), (2)
in which x=0 is a minimum of V normalized to
V(x) ~ 3x2, 3)
x>0

and Hy=3(p*+x3).

The ratio of traces (1) is expressed by the Feyn-
man-Kac path integral over periodic trajectories
of period B (“motions” here refer to imaginary
time). The order K of perturbation theory is pro-
jected out by a contour integral in the g plane:
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( Tre-tH

_ dg ‘ _ B/2 1 1 l
Tre-aﬂo)(x)-Nfz(a/z)q(-s/z)ﬁx(t)fzz'"g * expl f—a/zdt[ZkZ(t)-F ?V(gx(t))]s ) @)

For large K we have to solve the equations of mo-
tion

X=V'(x,), (5a)
2 B/2 e
Pro dt[gx'f. + V(xc):’. (5b)
=-8/2

Periodic motions correspond to fixed energies &

B_zf"¢ dx (6)
. [2v(x)+ 8] /2
in which x_ and x, are the zeros of 2V + &,

X2=V(x)+ 8, (7a)
2 B/2
2=
g£2=% [3+z f.m V(x)dt] ) (Th)

If the potential had a lower minimum at some
other location x=1, in the large-g limit we would
select the zero-energy trajectory which leaves
the origin at time -, reflects over the potential,
and returns to the origin at time + . However,
if the potential has a minimum at x=1 degenerate
with x=0, i.e., V(1)=0, V’/(1)=0, V*(1)>0, the
particle leaving the origin would reach x=1 after

an infinite time and would never come back.
Therefore we have to use, instead of a solution to
the equations of motion (7), something which is
very close to a solution in which the particle is
allowed to come back to the origin. This leads to
the pseudoparticle-antipseudoparticle picture which
we shall describe in a simple example.

Consider the double-well potential

V(x)=2x3(1 -x)*. ®)
The pseudoparticle solution
xp=(1+ e ¢t0))! 9)

leaves x=0 at {=—= and reaches x=1 at {=+ =,
The Euclidean action corresponding to this partic-
ular path is equal to (a factor 1/g2 given by the
rescaling x—~x/g is left over)

Alxp)=1/6, (10)
in which the action of a path is defined as

Ax)= f a2+ v(x)]. (11)

Let us thus consider the motion

TABLE 1. The 73 first E4’s.

K —Eg K -Eg K -Eg

11 26 8.6424175x10% 51 3.0031494 x10%
2 4.5 27 7.0362748x10%° 52  4.6906127 x10%
3 4.45x10 28 5.9383598 x 1042 53 7.4667886x10%
4 6.26625x10? 29 5.1888735x10% 54 1.2109783x10%7
5 1.1031375x10% 30 4.6888201x10% 55 2.0002728x10%
6 2.2888556x10° 31 4.376 9367 x10% 56 3.3639531x10'0
7 5.4198081x10° 32 4.2165181x10% 57 5.7581229x10'%
8 1.4359941x108 33  4.187 9506 x10% 58 1.0028810x10'%
9 4.2015543x10° 34 4.2847327x10% 59 1.7767532x10'%
10 1.3448427x10" 35 4.5118344x10% 60 3.2010318x10'1°
11 4.6755394 x 10" 36 4.8858777x10% 61 5.8629761x10'"?
12 1.7554856 x 10" 37 5.437 0504 x 1080 62 1.0914290x10!!5
13 7.0839072x10' 38 6.213 0365 x10% 63 2.0644751x10'""
14 3.0593930x10'7 39 7.2856538x10% 64 3.9669052x10''"?
15 1.4088306x10'° 40 8.7614543x10%¢ 65 7.7413461x10'%
16 6.8939952x102° 41 1.0798402x10% 66 1.5339152x10'%
17 3.5737663 x10% 42 1.3632129x10" 67 3.0853696x10'%
18 1.9569889 x10% 43 1.7617563x107 68 6.2985082x10'%8
19 1.1290671x10% 44 2.3295604x10" 69 1.3046661x10'3
20 6.8465421 x10%7 45 3.1501152x10"7 70 2.7415829x10'3
21 4.3538669x10% 46 4.3540274x10" 71  5.8432635x10'%
22 2.8975942x 103 47 6.1484421x10% 72 1.2629199x10'38
23 2.0143376x10% 48 8.8665286x10% 73 2.7674449x10'40
24 1.4601340x10%° 49 1.3051790x10%

25 1.1018308x10%7 50 1.9603573x10%
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Qe o)t p<it,+1,)

X, = (12a)
DAY (et > i(tet).

(12b)

The value of the corresponding action is very
close to 2A(x,) = 3 if the pseudoparticle (12a) and
antipseudoparticle (12b) are widely separated and
% is the limit of the action for periodic paths of
long period and vanishingly small energy. If we
call 6 the separation

0=(t, =15, (13)
for large 6
Alxy, )=35-e. (14)

Let us now substract from the potential V(x) a
small €x? term which removes the degeneracy be-
tween the two minima. The solution of the equa-
tions of motion remains very close to (12) and,
since x, , differs from zero only on a region of
size 8, we have now

Alxy, ) =5-€"-€b. (15)

For ¢ finite we have studied in a previous article?
the large-order behavior of the ground-state energy

E=_E.g%, (16)
0

-3/2
Ey - 1"/? LK+ )3+ elne);®/a | (17)

This result increases without bound if € goes to
zero. However, we are interested in the limit in
which € goes to zero before K goes to infinity, and
in fact we shall determine the crossover region in
which K is large, € is small, but K¢ is finite. We
shall not worry in the following about constant nor-
malization factors which will be fixed at the end in
order to reproduce the result (17).

The quasisolution (12) depends on two collective
variables {; and {,, or rather on the center of mass
3(t,+1,) and on the separation 6=¢, —#,. The Jacob-
ian of the change of variables to collective coordin-
ates in the path integral will have off-diagonal
terms involving the scalar product of
dx;,/8t, with 9x,,/9t,. For large 6 the overlap of
these two functions is exponentially small and thus,
up to exponentially small terms, the Jacobian is
0 independent. Small fluctuations around (12) in-
volve, apart again from exponentially small fac-
tors, the square of the determinant corresponding
to the integration over the fluctuations around the
one-pseudoparticle solution. Since this determin-
ant is a pure constant, we find that the measure of
the integration over the two collective variables is
essentially constant. This is specific to this sim-
ple potential as will be shown below. The integra-
tion over the center of mass suppresses as in all

problems the B factor of Eq. (1), and once we have
integrated over the g2 fluctuations we are left with
a one-variable integral over 6 for E,:

By ~ NI [ — 8 — a@__ (18)
K> (35— —€b)k
in which the normalization constant N will be de-
termined later.

The g integration implies that a complex con-
tour, which will be specified below, is chosen in
the 6 plane. It is convenient to use the variable
z=e", in which the integral (18) reads

Ey v NKI filzi (3—z+ elng)™*. (18*)

When K goes to infinity at fixed € there is a sad-
dle point at z,= €, However, if € goes to zero first
the integrand becomes singular at the saddle point
and the steepest-descent method is no longer ap-
plicable. For €K finite the relevant range of in-
tegration in the z plane is of order €. Up to neg-
ligible corrections one can thus integrate in the
variable ¢ =z/¢ along a contour C which surrounds
the whole cut across the negative real ¢ axis:

Ey ~ NK! fc ‘§—§(§+<1ne_ec+elng)"‘. (19)

The quantity

A (€) =3+ €lne+0(¢) (20)

is the action for the periodic zero-energy pseudo-
particle, and in the large-K, finite-€ K limit we
obtain

Er ~ __Ml_ fiﬁe[eK/Ac(e)](t-lnC). (21)
K—»o[Ac(E)]K c &

This last integral is elementary and yields

. K! €K
b ar F<Ac<€>>’ (22)
F(x)= ﬂ—re;?;) . (23)

If we now use (17) to fix the normalization we
end up with

~ 1 K! €K
Ex K—>w,ck tinite T2 [ —€ln(1/€)]x" F(Ac(€)> :
(24)

In particular for the €=0 limit of broken symme-
try we obtain

3 1
~ K
Eg v, -K13 ;[1 +o( 7{—)] . (25)
We see that, as had been anticipated in Ref, 2,
at high orders all the terms of the series have the
same sign, and thus the Borel transform of the
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TABLE II. Ug=-E/3¥K! and V= (K+1)Ug,, — KUg.
The large-K limit of Vi and Uy are identical but the
1/K corrections are absent in Vy; they should both ap-
proach the limit 3/7=0.954 930. At order 73 the ex-
pected error is a few percent in Uy and less than 107
in Vg.

K Ug Vi

40 0.883 2445 0.956 544
41 0.885 0323 0.956 453
42 0.8867328 0.956 367
43 0.888 3522 0.956 293
44 0.889 8963 0.956 222
45 0.8913702 0.956 152
46 0.8927785 0.956 097
47 0.894 1257 0.956 036
48 0.8954155 0.955 984
49 0.896 6516 0.955932
50 0.897 8372 0.955 896
51 0.898 9756 0.955 848
52 0.900 0693 0.955 804
53 0.9011209 0.955774
54 0.902 1330 0.955736
55 0.9031076 0.955703
56 0.904 0468 0.955 677
57 0.904 9526 0.955 639
58 0.905 8265 0.955 623
59 0.906 6705 0.955 589
60 0.907 4858 0.955 566
61 0.908 2740 0.955 549
62 0.909 0365 0.955 518
63 0.9097723 0.955 502
64 0.9104888 0.955482
65 0.9111810 0.955467
66 0.911 8520 0.955 442
67 0.9125026 0.955431
68 0.9131339 0.955410
69 0.9137466 0.955404
70 0.914 3417 0.955 380
71 0.9149197 0.955 369
72 0.9154815 0.955 361
73 0.916 0278

energy has a singularity on the integration path.
As a final remark let us note that the continuation
of (24) for €<0 does describe the crossover to the
stable oscillating regime studied in Ref. 2. Indeed
if €~ |€|ei"A (€)=a—ir|€| ~ae™'/a! in which
a=%+ |€|In|€|, the phases of A¥ and of x* in F(x)
[Egs. (22), (23)] cancel each other; 1/T'(1+x) is
replaced by ~I'(-x)(sinrx/7). Thus in the €K -
limit we do recover the limit studied in (2):

1 2 1/2
E,= —<-_—__-> a1 /gin37K | €
T\K|e|n

III. GENERAL POTENTIAL

For a general analytic potential possessing two
degenerate minima the calculations are very sim-
ilar. The only difference lies, as we shall see, in
the character of the integration measure over the

pseudoparticle-antipseudoparticle separation.
Consider the Hamiltonian

H=%P2+§11'V(gx) (26)

with a potential V possessing two lowest minima
x=0, V/(0)=0, V”(0)=1,
x=a, V’(a)=0’ V'(a)=vz .

@7

Again, the zero-energy pseudoparticle tunneling
from O to a does not come back to the origin, and
let A(x;)/g? be the value of the corresponding ac-
tion

A(xp)= fo dx[2v(x)}/2 (28)

As before we consider a pseudoparticle going
from 0 to a staying at x=a for a large time 6 and
returning to the origin. The corresponding action
is

A= Tgl-,[ZA(x,) —ce™], (29)

in which ¢ is some constant which depends on the
details of the potential.

If we add again a small —ex? to the potential the
action becomes

A= Ly 240e) Com —cout), (30)

since the particle is near x=a during a time inter-
val of size 6.

The only problem is to determine the measure
of the 0 integration. Since the curvature around
the two minima 0 and a are different, the deter-
minant of the fluctuations,

d2
det[ -zt V”(x“)] s

contains in addition to the two wells around f, and
t, a square-well part of width 6.

The integration over the fluctuations around
¢, and ¢, give a f-independent contribution absorbed
into the normalization. In addition there is a third
piece given by the scattering off the square well
(Fig. 1). The phase shifts are easy to compute

A

Y V=
U

to tq

FIG. 1. The potential for the small fluctuations
around the classical path.
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and they give a Fredholm determinant proportional
to eﬂ(v‘l).

The measure of the 6 integration is thus the in-
verse of the square root of this number, i.e.,
e1-v¥/2  Therefore the K*"-order contribution to
the ground-state energy (expanded in powers of g ?)
is

e(l-v)a /2
24 (x,) =Ce™ —€8a ¥

Translating 6 of —(1/v)lne, and taking the limit
K -, with €K finite, we obtain

Ey o2 NK! fde[ (31)
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in which

2
Ac(€)=2A(x,)+a7eln€, (33a)

€ Ka?
= -7 33
p AL (33b)

The integration over 6 may be performed as before
and we obtain

€(1;-1)/21; pn+(1-v)/20e-0

“ [4,(e))x To+1+v)/20) "

E (34)

K=o

E. ~ NK!¢ev1)/2v dg et 12/ 0(6+e0=1) Th lizati f (34) be obtained f
K Y NK! € f.___—_ , e normalization o may be obtained from
[A () the knowledge of the p— < limit given in (2). The
(32) result is
J
21 /29-1/2a2 a 1
N== 2 —J—:—exp[f dx( o+ - )] (35)
leading 7 vA, 0 [2V(%)] x[(x/a)’ -1]
points
For the potential
v(x)=3x3(1 —x ¥)? (36)

there are two degenerate saddle points for M even and only one for M odd.

In the degenerate case €=0 we thus obtain

B~ K!
Ko leaging [2A (x )]mx/zvu/z
saddle I

points

K(l-v)/za

For the potential (36) this gives

1 3_+(_)M K!K(I-H)/ZM

B Q1/2M=1/2
kK =y

21/2v-1/241+1/v

—_— €
mpl/2oT(3+1/20)

K>

P] ﬂMxlzu F(§+1/2M) [M/(]W+2)]""1/2”*1/z°

xp[Jtdx( [2V(;lc)]1/2+ x[(x/iz)”_l]ﬂ . @7

(38)
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