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We construct a lattice version of dual string theory, which we hope will be useful in systematically
analyzing the properties of that theory. Mass renormalization is discussed, and the familiar tachyon problem
is seen to arise so long as counterterms are restricted to be local. The dual-loop expansion is discussed and
the origin of the critical dimension elucidated. In the interacting theory, the critical dimension is required for
Lorentz invariance, but it is also the only dimension for which the coupling-constant renormalization is finite.
The choice of bare coupling constant, go = 1, is seen to be particularly attractive. If we make this choice,
the string interaction coupling constant is calculable in terms of the fundamental rest tension To. The
instabilities associated with tachyons are discussed, and we propose a method for discovering whether the
interactions stabilize the theory. Application of our ideas to the baryon three-string problem is also
mentioned.

I. INTRODUCTION

If dual string theory' is to be taken seriously as
a theory of strong interactions, the deficiencies of
the extant models must be removed. Qf course,
one of the strongest criticisms of the string model
is that no version of the model has exhibited the
symmetry structure so evident in strong-inter-
action phenomena. However, as theories go, the
string model is still young, and we expect that
more realistic versions can be found. So let us
accept the fact that we have not yet found the right
string model. The two viable string models, the
generalized Veneziano model (GVM) and the Neveu-
Schwartz-Ramond (NSR) model, are open to seri-
ous criticism on general grounds apart from the
inadequacy of the spectrum of these models.

In the absence of interactions both models have
tachyons. Interactions are introduced perturba-
tively in a series of Feynman-type diagrams, and
the tachyons render the loop corrections meaning-
less. This situation is reminiscent of that in a
field theory perturbed about a classically unstable
solution (e.g. the symmetric solution in a field the-
ory in which the symmetry is spontaneously bro-
ken). Bardakci and Halpern' have suggested the
an:Qogous interpretation of the tachyon problem in
string theory: that the dual-loop expansion is a
perturbation series about an unstable bare vacuum.
They have proposed techniques to search for a
suitable vacuum. It is clear that such a search
must be nonperturbative.

Another serious criticism of dual models is the
absence of a parton picture which could explain
scaling in deep-inelastic electroproduction. Par-
ious proposals have been made for constructing
currents in dual models, but none of them have
been completely successful. The most interesting
proposals of Schwarz, Corrigan, and Fairlie and

of Green and Shapiro' explain power-law form fac-
tors, but lack an explanation of parton phenomena.
It seems possible that the difficulty here is not the
way currents are introduced, but rather that in the
narrow-resonance approximation the hadronic w ave
function is dominated by the single string compo-
nents, and a parton picture is associated with the
many string components of the wave function.
These will only be dominant for strong coupling.
It is therefore important to try to understand how
the effective coupling depends on the distance scale
of the probe: If the effective coupling at short dis-
tances is strong, a parton picture may emerge.

To deal with these problems we are motivated to
set up a string formalism which will lend itself to
nonperturbative techniques. We shall use a lattice
version of Mandelstam's interacting string formal-
ism. 4 We work on a lattice in order to regularize
the ultraviolet divergences of the theory. Because
there are an infinite number of particles in the
string theory, divergences appear in the tree ap-
proximation, as well as in higher-order loops.
Our lattice prescription regularizes all these di-
vergences at once. All lattice calculations are
well defined. We propose to study nonperturbative
phenomena on the lattice before taking the contin-
uum limit.

In this paper we set up the general lattice for-
malism and show how the familiar results of the
dual-loop expansion emerge. Interactions are in-
troduced in a natural way, and it seems possible
to deal with questions which go beyond perturbation
theory. This paper is organized as follows: In
Sec. II we review the classical string theory choos-
ing the transverse parametrization of Qoddard,
Goldstone, Rebbi, and Thorn (GGRT).' We then
quantize the theory by path integrals defined on a
lattice in both 0 and 7, and give the general pres-
cription for including interactions. In Sec. III we
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use our lattice formalism to calcolate the propa-
gators for both open and closed strings in the ab-
sence of interactions. The divergences arising in
the continuum limit are removed by counterterms
which, we argue, preserve the causal properties
of the interactions. There is no local counterterm
which avoids the appearance of tachyons in the
spectrum. In the absence of interactions the di-
mension of space-time is not strictly determined
to be the critical one, provided one allows nonlocal
counterterms to be added to the Lagrangian. In
Sec. IV we study the simplest interactions in the
weak-coupling limit. The choice D= 26 is seen to
be required if either (a} the continuum limit is re-
quired not to introduce a divergence in the bare
coupling constant, or (b) the interactions are re-
quired to be Lorentz invariant.

In Sec. V we explain the instabilities in the lattice
version of the theory which give rise to tachyons in
the continuum limit. We point out that these in-
stabilities may be artifacts of the weak-coupling
limit and develop a formalism for going beyond
perturbation theory. A relativistic theory of the
mass spectrum is presented and an integral equa-
tion for the mass eigenvalues is derived. We show
that the sum over all planar graphs is equivalent to
a string theory in which nearest-neighbor sites are
coupled by a modified potential which is attractive
but admits continuum energy eigenvalues. If all
the sites bind in this potential there will be no
tachyons in the "planar" approximation. In Sec.
VI we discuss how our formalism may offer a
tractable method of calculating the spectrum of the
baryon three-string. We also mention various
problems for future investigation.

II. GENERAL FORMALISM

A. Review of the classical theory

We can summarize the classical dynamics of the
dual string with constant rest tension T, by a sim-
ple action principle if we choose the transverse
parametrization of GGRT'.

x'(o, r) -=—(x'+ x') = ~,1

where S' "(o, v) is the four-momentum density of
the string. o is thus 1/T, times the quantity of P'
contained in the portion of string extending from
one end (o = 0) to the point labeled by o'. To must
have magnitude 13 long tons to yield a Regge tra-
jectory with slope of' = 1 (QeV) '. With this choice,
the minus components are dependent variables:

~X = x-'(o, 7)=x x',

=-i (o, r) =-,'(x'+x"),
(1.2)

where the overdot denotes 8/Sv and the prime de-
notes S/So. A vector v represents the D —2 com-
ponents perpendicular to the "0" and "3"axes.
The action is, simply,

W'=T, dt ds —,
' -x" .

0

The classical dynamics is specified by requiring
that W' be stationary with respect to small varia-
tions of x away from the classical trajectory.
Notice that we have not incorporated the (trivial)
equation of motion for P' (i.e., P'= 0) in this ac-
tion principle; for the variational principle and the
ensuing quantum dynamics P' is a (constant) pa-
rameter equal to the total P' carried by all the
strings under consideration. '

In interpreting the above action principle, we
may choose to describe a closed string for which
x(P'/T„r) = x(0, r), an open string for which
x(0, &), x(P'/To, r) are varied independently, or
several open and closed strings for which there are
discontinuities at internal points in o in which case
each free end is varied independently. There are
even solutions for which the number of strings
changes with &. Thus interactions among strings
are present even in the classical theory.

B. The quantum theory without interactions

In the absence of interactions, the string theory
may be quantized by straightforward canonical
rules as discussed by GGRT. ' The major obstacle
in this approach is the ultraviolet divergence in P
(the light-cone Hamiltonian) due to zero-point fluc-
tuations. If an arbitrary subtraction is made, one
must introduce nonlocal counterterms into P . In
fact, GGRT found that the subtraction is uniquely
determined by requiring consistency with Lorentz
invariance. Further, if the quantum-mechanical
Lorentz generators were taken to be polynomial
analogs of the classical ones, the Lorentz group
was not represented except in 26 space-time di-
mensions. If nonlocal modifications to these gen-
erators are allowed, Lorentz invariance can be re-
gained. ' We wish to follow a quantization scheme
which regularizes ultraviolet divergences in a lo-
cal, causal way, as the cutoff goes to infinity.

We are therefore motivated to introduce a lattice
at least in the 0 coordinate. Interactions are most
easily introduced in the Feynman path-integral
formalism, and we accordingly choose this quan-
tization procedure. In order to define path inte-
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grals, we shall use imaginary time which we di-
vide into discrete units, i.e., we introduce a lat-
tice in & and 0. To preserve the symmetry between
7' and 0, it is natural to choose equal lattice pac-
ings in o and 7' as the speed of signal propagation
in (r, c) space is unity. In fact, to each order in
perturbation theory in the dual-loop expansion, the
detailed cutoff dependence can be absorbed in coup-
ling-constant renormalizations. Also for our the-
ory, the path-integral formalism is well known to
be equivalent to standard operator methods, at
least in the absence of interactions. For pedagog-
ical simplicity we use our symmetric lattice con-
sistently throughout the remainder of this paper,
but we shall be sure to point out those results

which are cutoff independent and those which are
not as we develop the theory.

We denote the fundamental unit of 7 and 0 by the
letter a. T= 7', —-&, and P'/T, are then integer
multiples of a (see Fig. 1):

T—= 72 —v, = (A'+ l)a,
P'=Ma TO,

x„.=-x(ia, 7,+ja), x„„,=x, ,

(2.1}

The quantum dynamics is then specified by defining
the transition amplitude for observing a string with
transverse coordinates [x, „.,] at 7= &, given that
the string has coordinates (x, ,] at 7'=r, For. dis-
crete & and o this amplitude is (I= c =1)

(2.2)

where iR' is a discrete imaginary-time version of the classical action
N N

zW ——To —~~(xg y+y
—xgy} + (x~+y ~ x~ 'F + 2 (x~yy p x~p) + 2 ~(x&~g ~yy x& ~+y)-j 0 f=x j=l 5=I 5=x

(2.3)

where the range of i is 1~i~M for a closed string
and 1 ~ i ~M- 1 for an open string. The factor
[(T,/2v)'~']"'"""~~' is the two-dimensional analog
of the normalization factor normally introduced in
the path integral. The reader may verify that this
factor is determined by the requirement

Ild 'x~gx, ],a ~Px, ],0&„=„1.

We remark that

is independent of the lattice spacing a. The con-
tinuum limit is therefore obtained by letting M, N

~ in fixed ratios: (N+1)/M =[(v, —7', )/P']To.

C. Quantum theory (with interactions)

Using the continuum path-integral formalism,
Mandelstam4 has developed a consistent theory of
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FIG. 1. The string.

interacting strings, which in fact yields the uni-
tarized GVM. However, because of the diver-
gences associated with the continuum, he could
only infer the normalization factors indirectly by
imposing the closure property of functional inte-
grals. Qur lattice formulation allows us to calcu-
late these factors directly.

Interactions are naturally included on the lattice
by summing over paths in which nearest-neighbor
couplings in the i variable [we call each term
(x„, , —x„)' a link] are allowed to disappear, ap-
pear, or be interchanged between sites from time
to time, these changes being restricted only by a
topological consideration. In this general picture,
the fully interacting system may be viewed as an
assembly of M identical bosons (lattice sites) in-
teracting with possible links, each of which can
be "on" or "off." A state of the system at any
time, j, is specified by giving the transverse po-
sition of each site (x,) and the state of each of the
M(M —1)/2 possible links ("on" or "off"). For the
open or closed string we restrict allowed states to
those in which no site is linked to more than two
others. (For a baryonic string, one site is linked
to three others. }

We can represent any particular contribution to
the sum over histories by a lattice diagram in
which lines are drawn between sites when the link
is present and are omitted when the link is absent.
(A planar topology is shown in Fig. 2.) Once a
string has broken into several pieces, the pieces
may rejoin in different orders, as for example,
the nonplanar topology of Fig. 3. Finally, it is
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FIG. 2. A simple planar graph. FIG. 3. A simple nonplanar graph.

well known that crossing symmetry requires the
interchange interaction depicted in Fig. 4, another
kind of nonplanar topology. The complete inter-
acting amplitude is obtained by summing over all
allowed topologies. In Sec. IV, we shall discuss
interactions in more detail, including the modifi-
cations required by renormalization.

III. SINGLE STRING PROPAGATORS; GROUND-STATE
ENERGIES AND ZERO-POINT SUBTRACTIONS

lating x„.by the solution of the classical equations,
(sW/Sx, i)(x'„)= 0, which satisfies x', „„=x, „„,
x', o= x, 0 (see Appendix A). Then

8xi,x.if &. I(xio), ri&= e"""'(40),r. [40 4 r, &.

(3.1)
If we define an MN &MN matrix% by

(3.2)

then

The propagators are computed by evaluating the
Gaussian integrals in (2.2). Each transverse di-
mension involves the same calculation and in the
following we compute the contribution of a single
transverse dimension. At the end of the calcula-
tion we shall quote the result including all D —2
transverse coordinates. The first step is to ob-
tain the dependence on (x, „„jand (x, ,}by trans-

% has the simple structure

a=i"z~"+ a"ei",

(3.3}

(3.4)

where I" is the identity in the z indices and I" is
that in the j indices,

2 -1 0 0

-1 2 -1 0

0 -1 2 -1
0 0-1 2

0

0

0

0

(3.5)

0

0

0

0

2 -1 0 0

-1 2 -1 0

0 -1 2 -1
~ ~ ~ Q Q

and for the open string,
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-1 0 0

-1 2 -1 0

0 -1 2 -1
0 0-1 2

0

0

(3.6)

2 -1 0 0

-1 2 -1 0

0 -1 2 -1
00-11

det ~ ~2 II=g(o + P ) & ~2

n, m

where

n7r
n„=4 sin'

(
.}, n= 1 2, . . . , N

N+x ' (3.7)

P =4sin' ~, m=0, 1, . . . , M —1

are the eigenvalues of &"and 8", respectively. The product over n can be done because

(3.8)

Q( .— )=d t(&"- I")= (3.9}

where a satisfies z= 4 sin'(-, ~). The reader may easily verify (3.9) by observing that the right-hand side

has precisely the same zeros as the left-hand side, and checking the normalization by letting z —~.
Setting i~=2 sinh ' sin(mv/2M), we have

'~' "TT' sinh2(N+1) sinh 'sin(mv/2M)
sinh2 sinh ' sin(m w/2M)

~T
' ' " »4 sinh2Msinh l1»4

2v sinh2 sinh '1 (N+ 1)'~'
N-l g-l m- -»2

&&exp -(N+ 1)g sinh 'sin Q 1-exp -4(N+1)sinh 'sin
m~1 m~1

The continuum limit is M, N - ~ with (N+ 1}/M = T,T/P' fixed. In Appendix A we show that

~~ ~~ mv 2M~ (-1)" ) . , v
sinh ' sin ~„„—~ (2 1},——, sinh '

So

(N+1)Q sinh ' sin ~„=T, G ——sinh '1—&To

m~1
2M" " gT,g' 2a

where

G = Q 2= 0.9159656(-1)"
0 2n+ I 2

(3.10)

(3.11}

(3.12)
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is Catalan's constant. Putting everything together, we have

2MG j. . l mTO
& exp~ -T

ma 2a 24P'——sinh l1 (3.13)

(
err, mr)

It is a straightforward matter to repeat the foregoing an:]lysis for the closed string with the result
(M odd)

l /2- N M l /2
~cloeedp ) (sinhM sinh '1}1™exp (N+-1)g sinh ' sin

2m X+1 M

mn-
1 —exp -4(N+1}sinh 'sin (3.14)

fit~i M

l/2- ~ P+ l/2

ma 6P'

For (D —2}transverse dimensions these results are
simply raised to the (D —2) power.

To extract information about the ground state,
we recall that

u(r}= &Po), 0 ~a-' 't(O j, O),

o(r&=l fe r, e» — 'cr, " r l&(c&cle c &&' ~

(3.16}

we had used an asymmetric lattice, with spacing
b in 0 and a in v', the coefficients of P'2 and P' in
E&ls. (3.17}and (3.18}would have depended on b/a
The constant term is independent of b/a Thus. ,
after renormalization, the asymmetric lattice
yields the same ground-state masses as the sym-
metric lattice.

Consider first the most divergent terms, [(2P')'/
va To]G. In the functional integral these contri-
buted the expression

o(r&= ( r*) I,"»(- rr".r)l«'&, cl., c&l'
I -2C/r~V(E+l)(D-2)
Le (3.1S)

2cloeed (D 2) ( +)
fm

2 TQ

ma To 6
(3.18)

and we must be able to subtract the noncovariant
(and divergent) terms from these expressions. If

Comparing with our results we have for the ground
state

(2P+'Q +

ma2TO a 24

(3.17)

Even for an interacting diagram these contribu-
tions to the ground-state energy of each internal
line assemble to produce the same overall factor
for every diagram. We may therefore subtract
these terms without affecting the interactions. Al-
ternatively, we could absorb these factors in the
original normalization of the path integral, i.e.,
replace

T l /2 &(&+l }~&-2}

2r

l /2 &&N+l }&D-2)
e2C /&

2'

FIG. 4. The interchange interaction on the lattice.

in Eti. (2.2). If we do this, these terms will be
canceled consistently in every diagram.

There are no further divergent noncovariant fac-
tors in mc2 '"'~. The remaining divergent term in
mc' ""can only be removed by adding a counter-
term to the original action. This term contributes
the expression

exp[-,'(sinh '1)(D —2)(N+ 1)]
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to the functional integral. If we interpret an open
string as a closed string with a missing link, we
see that we shall get a factor

exp[—,'(sinh '1}(D—2)]

for each missing link, and this rule is seen to be
consistent for a general multistring configuration.
Thus we will remove this term if we add toiS'a
term -&(sinh '1) (D —2) for each missing link.
Since these counterterms are local (only associated
with ends of open strings) we will not destroy the
locality of interactions by this procedure; in par-
ticular, the argument for crossing symmetry (du-
ality) is not destroyed.

Finally there is no local counterterm which can
alter the finite covariant terms, and so these
terms have physical significance. After the above
subtractions we are left with the results (for non-

interacting strings)

m»&es g) 2C
2mT 24

m 2 closed
C

2rT

so we have recovered the familiar problem with
tachyons in dual models.

We could of course continue this analysis for the
excited states. But it is evident that the excitation
spectrum found in GGRT will emerge. ' Our aim in
this paper is to study the ground state in the hope
that interactions will solve the tachyon problem,
and thus far we understand how the path-integral
formalism leads to tachyons in the absence of in-
teractions. In the following section we shall study
interactions in the weak-coupling limit and shall
discover how the critical dimension emerges.

IV. INTERACTIONS AND THE WEAK-COUPLING LIMIT: THE CRITICAL DIMENSION

We first recapitulate the general sum over histories incorporating the zero-point subtractions discussed
in the preceding section. We write

N N

ii'«v
«

= — (««.«
— ««}'+ Zl'«(x««)+ 21'0&«0)+ 21'N.«( «, ~,«) (4.1}

=I

where V;(x;«) is a sum of (differences between the x«&), involving up to M links, say f —M, to which is
added the counterterms (D —2)(M —L}(sinh 1)/T, . The configuration of links is restricted by the require-
ment that the configuration in V~„can be obtained from that in V, by either

(a) the appearance or disappearance of any number of links,

j+l
I ~ I ~

k „ k ~ k ~ k„
(4.2)

(b) the interchange of any number of pairs of links,

. (
(4 &)

%'e remark that this interchange interaction can be simulated by a sequence of link creations and annihila-
tions. However, in the dual-loop expansion such a process is higher order in the coupling. It is an in-
triguing possibility that for a particular value of the coupling constant the interchange interaction may not
be needed, and only interactions of type a may be included. For a paxticular choice of Vz's the sum over
histories is
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and the complete amplitude is the sum over all al-
lowed choices of (V~j.

The dual-loop expansion is a power series in a
parameter g, which is incorporated in the sum over
histories in the following fashion. For a given
choice of (V&j define the order, f« ~

= the number
of link annihilations + the number of link creations
+ 2 times the number of interchanges. Then multi-
ply this term in the sum over histories by g, '«s».
The dual-loop expansion is obtained by taking the
continuum limit order by order in perturbation
theory about go=0. Notice that this expansion is
artificial since go=1 is the natural choice. We be-
lieve that the problems of the dual model may be
artifacts of this weak-coupling expansion. It is
nonetheless of interest to see how the dual-loop ex-
pansion emerges in our treatment, and in the re-
mainder of this section we shall discuss the weak-
coupling limit. Of particular interest is the way
Lorentz covariance emerges in the critical dimen-
sion.

We shall treat in detail only the simplest first-
order process, namely the transition of the closed-
string ground state to the open-string ground state.
This will suffice to illustrate the essential features
of the weak-coupling expansion. The link structure

L @+I
:: l. /. I: /: t. /' l j' t' t'.

FIG. 5. The lowest-order open to closed two-point
function.

for this process is illustrated in Fig. 5 (we do not
include the factor of go in the definition of the dia-
gram).

The integrations over the variables j=1, . . . ,
1.- 1 and I.+ 1, . . . , R can be immediately per-
formed. The result is just the product of a closed-
string propagator and an open-string propagator.
Thus calling the vertex function

((x, „„j,(fr+ 1 —L)aI Vo~(x, cj, —La)

we have

((x, „„j,(fq+ 1 —L, )a~ Vc~(x,J, —La) =exp(—,'(D —2) sinh '1)

d xi~ xi ~,~, X+1—I c xi~, 0 ' " xi1, 0 x]0, —Ja ' "
X exP[-sTC(Xag —Xu } ] . (4.5)

Since our primary interest is the structure of the ground state, it suffices to work out in detail only the
case (x, „„}=(x,/=0. Also, since each transverse dimension contributes the same factor, in the following
we calculate only the contribution of one transverse dimension. With this restriction we have (from Appen-
dix A)

i(lVoses+ 1Vclosed) ~ q
2 +

T 1 1
2 0 A+1-1 I

(&-1)/2 N &

+ g (q~+ q' ) sinh&' cothX'(N+ 1 —L)+ gqo sinhX' cot&.'L (4.6)

where

q' =

qm=

( )'"~"
2 y/2 N

1
Xlg COS (i —s)

~1

N
2?R+ *

Xil COS
i~I

'/' 2m&
x,~ sin (i--,')

i~1

(4.7)

are the normal-mode coordinates for the open and closed strings. Also,
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A,~ = 2 sinh sin

mm}(„'=2sinh 'sin
M

(4.8)

are the discrete time versions of the eigenfrequencies for the open and closed strings, respectively.
We choose the closed-string normal modes q„q', q„' as integration variables. We must therefore ex-

press the q' in terms of these. In Appendix 8 we show that

with

q', m even
(u- l) /S

q', U', , m odd
nt ~l

sin(m'm/M) cos(mw/2M)
sin2(m' r/M} —sinn(mm/2M}

'

(4.9)

The Jacobian for the transformation x,~-q', q', q is unity so we therefore have

'U,;= ((0}„„,(E —L+ 1)a i V, i (0}„„,La}

= &'"" ((E+ 1 —L)o){0""(La)exp(-' sinh '1)
(4-l) /2

dqq expi ~ q
2 + + g q sinh}}0 [coth}(q (N+ 1 —L)+ cothq}.'L]

&4-l) /2

+ g q sinh}}„' cothA' (Ã+ 1 —L)

(4.10)

M I M M

To extract the ground-state open - ground-state closed matrix element we note that

&{q},q)q, I{a}, », .exq[ q(q;, eq-„)]&q, )e.)q,&&{a})q,&&q, ){o}&('q )
where we have defined

«., p'IVI{-"p3=-{}(p.-p'}«. p. l'01~„pb

«., 0 I&olGi, » -=«.I&. l &,}.
Now

(4.11)

(4.12)

2m'' '"eq"-"(»,=-I(qlq. &l'q ""'(
So we can set (N+ 1)a = 2La = 2T, and take T large, obtaining

qe"" (q&e""(T)f qq, f qq„' qq' e q(-,
' e'ee '1)

&~-l&/2 (4-l ) /2
& exp ——qo' —+ 2 q' sinh&' + q'„sinh~'

tn=l m=1

N 1

+ P q', q'„— g U .U "sinh}('
m"-1 odd

4 ~, , mm . m'm
+ —~ q'q'& sin —sin

mme J

(4.13)

(4.14)
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The integrals over q and q' are precisely those one would encounter in the closure relation if the open
string were in fact closed. The integrals over q'„differ, but if we scale q' by [(2sinhX'To)/2v] q' -q,
the Jacobian factors together with the results of the q' and q' integrals combine into &""e~(2T)/[S""'~(T)]',
so

with

~open
-x

)
' '~(2T}exp(—,'sinh'1) Qdq exp -w Q q .q„.,(6„. ..+ft, „)

St msfyts s
(4.15)

ft~~~- =2&""m m" —
m ~' ~ }i

1 22 4 . m'm. mm

(4.16)

(4.17)

(4.18)

Comparing equations (4.12) and (4.15}we read off

(G„closed~'U, ~G„open)= (0~G') det '/'(I+8)exp(-, sinh '1).

Iteferring to the continuum limit of the open-string and closed-string propagators, E&P. (3.13) and (3.15),
we see that

(OIG,) '
(0 )G ) 4 ~ (2)1/SM1/4 &

(4.19}

so
(4.20)

In Appendix 8 we show that
1

det(I+ 8)s ~ x/8

so that

1+~2»4
21 0 I x& (2)g/4 Mg/xe

where E is a finite numerical constant. The generalization to D —2 transverse dimensions is then

I+&2
(G

i
0 iG )

( } / K ~(BW) /lB

(4.21)

(4.22)

(4.23)

This is the amplitude for a particular breaking time, 0, and we must sum over all such times. The de-
pendence on the breaking time for eigenstates of the Hamiltonian is clearly

exp[-La(P, P,)] .
In the continuum limit Z ~- (I/a) f dv, and when we go back to real times this will yield (as &,-~, 7',

aO)

2v6(P; —P;}.
Thus in the continuum limit our transition amplitude is (for 7, —v, -~)

r , I+&2 'n-"/4
dv(G2 ~'U~

~
Gg) lim K g / (p 2)/ge 2v6(Pj Pg)

~Q 2) ~(D 2)/16 (4.24)

To understand the critical dimension we must consider the effect of putting this vertex in a larger dia-
gram, e.g.

g~ =0 OPEN STRING CLOSED STRING OPEN STRING

Near the ground-state poles this amplitude is

g,'gP „~2~(G, open~'U, ~G, closed) P ~,e,~ ~, (G closed~'U, ~G open) ~1 1 1
m Q C G
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where the sum is over all alternatives. It is clear
that the closed string can in fact break at any point
relative to the point at which the open string
joined, and these relative positions must be
summed over. Near the pole (corresponding to
large times) this sum just gives a factor of M. If
we convert to covariant propagators there will be
a further factor of 2I" for each propagator. To
get a covariant result, these factors must be can-
celed by the vertex factors requiring

1 1
(G closedi'U, iG open) ~ 2I"q~ 2aM3 ~'

(4.25)

lattice dynamics. In the absence of interactions,
the possible states of an M site "string" include
the states of a closed string with I sites, an open
string with M sites, and multistring states (either
open or closed) with the total number of sites equal
to M. To understand the energetics of the insta-
bilities, it is convenient to define a ground-state
"energy" (really P ) per site density S""""""
(K) for a single string with K sites. Thus

1 . . k7I
)4loses(K) = —P sinh ' sin + —,

' sinh '1
2K

(5 1)

Comparing with Eq. (4.24) we must have (D —2)/16
=-,' or D-2=24. Notice also that for general D-2
the above amplitude has the structure

1 Tpa
(covariant) —, ' MP"

(COVariant) u 3 ~ D 8)/8 Pe3 (D 3)/8

8""' (K) = —Q sinh ' sin —.1 . . km

Kq~ K'
Thus, for example

popes(~) @closed(~)

=—0.583 1218079.2G
r

(5.2)

(5.2)

so as a-0 it is only for the critical dimension that
the continuum limit exists.

For the critical dimension

, I+Ha ~

&Gs lt)o IG)) - ~ P K (2)l«

and the invariant coupling (in field theory language)
ls

, 1+&2 '
&=2To K (2)li4 go

=—24Tp gp.

It is to be noted that the coefficient of gp is in prin-
ciple computable. If we make the natural choice
gp = 1, the dual coupling is fixed in terms of Tp. '

We have at this point recovered the familiar re-
sults of the dual string model. We have set up a
general lattice formalism for the interacting string
model and have studied the continuum limit in the
case of weak breaking interactions. The results
we obtained are not new. Mandelstam has in fact
demonstrated that the interacting string formalism
yields a covariant S matrix in 26 space-time di-
mensions. Our treatment has the virtue that ultra-
violet singularities are systematically regularized
symmetrically in 7 and a. Our bare coupling con-
stant is finite and calculable in 26 space-time di-
mensions. In the next section we shall consider
the possibility of going beyond perturbation theory
using our lattice formalism.

ot gclosw and goya as a, functjon jf E jn Fjg.
6.

8(K) is in both cases a monotonically increasing
function of K, and it is also true that h'""d(K)
&8""(K)for all K. Thus if a weak breaking inter-
action is turned "on," it will be energetically fa-
vorable for a single open or closed string to evap-
orate into many little "stringlets. " In the contin-
uum limit this instability manifests itself in the
appearance of tachyons in the spectrum. The sim-
ilarity of this situation to that arising in a field
theory in which a symmetry is spontaneously

.58—

.57—

.56—

.54—

~ 53

V, INSTABILITIES IN THE STRING MODEL AND
A POSSIBLE SOLUTION

.52 I I I I II,
loo

The well-known tachyon problem in the string
model can be understood very simply using our

FIG. 6. The energy per site for closed and open
strings.
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broken has been emphasized by Bardakci and Hal-
pern. ' The importance of our result lies mainly
in the recognition that the instabilities involved are
just as evident. on a finite lattice as they are in the
continuum limit. Thus the question of stabilization
may be confronted in our lattice formalism, where
all calculations are well defined.

Just as in the field theory analogy, stabilization
will depend critically on the nature of the inter-
actions. For example, there is no stabilization in
g(t)' theory, but there is in X/4 theory. In field the-
ory the signal for stabilization is sometimes evi-
dent at the classical level from examination of the
classical potential V((t)); however, quantum cor-
rections can be important and one must, in gener-
al, use the effective potential. "

Before we can address the question of stabiliza-
tion we need to set up a Lorentz-invariant theory
of the mass spectrum in the presence of interac-
tions. As a first step we confine our attention to
those states which couple to the bare closed string.
This is the sector with the lightest tachyon, namely
the ground state of the bare closed string. To de-
velop a Lorentz-invariant theory of the mass spec-
trum of this sector, we use the results of Green
and Shapiro. ' They were able to construct Lo-
rentz-invariant off-shell Green's functions in
terms of finite time transition amplitudes between
closed string states for which x(o) = constant, i.e.,
states for which the whole string is concentrated
at a single space-time point. For our purposes we
only need the two-point function. Call the ampli-
tude for a closed string in configuration x(o) =0 at
7 = 0 to be observed in the configuration x(o) = x,, at
7-T

$„TiO, O&.

(Note in our lattice formalism x =q /vM. ) It is
convenient to work in momentum spa.ce so we de-
fine

D( )=0fx, x' D(o, x),
0

(5.7}

is a Lorene s(."alar to all orders in perturbation
theory, with a suitable choice for N. E depends
only on the normalization of the bare string states,
and an examination of the closed-string propagator
Eq. (3.15) reveals that the choice

] +~2 (N 1)(D 2) /2
I/N = (5 5)

is necessary. It should also be evident to the
reader that (5.7) is a Lorentz scalar only if the
renormalizations discussed in Sec. III are per-
formed and space-time has the critical dimension.
The spectrum of this sector of the theory is deter-
mined by the singularities in D(k) =D(k') as a func-
tion of O'. Lorentz covariance is obvious.

If there were no tachyons in the theory, (5.7)
would converge for k2 spacelike, i.e., 02&0. The
tachyons which appear in the weak-coupling limit
make (5.7) ill defined because the thresholds as-
sociated with decay into multitachyon states occur
at arbitrarily large positive k'. In any case, D(k, &)

is well defined and we may use our lattice tech-
niques to attempt to discover its structure.

The singularities in (5.7) are determined by ex-
ponential time dependence of D(k, r),

D(k, r)= +exp[-P„(k')T]D„(k),

we have

2~y 1 /2 DW

D(k, T)= ~ exp -2P, T (O, T~O, O&.
L

(5.6)
It is presumably true, in the light of the work of

Green and Shapiro, that the Fourier transform of
D in T, i.e. (k'=P')

D(k X) fOx "x(xx„T=, )
0.0&

low since

(x„r(o, o&=xxo -xx x.*}(o,x(0, o&,

(5.4)

(5.5)

where n is also allowed to be a continuous param-
eter, in which case E„-f dn, and we can obtain
this dependence by diagonalizing the time transfer
operator

Z X /2, N(D-2)
s 2C/r 0Lg L

2g
exp - T, Q2( xx(,')' —,'T,(V~(x}+V~ (—x'}),(5.10)

I
0

where L, I' label the link structure of the final and
initial states, and 7'L L, = l if the transition is al-
lowed and zero if it is forbidden. Diagonalization
corresponds to solving the integral-matrix equa-
tions:

d~'x,' Qf'({x,), I;{x,'), L')4({x,'], L')
Ls

= t4 ({x,],L) . (5.11)

The P of a state is -(1/a)lnt so that the lowest-en-
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ergy state corresponds to the maximum value of t.
The condition for stability is that the lowest P
state lie below the continuum. This criterion is
obviously violated in the perturbative weak-coup-
ling treatment.

Our analysis of Eq. (5.11)has only just begun,
and we have little to say here except to indicate
possible approaches. The two most obvious ap-
proaches are to study small numbers of sites or
to study restricted link topologies. The kernel
couples initial and final link configurations direct-
ly through w~ ~, and g, '

~
' and indirectly through

the x dependence of V~, (x') and V~(x).
If we restrict ourselves to planar topologies we

~({%}f.) = e«p [--'T.VS(x)le(xl), (5.12)

where (I))(x() obeys the equation

dh'T(x, x')y(s') = fy(x) (5.13)

with

have M links, each of which may be on or off in-
dependently, so that 7~ ~, = 1in this sector. Fur-
ther, if go= 1 there remains no direct coupling be-
tween I- and L'; it is in this sense that g, =1 is
particularly attractive. Thus, all eigenfunctions
of 0' with t 0 0 (finite energy) must have the form

Uh- &(8-2-)
T(x, 4)= e'~~' —a exp[--,'T, p(x( —x,')']

i

"IIImu(--*'((( —2) s( ax'()+ elf-l (' (x,'., —xl)' . (5.14)

This corresponds to the motion of M particles
interacting through the nearest-neighbor potential

l~
ln X= (Xf+j Xf

V(x) = -In(exp[--, (D —2) sinh '1j+ exp(--,'T~')).
(5.15)

This potential is plotted in Fig. 7. The question
of stability in this case is simply whether M sites
in this potential form a bound state. This problem
is not yet solved for general M.

In the special case, M =2, bound states do form.
M = 2 corresponds simply to two sites which may
move either as free particles or form one link to
move as a two-site open string.

VI. PUTTING BARYONS ON A LATTICE: HOPES
FOR THE FUTURE

The problem of quantizing the baryon "three-
string" has heretofore evaded an adequate solu-
tion." %e believe that our lattice dynamics can
shed light on this problem. The classical equations

~(7)=P', a constant
i"-i

x,(P;(~)lT., ~) =x,(Pl(~)ITO, ~}

= x,(P;(t)/T„v) .
The result is

~ 0

~ —x =0,

with boundary conditions

~=0 at o;=0,

and

+
x'+ ' ' =0 at&;=P'; 7',

o

—,'(x, '+«,"}+P,'x, ~ «,' =f(T) at a, =P', (v) .

of motion are consequences of minimizing the ac-
tion

T P (v)/2'0 ~

IV=+ dr da ,' T,(x(2 —x(—2)
~=X 0 0

subject to the constraints that

I I I I

- 5.0 - 4.0 - 3.0 -2.0 - I.0 0 I.o 2.0 3,0 4.0 5.0

FIG. 7. The intersite potential V(x).

The obstacle to quantization is the adequate treat-
ment of these difficult nonlinear boundary condi-
tions.

However, if we quantize with path integrals we

have the following very definite prescription. Set
up a lattice in o and v. All sites except the junc-
tion site and the ends will have two links connected
to them; the ends mill have one; and the junction
will have three. We neglect breaking interactions.
For a particular choice of junction site the lattice
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version of the action is the obvious one. Now

quantize by integrating e over all x& and summing
over all possible paths the junction point can take
as it hops from site to site on the lattice. To pre-
serve causality we constrain the junction point to
be able to hop only to a neighbor in a unit of time.
It would also be consistent with classical mechan-
ics to insist that there be a hop at each unit of
time. A classical motion in which the junction
point does not move would then correspond to a
Zitterbezoegung in which the junction point hops
back and forth between a small number of sites.
We prefer this last prescription as each step in-
volves the same type of transition.

We only mention the three-string as a nice ap-
plication of lattice quantization. The detailed
analysis is a problem for the future. Another pro-
ject would be to repeat our analysis for the Neveu-
Schwarz-Hamond model, which is more realistic
than the GVM. And of course the ultimate goal is
to understand the origin of quarklike degrees of
freedom in terms of a simple geometrical picture.

{d "=2sin (A4)

SimilarI. y, the closed-string potential

V"'~ (x„.. . , x„)= V'~"(x„.. . , x„)+ (x, —x„)'

(A5)

may be diagonalized by an orthogonal transforma-
tion. For M even

~/2-
x, = q, + Q — q' cos (j ——,')

}tM m=i

s ~ 2m~ . 1+q'„sin (j —-', )

1
+ q„t,(-1)' . (A6)

For M odd
(4-1) /2

x, = q + g — q'cos (j ——,'}
vR

s ~ 2m~+q' sin (j ——,) .
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Then

V"' (x„.. . x ) = Q&u'}2q ',

(A't)

(A8)

APPENDIX A: NORMAL MODES OF FREE STRINGS where the sum extends over all normal modes and

The open-string potential
N -j.

V' '"=Q (x,„-x,}'
/=1

(A1)

can be diagonalized by a transformation to normal-
mode coordinates q,'0', . . . , qjo},:

(A2)

The transformation to q's is orthogonal, and V'~"

may be reexpressed as

{d ' =2ssn yn 7r

m (A&)

For either the open or the closed string, the
state dependence of the propagator may be ex-
pressed simply in terms of the corresponding
normal modes, q„. Indeed, the functional integral
factorizes into the product of functional integrals
for one free particle q, and M —1 harmonic oscil-
lators q„of frequency 0}„. For (fq»„)) (q 0))
the classical action is

hC -1
i&.}(I.x}.».,I b;,.I]=Q .i)V«}-,». q-, .)

m=0
Vooen( ) g (0}oq(0}o (AS)

with

(A 10)

)
~& (q. .g„-q, .,)'

iVc},0(qo, »+1& qo, o~ 2 t}t +] (A11)

ittV„(q „+,q, ) = -,'T, i hsn}(}q,'+q -„„')coth(N+1)&„—, , q oq»+&
sxnhtN +1j&

(A12)

where }}. =2sinh (—,&u } is the lattice analog of the mth harmonic-oscillator level spacing.
In the normal-mode basis, the eigenfunctions of the transition amplitude are products:

(A13a)
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with

J
-TP

1,0 x22, 0( [,E2 2) x(,0}4(x[,0 ' ' ' x)2, 0) c 0( x], N+1} (A13b)

(A13c)

The eigenfunctions and eigenvalues are as follows: For the translation mode m =0 we have

(A14)

For each harmonic-oscillator mode (q, ~)

To sin~ 1 8 (T gg A(2)q
(sishh 2 (2Z', 2'shh)'&' SS

and

(A15)

where ][.=2sinh '(2~) as before, and L=0, 1, 2, . . . is the occupation number of the mode.
We note that these lattice results go over into the usual continuum theory. In the case of the open string,

for fixed m as M-~,
][. /a = (2/a) sinh ' sin(m][/2M) -m n/P+,

(I/va )(2/M)'~' cos(m][/M)(j ——,') —(2/P')' ' cos(mx/P')c.

(A16)

(AI 7)

(A18a)

(A18b)

These are the usual wave functions and excitation frequencies. It is important to note that the continuum
theory arises from the low-frequency (I«M} part of the lattice theory. We expect that low-frequency
effects will be cutoff-independent while high-frequency effects need not be.

The ground-state energies of the open and closed string are
bf -1

(P ), ,=g (1/a)sinh 'sin(mw/2M),
m=1

N -j.
(P )„,~ = g (I/a) sinh ' sin(ms/M) .

Both are divergent in the continuum limit. Each has the form, as M-~,
1' C 1—AM +S+—+0a M M

(A19}

where A, B,C are finite constants which may be found using the Euler-Maclaurin summation formula.
If F(x) is a bounded function for 0~xxI, we have

Now

dlF ™+—= dl F —+ —F ™
+ 2

F" —+ ~ ~

So
N-I, 1, m 1 „mQ E=M dxE(x)+Q -2 E' ——

6 2
E"

M
+'' '

ffe ~0 0 m~o-

Apply the procedure to the sums of E' and F"; we have
N -I. 1

=M J 2 E(s) — ]E())- E(0)]~ [E'(1)—E'(0)].

Applying this to the sums for P we have
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2G I 1 . , mT~
(P )~ = ———sinh '1- (A21)

2Q M mTO

v a 6P' ' (A22)

where

t
m/2

G =
~

dx sinh ' siru =g
2 1

= Catalan's constant.
0 o tE+

(A23)

APPENDIX B

We present some details of the calculation of the open-closed vertex function. For convenience, we
consider the case in which M is odd.

The change of basis from open modes q to the closed modes q', q' follows immediately from

xg cos g —p

«- ~ 2 1™~, 2~~ , , 2~.
x&= q~+ — q' cos

M
(j-2)+q' sin (j-&),

(Bla)

(8 lh)

whence

q =q'&„ for m even

2 ~q„=—Z U .q'. , for m odd
tS

where

f0', 1, 2'
U ~ = cos —(j-&)sin (j--,).

f=1

This is a simple geometric series and gives the result in the text:

sin(m'v /M) cos(mv /2M)
sin'(m'v/M) sin2(mw/2M)

'

Since m is odd, the denominator never vanishes.
We next consider the evaluation of the determinant, det(1+ 8), in the limit of large M. Recall that

with

I 4 4 . m'm . m&
U~~ U ~ +Is&nysl ~i sl sc odd

We shall compute the logarithm of the determinant using

1)rttl
lndet(1+ 8}=tr ln(1+ 8)= g tre".

8

We shall evaluate the sums in the trace and in the definition of 8 by converting them to contour integrals.
First consider the sum

8, .=, sinhA V, p „.
mme

2 sin(P+ & }—[1+sin'(P+ &)rr /M]'~'
~0

sin(m'v /M) sin(m "v /M) cos'(P+ ~ )w /M l,

[sin'(P+ & )w /M —sin'(m'v /M)][sin'(P+ &)a'/M —sin'(m "v /M}] ]' (a4}
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Define Z = sin8 and R,(z) = -(M/cos8) tanm 8. Then R, (Z) is meromorphic with poles of unit residue at
Z~+(p+ a)v/M, p=0, ~ ~ . , (M —1}/2. Denoting y'= sin(m'v/M), y" = sin(m"v/M) we have

8, „dZ Z(1+Z2)'/(1 —Z')
2 f (Z2 "NZ2

1

where C, is a contour which encloses each of the points (see Fig. 8)

Z/. =sin(P+z}—,P=O, . . . , (M —1)/2 —1.

(as)

We choose the cuts from (1+Z')'/' to lie on the imaginary segments

( i~-, —i] and [i, +i~)

We may extend the integration to a single contour C2 enclosing the real line between 0 and 1 if we sub-
tract off the extra terms coming from poles at Z =y', Z =y". Since R, (y') =R,(y")= 0, these poles contri-
bute only if y' = y" (i.e. , m' = m"). We find

This gives
2

(as)

1 8, „dZ Z(1+2')'/~(I -Z')
m'I 2(yry )1«/&(I+yt )1/24(I+y«2)1/4 M2 y y 2vf (Z2 y»)(Z2 y«2) 1(

+ 2y'(1+ y")'"s..-+—y'y" (B7)

and

(yy } I/
m ss M(1+ /y2}1 4(/Iy+«2)1/4 &y iy (Bs}

where we have defined

2 dz Z(1+Z')'/'(1-Z')
f(y'~y") = 1+

M 2«(z2, 2}(zm «2) R~(z).
2

(B9)

We must compute

1 5 1

where y =sin(mv/M}. I(y, y') is analytic for y, y' inside the contour C,. If y =sin8 the function R2(y)
= (M/cos8) cosM8 is meromorphic with poles of unit residue at y = sin(mv/M): m = 0, +I, . .. , + (M —1)/2.
We may therefore replace the sums in (B10) by contour integrals,

(B10)

(B11)
(m-1 ) /2

y 7$ R y,M(1+y 2)&/2 ~j M(I+y2)&@

where C, is a contour enclosing the poles y„= sin(mw /M): m = 1, . .. , (M —1)/2 which lies wholly within C„
(Fig. 8). Then

1 dZ Z(l+ Z~)'/'(I -Z2)'/ [(1- )Z' 2siZ+]" —[(I -Z2)~/' —iz]"
2//i (z'-y')(z'-y") ig(I-z')' '+iz]//+[(I-z')' ' iz]//3-

2

We note that there are no branch points arising from (1-Z')'/' in (B13).
We draw the contour C, as shown in Fig. 9. Because of the branch cuts (i, ~) and (-f, —~), the contri-

butions to (B13) from segments 1 and 2 cancel. The semicircle R, for R -~, gives a constant term -1.
So writing Z = f on the segment [ i, i] we ha-ve

(B13)

(B12)
3

We will now extract the leading (lnM) behavior of D„as M- ~. We shall see that the only parts of the
contour integrals which contribute to this leading term come from the region where Z 's and y's are small.

First consider I(y, y'). Explicitly,
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1 2.(1 2,2)1/2(1+ 2,2)1/2
I(y, y') = —— dr, 2 2„2,2} tanh[M sinh 1(2')].

To compute 8„, we must convolute 21 I's with the functions h(y},

y&2(y) 1y f(1-y*)'"+1y]"+ [(1-y')'" - 1y]"
2n(1+y2)1/2 (1+y2)1/2(1 y2)1/2 [(1 y2)1/2+ iy]& [(1 y2)1/2 iy] '

(814)

(815)

y, y'&1, I(y, y')-O(M ),
y&1, y'E3 or 3, I(y, y')-O(1),

y, y'+»», I(y, y') O(1),

while

(816)

We choose the contour C, as shown in Fig. 10. We
have broken the contour into three regions. In re-
gion 1 1/M & (y ~

& K/M, where K is a large num-
ber fixed as M -~. Region 2 consists of straight
segments from K/M ~y ~

—5, where 5 is fixed
and 5 «1. Region 3 comprises the remainder of
the contour. We will show that the leading-log
dependence of each D„arises from integrals in
region 2,

First, we estimate the order of magnitude (up
to lnM) of h(y) and I(y, y') in each region. From
(814), we have

y c 1, h(y)-0 —,1

ye 3 or 3, h(y)-O(l).

(817)

(p'+ n')(p'+ n")
=—M'J(z], rf ), (818)

lt follows immediately from (816) and (817) that
the only contributions to D„which are not down
by one or more powers of 1/M are those which in-
volve multiple integrations where either all y's
are in region 1 or aQ y's are in regions 2 and 3.

ln region 1, as M-~, I(y, y') is dominated by
the integration over r O(1/-M) in (814). Defining
y=q/M, r= p/M,

M2 1/ p(1 p4/M4}1/2

(p'+ n')(p'+ n")

tanh(M sinh 'p/M)

Cz

sin~ ~7r

rE m M M M M m a
%SF

FIG. 8. Contours for evaluation of matrix products. FIG. 9. The choice of contour for the evaluation ofe~.
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~gy

(1 + 2)1/2(1 2)1/2 r ™y
»(y) =

+gy
(1+y')"'(1- ')"' '

Thus, any M dependence of D„must come through
the dependences of the integrals on their lower
limit, K/M.

Now for small y, y' we have

h (y) - o(y),
(B23)

while if y is small, but y' is not,

I(y, y') - o(1). (B24)

FIG. 10. The choice of contours for the evaluation of
traces. Only sections 2 contribute the leading log rlI.

By the same sort of power counting used before,
it follows that the leading dependence of D„on the
lower limit (K/M) is logarithmic and arises only
when all y's are near their lower limit. Thus, we
need consider the integrals only over regions 2;
K/M&iyi &() «1.

For small y, we may approximate the integral
in (821):

l 1 'r

(r2+ y')(r2+ y")

where we have extended the integral over p to ~,
which is allowable since the integral converges.

Similarly, the integrals over y can be rescaled:

dy
g cotq,

2mz
(819)

where 1' is a contour which encloses q=)t/2 on the
real axis and extends out to ~q~

= K.
The overall contribution of region 1 to D„ is

Also,

h(y)-

We have

t, ln

-iy, Imy & 0

iy, Imy &0.

d'g„

2
' ~ ~ ~

2
"

(q, cotta, ) J(q, q2) (q, coty, )

x g(q„, q,). (B20)

W, (r2+ y') (r2+ y") (B21)

Expression (B20) is finite as )M-~, depending
only on K. Thus (B20) does not contribute to the
leading-log M dependence of D„.

Next we consider integrals over regions 2 and
3. If y, y' remain finite as M-~, we may take the
limit inside the integral (814), obtaining

dy, dy„h( )
ln(y, '/y, ')

t ( )
2mi 2wi '

m(y,
' —y, ')

~
~ ~ ~ ~ ~ ~

»( y.'/y, ')
X o 2 ~

yn -yi (B27)

There are no singular points in y between the
two parts of each contour 2, so we can move both
toward the real axis (Fig. 9). Both h(y) and the
direction of integration change sign in going from
the upper to the lower contour, while the remain-
der of the integrand is symmetric. Thus we simply
obtain, for each y, twice the integral over the up-
per part of 2,
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2n ()

Dn 2n dXl d3 nial Xn
x/e

»(y, /y, ) ~ ~ »(y„/y, )
(yi*-y2'}" (y.'-y, ')

ln(u, /u, ) ~ ~ ~ ln(u„/u, )
2"w'" «~)„2 "

(u, -u, ) ~ ~ ~ (u„-u,)

Next we define variables

u2 —X~X2 q

Dn XyX2 Xn ~

(B29)

where u& = y&'.

(B28)
In the multiple integration x, ranges from K%V '
-5', while the ranges of the succeeding x's are
rather complicated functions.

ln(1/x, ) ~ ~ ~ ln(l/x„) ln(x, ~ ~ ~ x„)
2"w «2)«2

' ' " ' ' " ' x,"x," ' ~ ~ x„,(1 —x,) ~ ~ ~ (1 —x„)(x ~ ~ ~ x —1)

1 ' dx, ln(l/x, ) ~ ~ ~ ln(1/x„) lnx, ~ ~ x„
2 w «2i„2 x ' " (1 —x ) ~ ~ ~ (1 —x„)(x ~ ~ ~ x —1)

(Bso)

The integral over x, gives the leading log M while the remaining integrals may be extended to range from
0 to ~ to give its coefficient,

2 lnM " ln(1/x, ) ~ ~ ln(1/x„) ln(x, ~ ~ x„)" (1 - x ) ~ ~ ~ (1 —x )(x ~ ~ .x —1) ' (Bsl)

changing variables to x& =e

4"w'" „' " ' sinh(& V,} ~ ~ sinh(-,'V„,)sinh([2(V, + ~ ~ ~ + V„,}]}

Introducing an nth V, and setting it equal to V'y V„,with a 6 function, we have

2 ce oo

D„- — „,„ lnM dV, dV &' i &''' ' "i g4"p2n „2m „' " ~-, sinh ~ V&

„2„1nM 2
d V

wo -t n

= -2lnM „2w 2 cosh'(wK)
~

(Bss)

We may sum up these terms

Indet(1+a)= g —D„-21nM
2

ln 1 —
2

1 "dK 1
„2w 2 cosh' w

Lettingu=e ", we have

2lnM ' 1 1+u4 3 ) dx
lndet(1+a) -

2 du —In» = —,lnM —ln(l+ x)w', u (1+u'}' 2w', x

2 InMQ

(»4)

3
~ (lnM)=

2m 12

Thus

=-8 lnM.

1 1.159
det(l +8)
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