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A real solution of the Yang-Mills equations in Minkowski space is constructed by means of
a conformal transformation.

F„„=8„A„—8+„+[A„,A„]=—g F'„„—.
21

Solutions to (1) may, for example, serve as the
starting point of a semiclassical approximation to
the quantum Yang-Mills theory.

An ansatz for A„analogous to the one used to
derive multipseudoparticle configurations, i.e.,

A "(x) =i o ~8, 1n@(x),

with antisymmetric matrices o"" satisfying the
O(3, 1) commutation relations

(2)

f[o'" o" ]~g "o" +g""o~ +gn&+" »&p& (3)+g
reduces Eq. (1) to

1c" P 8 8 8$ =0 (4)

I.e., any solution of the equation

8 8 "P+X/3 = 0

leads, via (2), to a solution of the Yang-Mills equa-
tions. The solution given by De Alfaro, Fubini,
and Furlan' is generated by Q =2[X(1+(,')
x (1+k ')J '~'. [A more general solution to Eq. (5)
(X4 0) is known" which, after an appropriate ad-
justment of the integration parameters, leads to
a finite action and energy in Minkowski space. ']
I et us note. that, if X 4 0, the potentials of the form
(2) have action and stress-tensor density, respec-
tively (without loss of generality we set X= 1),
given by

Z(x)= 2TrF +""= 2(8 8 In/ —3@ ),-1 -1
2g 2g

(6)

There has been great interest recently in explicit
solutions of the SU(2) Yang-Mills equation in Eu-
clidean four-space. It is also desirable to find
solutions with finite action and energy for these
equations in Minkowski space:

8„F""+[A„,F""]= 0,
0

A . -=g —.A'

=-2 —28„$8„$+$8„8„$

+ ""(4'+28 4'8 0)

and the energy is

Z(x) = (1/2g') 8'8' in/(x).

But all the solutions discussed so far are complex,
in Minkowski space, as a consequence of the ansatz
(2) which can be seen in the following way: We
want to deal with an SU(2), i.e. , compact, gauge
theory. If we denote, as usual, o'~ = E'~"5,o"=K'
and if we define, furthermore, A=-,'(P+iR), B
=-,'(& —iK) then A,. and 8, satisfy SU(2). commutation
relations and [A, ,B,] =0 showing the well-known
isomorphism O(3, 1 c =—SU(2) x SU(2). It means that
we have to choose

Ocj —I gsgA, ~ o."= ~—o'
2

which, in turn, means that the Yang-Mills poten-
tials A'„= (i/g) Trc'A „are complex for any function

e(x):

E= d'xg„= —, d'x-,' 8, '+-,' V '+-,' ' .
(8)

If X = 0, i.e., if P is a solution of the scalar-wave
equation, then the corresponding potential A" has
a vanishing stress tensor 8„„. [Notice that for
X=0, potentials of the form (2) are also solutions
of the self-duality equations in Minkowski space:
F„„=+*F„„.] There exists, of course, an infinite
class of solutions to the wave equation which leads
to finite action. For example, any function Q(x)
=Q,. tanhP, (q'" x) (rl'" denotes lightlike four-vec-
tors independent of x, the P,. are even polynomials
in g"x such that P, ~0 for all i a.nd x „) leads to
an integrable Yang-Mills action density
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Ao =+is, in/,
A;. =- E,,,BJ ln)t)+ i5,,9 1np.

(10)

For real )t), of course, the action and stress-ten-
sor densities (6) and (7) are always real and the
energy (8) is always positive. One might suspect,
therefore, that there exist (complex) gauge trans-
formations which transform solutions (10) into
real functions. However, this cannot be the case
in general. A gauge-invariant quantity such as
TrE„Q z, evaluated for potentials of the form (2),
is complex in general. But physical solutions of
Eq. (1) should correspond to classical limits of
self-adjoint operators, i.e. , they should be real
functions.

One way of finding real solutions is the following:
The Yang-Mills equations in Minkowski space are
transformed into Euclidean equations by means of
a conformal transformation. For these equations
real solutions are known. Let us define variables
y and potentials A [in the following we use the
metric convention g„„=diag( —1,+ 1,+ 1,+ 1) and
the notations p, , v = 0, 1,2, 3; n, P= 1, 2, 3, 4;
i,j =1,2, 3] as follows:

5 P ~+ [A,E J=O, (16)

which satisfies conditions (14) and (15), leads, via
(11) and (12), to a solution of the equations in
Minkowski space. All the nontrivial solutions of
Eq. (16) which are known are of the form A
=io &8&in/, where & z are O(4) matrices (&,.&

2c,»-o„; o,4=-,'o. ,.) [i.e., A'„(x) is real if )t)(y) is
real] and Q is a solution of

Solutions of this equation, such that conditions
(14) and (15) are valid (note that the homogeneity
requirement is very restrictive), are Q,. =b'y ' if
&=0, and Q, =(&y') ')' if A. IO. The function )t),

generates a potential A which is a pure gauge.
Therefore the field strengths E„„(x)vanish. The
potentials A„(x) corresponding to )t)2 are

0 =g""(s„E„,+[A. ,E„,.])
(& Eq, +[.A, Eq,]).

—xp ~(s J"~+ [A,F@]).

This means that any solution of the Euclidean Yang-
Mills equations

A, (x) =- x+4(y), (12)
A,.(x) =A,.(y) -x,.A, (y) .

Equation (12) corresponds to a conformal transfor-
mation of the potentials A „(x).' Reexpressing the
field-strength tensor E „(x) in terms of the new

potentials A and derivatives ~ with respect to
the new variables y we find

and

A (x) = + i ~ o"xP y2

:1A,.(x) = 2[&,.y2g
+ ~(1+xo —x )o,.+x,.o x],

y'=-,'(1+t,')(1+t '), t, =x, + ixi.

(18)

Z„.(x) =-x~„.(y),

F,, (x) =E,, (y) —x,E„(y)—x,E,,(y), . . . (13)

F,=-sg, s, A +[A,AJ.
Now, if

y~A~ = 0, (14)

and if the potentials-A are homogenous functions
of degree minus one, i.e., if [the scalar products
in (14) and (15) are Euclidean]

yqB~A =-A (15)

we can rewrite the Yang-Mills equations as fol-.

lows:

24 1
g', (1+t,')(1+t ')

A= Sd~x=3v'/g'.
(19)

The energy density of (18) is given by

The solution (18), leading to real potential. s A'„(x),
is related to the solution given by De Alfaro, Fu-
bini, and Furlan by a conformal transformation. '
The Lagrange densities coincide (the definitions
of our action and energy densities differ from those
given by De Alfaro, Fubini, and Furlan by a factor
of 2):

0 =g""(sp„o+ [A „,E o])

128, , 1
))+&,')))+& ')] ' (20)

x,6.~(6P +[A.,F-]), For both solutions the values of the total energy
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are also the same:
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After the completion of this work I learned that
B. Schechter [Phys. Rev. D 16, 3015 {1977)]has found
a similar form of solution (18) by projecting the Yang-
Mills equations on a hypertorus.


