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Contribution to the eighth-order anomalous magnetic moment of the muon*
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The eighth-order contribution to the muon anomaly from second-order vacuum polarization insertions into

photon-photon scattering diagrams is accurately determined. The result is a„(yy) = (117.4+0.5){a/m)'.
The coefficients of the ln'(m„/m, ) and ln(m„/m, ) terms are also evaluated. The coefficient of ln'(m~/m, ) is

found to be just one half the value expected from naive application of renormalization-group methods, and it
is shown how this arises.

I. INTRODUCTION

The dominant contribution in eighth order to the
anomalous magnetic moment of the muon is asso-
ciated with 18 Feynman diagrams of the type
shown in Fig. I, obtained by inserting a single
electron loop in all possible ways into the sixth-
order photon-photon scattering graphs.

In the case of the sixth-order photon-photon
scattering contribution, we found' that accurate
computation was limited primarily by the singular-
ity structure of the integrand used in the multidi-
mensional numerical integration. This had the
effect of causing the contribution to be systemati-
cally underestimated. The problem was overcome
by changes of variables and the introduction of an ~

cutoff on the limits of integration near the singu-
larity. Careful study of the dominant behavior
showed that as a function of the cutoff we could
write the contribution as follows: For small e,

I(e) -Io-Av e.
Having evaluated I(e) accurately for several val-
ues of e, we then extrapolated to e =0 by using
Pade approximants to obtain the result

As is known, the contribution to the muon anomaly
from the sixth-order graphs may be written as an
integral over a 7-dimensional simplex,

a(s) ~li' (p) =, = J deF(z, U, W)ll(1 —z,), (5)

where

dg = II';,
and

The integrand I' is given by Aldins et al. ' and m3y
be expressed as a sum of terms

4 3

(6)

where U, W, and the C„, are'homogeneous func-
tions of the z;. 5' and some of the &„& also de-
pend upon the square of the mass ratio p.

The propagator replacement Eq. (4) is made into

Q
ai&6~(yy) =Io =(21.32 +0.05) (2)

In the case of the eighth-order contribution, we
will find a similar technique to be effective in re-
fining the previous numerical estimate of Calmet
and Peterman'.

n 4
a '(yy) =(111.1 +8.1)

II. THE METHOD

%e may determine the contribution of these
eighth-order graphs to the muon anomaly by the
replacement of the photon propagators of the sixth-
order diagrams with the modifi. cation due to vacu-
um polarization:

1 -Hew~'i(k ') " dt rm~" (t)/~
(4) FIG. l. Eighth-order photon-photon scattering diagram

with vacuum polarization insertion.
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V(x, z)- V'(x, z) = V(x, z)+z, t,
tUz,

W W' =mq 'UV'(x, z) = W+

(6)

(9)

We arrive at similar results for internal lines
(3, 5) -=chain P and (2) -=chain y so that generally
we can write

each of the photon lines labeled 1, 2, 3 of Fig. 1.
Subsequent expression of the anomaly in terms of
an integral over Feynman parameters is effected
by application of the double parametric represen-
tation of Feynman amplitudes to the sixth-order
diagrams, using A2 = t for the squared mass of the
photon. Thus we find upon considering an inser-
tion into internal lines (1, 4) = chain n that the
"mass" of the chain n is modified as follows:

V„V~= V~+x, t.
The functions V(x, z) and W are similarly modi-
f1'ed:

tUz;
TV 5" =W+ — 2', i=1, 2, 3. (10)

In this way, we obtain from Eqs. (4), (5) and (10)
the expression for the eighth-order contribution:

+(8)f(.)(,)
uu (rr)
(o./m)'

X'(I —X'/3)
2

(12)

, where

dz I' z, U, 5'] & 1-zg,
(11)

where we have made the change of variables t
=4m'/(1- y') and defined p' =(m/m~)'. The inte-
gral on y may be readily evaluated. Using Eq. (6}
the result may be written as

3

~ "(a o'(= l 2 f "'2 ~.tI, ~(~)

"' y'(3 —y')(I —S')'
{I-~ +5)0

——'+6+r 1-—l k =1
3 2

56 & 5~ l
+ + k=2

4

——, + 35-, —+(16+24& -30&'-35&'), , k =3,19 l

4p'Uz]

r = (1 + &)' ~',

1+r '

l =ln 1-r,

III. CALCULATION OF THE LN~ AND LN COEFFICIENTS

z, =uv and z, = v(1- u) . (13)

In terms of these variables, we isolate the essen-
tial dependence on the variable & in the integrand:

Q'= Qv +p~

Before obtaining an accurate value for Eq. (11)
at p = p', we calculate the leading terms that de-
pend logarithmically on the mass ratios p and p'.
The reduction is simplified if we make the changes
of variables

C =G v"+" 'x p n=1 2
nO nA 1 3 4 (14)

where in addition to factoring out the overall &

dependence in the &„„, we have also factored out
the p dependence.

Extraction of the logarithmic dependence on p
and p' proceeds most simply by considering the
limits

lim I '
(p, p'} and lim I~'~(p, p'),

P 0

keeping only terms that diverge as p-0 or p'-0.
In this manner one finds that
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——+E, 4'=1
3

I(')(p, p) = —,
' g dzg „""x( —,'+E, k=2

(=i na

——+E, k=3

+(Nondivergent terms)~, , p'& p«1,

that for evaluating Eq. (5). [We use a cutoff here
as in Eq. (1); here A ' (e) -A "—()('/6) v e.] our
result is

-A '8' = 3.29 + 0.01 . (18)
(This is tantalizingly close to )('/3. ) We have also
evaluated 0(')(1) numerically from Eq. (All) with
the result

(15) 0(')(1) =-13.52+0.17. (19)

where E =-In(Uz;) +lnW- Inp'. A straightfor-
ward reduction of this expression, similar to that .

discussed in the Appendix for I '
(p), leads to

I ' (p p') =A '
(—,ln'p-lnplnp')

+ 0("(1)(lnp —lnp')

+Blnp+0(')(1)+ ~, p'S p«1

Alternatively, using Eqs. (2), (1'I), and (18), we
obtain the result -13.76 +0.12, which includes
terms which vanish in the p-0 limit. This. result
is consistent with Eq. (19).

For the lnp terms we numerically evaluated each
of the B; obtaining

B, =2.21 +0.09

where B= B, +B3 + B4 +B»
(16)

B' = 1.30+ 0.08
) -B = 7.55+ 0.15 .

B4 = -1.87 + 0.04
(2o)

and

1B3 6

Bl
3

3 3 g g 2 g 3
0 0 0 0

U' 3

x ln z1z2z3

dvdz" G, G
U3 U' 3

0

4'vcr 41 42 43
4 U'4 4 g g2 g3

0 = 5G31 8G32 3 G33
5 6 U3 5

0 0 0 0

B, =5.81 +0.06 ~
Setting p = p' we obtain the leading logarithmic
terms to I(')(p):

I (p) = (1.645 + 0.005)ln2 p

+(7.55 +0.15)lnp+0(')(1),

which gives a contribution of

I ' =106.5+1.7+0 ' (1)

(21)

(22)

for the physical mass ratio.
As a check on these results we numerically eval-

uated I '
(p) for several vaules of p. In Fig. 2 we

plot
GO

dz"
2U0

where (all expressions are evaluated at z, = 1 —z,
-z —z-z -z —z)2 6 7 -8I

dz" =dz, dz, dz, dz, dz, du()(K),

K=z, (~=0),

z, =2'(~=0), O'„=G„(~=0), etc.

The factors A(' and 0(')(1) can be shown (see
Appendix) to be the coefficients of the lnp and the
p-independent terms, respectively, in the expan-
sion of the sixth-order photon-photon scattering
contribution:

I(6)(p) ll A(6)lnp+O(6)(1) +. . . (17)
'Y'Y)

( a/7()'

I'(p) = I'"(p)/»(I/O)

versus ln(1/p) and find that the results are consis-
tent with a curve that is asymptotic to a line of
slope 1.645 and intercept -7.55.

IV. THE KINOSHITA METHOD

In Eq. (21) we find that the coefficient of ln'p is
just 2 the result obtained by naive application of
renormalization-group methods to this class of
diagrams'. We consider now hpw we can account
for this.

The application of the Kinoshita method' to the
diagrams of Fig. 1 yields the following equation
for the partially renormalized moment:

I ' (m„m, mq, A) = 3Z ' (m A)I '
(p) + I(')(p, p'),

Previous values for A(') are (see Ref. 3) -3.19
+0.04 and (see Ref. 4) -3.145 +0.028. We have
calculated an improved value for 4 ' . The diffi-
culty of obtaining an accurate value is identicalto

where

Z, (m, A) = — —,ln ———,
(23

'
2 A

(23)
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second term of Eq. (27) contributes terms 0(lnp)
as p'-0 or 0(lnp') as p-0:

dt
a3 (yy) = g a„' (t)+0(lnp or lnp'),

3 p $ g 4

(28)

where a 3„(f}is given by Eqs. (5) and (9).
To understand in a simple way the origin of the

In3p term, we consider the contribution to Eq. (28)
from an interval 4m3 ~ t &4)(', where (m or m, )
«A«m„. We notice first that the introduction of
tUzf/m~' into the denominators via W- W' effec-
tively changes the mass of the photon-photon scat-
tering electron loop

e e + ~eg (29)

0
Let us now examine the terms in a(3)(t) which con-
tribute to the lnp dependence in a(3)(0). Similar to
Eq. (A3), the leading (n=S) term of a('„)(t) is'

3 ~ (30}
=IO

0

Ln—1
P

FIG. 2. I'(p) =—~ ' (p)/1n(1/p) versus 1n(1/p) [in units
of ln(m&/m, )]. This confirms the coefficients of ln p
and, lnp to be 1.645 and 7.55, respectively.

and I(')(p) is given by the expansion in Eq. (17).
From the theory of mass singularity' we know that

lim I(~ (m, , f)3, m~, A)
m~p

exists. Using this fact we solve for I(' (p, p') in
terms of an unknown function f(p):

(24)

I ' (p p') =-Inp'IA ' lnp+0 ' (1)j+f(p)

p'(p«1. (25)

(27)

to identify the contributing terms. For a(3)(yy) the

Cbeing to the absence of an auxiliary condition,
such as a symmetry relation, we are unable to deter-
mine f (p) without a direct calculation. From Eq.
(16), f (p) is found to be

f (p) =-'A'"ln'p+ [0"'(I)+B]lnp+0 "(1). (26)
I
f

We can see in another way how the —,'A ' ln'p
term arises by utilizing a formula due to Lautrup
and de Rafael".
(„e3) Imff( )(t=~) " dt („)

)
7r t

dt Imff(')(t) —Imff(')(t = )+ — a" (t)t—
1

For small p, ff (m, ff/m„)', the dominant contribu-
tion to Eq. (30) arises in the same way as for the
corresponding terms of a(3 (0), that is, in a neigh-
borhood of &=0. We obtain

3 G Z Kg(3)(f) . d II 3 I 0 + Peff 0

w 2Up P ff Ap

(31)

For t=0 in Eq. (31) we recover the first term in
Eq. (17). To further isolate the dominant behavior
of a „' (t), it is reasonable to replace Z0K',
and ~p; by average values since they will not in-
troduce much variation in the logarithm. With the
definitions

a =(U0z;),„, b =(f),0),„, and c =.(Z K'),„, (32)

we obtain an expansion for Eq. (31) of the form

(33)
n m' J

From Eq. (33) it is clear how the introduction of
virtual photons of squared mass t into the photon
lines of Fig. 1 leads to an effective modification of
the electron mass m, in Eq. (17). Upon perform
ing the integration over t, 4m' & t &4A.', in Eq.
(28) using Eq. (33), we readily obtain

I ' (p, p')-A ' (31n'p-lnplnp'), p's p«1.
(34)

The effective increase ln the mass m, of the pho-
ton-I)hoton scattering electron loop (m, ff -m,} could
correspond to a reduced current, and the fact that
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the contribution —,A(') ln'p in Eq. (34) is negative
suggests an analogy to Lenz's law effect."

For fixed p'& 0, I ')(p, p') is convergent at p =0
and the leading contribution to I(')(p, p') is"

g(6) .

I"'(p p') -- »'p'+(&. +&.'+&. ——.A"')»p',
p«pj«-y.

6(s, 1) -D(0, 1) -Ms, (35)

where M —55. Hence as a method of obtaining
D(0, 1), we evaluate D(s, 1) accurately for small
enough values of & and extrapolate to e =0. The re-
sults of the & cutoff shown in Fig. 3 confirm a
linear dependence for small e. Extrapolating to
e =0 we obtain

V. NUMERICAL EVALUATION

We proceed now to the accurate numerical eval-
uation of I(')(p). The difficulty of this computation
is similar to that encountered in evaluating Eq. (5),
since we again have factors &„,/I/"W', but now

modified by the J~. We expect, therefore, that
the method of evaluation described for the sixth-
order photon-photon scattering will also improve
the convergence here. We again introduce a cut-
off on T =z, +~, +~„and in addition to the changes
of variables defined in Eq. (13) of Ref. 1, we also
let T = T". This has the effect of changing the v s
dependence noted earlier in Eq. (1) to an s depen-
dence. Defining D(e, e,) to be the contribution to
I ' (p) from the interval e & T' &e„we find that
for e small enough

Finally, we note that this result is consistent
with the expectation that the logarithmic terms
dominate the contribution. Taking into account the
contribution of 106.5 from Eq. (22), the order-one
term is estimated to be

O ' (1) -10.9 + 1.8, (39)

A recent review of all the contributions to the
theoretical muon anomaly is given by Calmet
etaE"

Note added in Proof Th.e closeness of the re-
sult in Eq. (18) to vs/3 was so tantalizing that it
has now been evaluated analytically by B. E. Lau-
trup and M. A. Samuel [¹elsBohr Institute Re-
port No. NBI-HE-77-32 (unpublished)]. The result
is indeed ms/3.
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APPENDIX

We now examine in detail the determination of
the 0 ' (1) term and the identification of A(') as the
coefficient of lnp in Eq (17).. We begin with the
expression in Eq. (5) for I(')(p). Making use of
Eqs. (6) and (13), we can write I(')(p) as

I")(p) =I'"(p) +I ' (p) (A1)

where

It is a pleasure to thank Stan Brodsky for stimu-
lating and helpful discussions.

D(0, (0.1)'/') =28.7+0.2.
Combining this with

D((0.1)'/' 1) = 88.7 +0.4, (37)
I(s)(p)

nA
71&3

vdvdz

we have

I ' (p) = D(0, 1) = 11'l.4 + 0.5.

30

(38)
dz' = &(I -z,)dz, dz, dz, dzsdz, dz, du.

It is easily seen that lim~, I(~s)(p) exists. Evalua-
ting the integral over z3 using the & function, and
letting & = v p x for terms n = 1, 2, we find that

d"
P-+ 0,

25,
+ dg dv 4G

U4 (A2)

where dz", Zo, G„etc. are defined in Eq; (16).
To extract the O(1) part of I ss we first expand

l5
I/I6 I/8 I/4 I/2

E

FIG. 3. D(s, (0.1)i/ ) versus s [in units of (0.1)t/2I.

dzvdv — G» pd G» -2ph pb,
U3 W Z 8' Z TV 8'

(A3)
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(6) dz" G3~ 3 G33

p p 0
(A4)

Thelim~ Gof the secondterminEq. (AS) exists and
ls

D exists and is given by

D= d" dv
(A8)

We now consider the extraction of the underlying
O(1) term, which we call O~(~~(1)2 in the first term
of Eq. (AS). As is known, I(s~ is logarithmically
divergent. The coefficient of lnp is

= lcm p &z", ZG
dp 0

D=O, (1)- J dz" In
2U,'

where

(A9)

On the other hand, using Eqs. (A5) and (A6), we
can expand Eq. (AV) to obtain

G 0

dz
p

To obtain OB', (1) consider
o K

ZoG, vdv
z 3

Uo g o Wp

(A5) Og, (l)—:inn dz", + ', inn) .ndv&G, G,'
p o

(A10)

Combining Eqs. (A2), (A4), and (A10), we obtain
the O(1) term of I (p):

p . 0

where W, ZpU +p4p.
Now consider

&G ZG
P~p 0 0 p

„(G„+G',,/2Z G /Z„'+ G /Z„'
2U ZGh 2UG

G,' Z, Z'

(A11)
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