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The generalized ladder series of Feynman diagrams for scattering of two particles by scalar-meson

exchange is expanded, using functional methods, to obtain the relativistic eikonal approximation and the

next two terms of an expansion about the eikonal limit. The established similarity between nonrelativistic

and relativistic eikonal approximations is shown to persist, in part, to the higher-order terms in the

relativistic eikonal expansion. The leading-order correction to the eikonal limit differs only kinematically

from its nonr'elativistic counterpart. In second order, there is again much similarity with nonrelativistic

results; however, a part of the second-order eikonal correction explicitly depends on the relative time

coordinate of the scattering particles. An approximate relativistic Schrodinger equation is found to reproduce

the leading corrections to the eikonal limit by means of a simple kinematic generalization of the

nonrelativistic potential theory results; however, the relativistic time effect cannot be readily incorporated

into a three-dimensional wave equation.
'I

I. INTRODUCTION

A relativistic eikonal expansion method for high-
energy two-particle scattering in quantum field
theory was first outlined some years ago by Abar-
banel and Itzykson. ' This paper develops a similar
expansion in detail and studies the persistent
analogy with nonrelativistic potential-theory which
emerges in the eikonal limit.

Following the basic work of Cheng and Wu'. and
others' on the high-energy behavior of infinite sets
of Feynman diagrams in quantum electrodynamics,
Abarbanel and Itzykson showed that similar re-
sults could be derived by a straightforward applica-
tion of functional-derivative techniques together
with the eikonal approximation. The basic result
was that the relativistic eikonal approximation for
the scattering amplitude reproduced in a trans-
parent fashion the elaborate sum of QED leading
terms from perturbation theory. Considerable in-
terest in the relativistic eikonal approximation
followed.

Whether or not the ei.konal approximation was
reliable far scalar field theory was not as clear,
however. When individual Feynman diagrams were
analyzed, it was found that delicate cancellations
were responsible for the dominance of the eikonal
contributions as s- ~. In addition, it was ob.-
served' that noneikonal leading terms must arise
by eighth order for the scattering of two scalar
particles via scalar-meson exchange (scalar-
scalar theory). Hence it was doubtful' that the
eikonal approximation continued to reproduce the
high-energy behavior of perturbation theory beyond
sixth order.

A recent analysis -by Banerjee and Mallik' has
reexamined the validity of the eikonal approxima-
tion in scalar field theory. The conclusion was

that in scalar-scalar theory, in which the ex-
changed mesons are not identical to the scattering
particles, the eikona1 approximation fails to repro-
duce a part of the eighth-order amplitude which
asymptotically behaves as (lns)/s', w'here s is the
square of the center-of-mass energy. The eikonal
estimate for 2nth order of perturbation theory be-
haves asymptotically as s' ", i.e., 1/ss for eighth
order. However, in Qs theory, there is additional
cancellation which eliminates the (1ns)/ss term.
Hence for Qs theory the question of validity of the
eikonal approximation remains open while for the
scalar-scalar theory the eikonal approximation
does not incorporate the noneikonal routing of mo-
menta which give rise to the asymptotically domi-
nant (lns)/ss term in eighth order.

It should be emphasized, however, that the eik-
onal approximation still remains extremely useful.
The approximation does reproduce the leading
terms for QED and, in the scalar-scalar theory,
the error made is generally very small at high
energy and could, in principle, be corrected.

. However, the primary interest in high-energy
scattering lies in the fermion-fermion case. Be-
cause there is a rather close connection between
the scalar-scalar theory and the scalar limit of
fermion-fermion scattering by vector-meson ex-
change, this paper considers in some detail a
relativistic eikonal expansion for the scalar-scalar
theory along j.ines proposed by Abarbanel and
Itzykson. ' The scalar-scalar theory is chosen for .
simplicity, keeping in mind that the theory con-
tains most of the analytical complications which
are present in the fermiop-fermion case. A sub-
sequent paper will deal with the differences be-
tween the scalar and fermion cases.

The paper is organized as follows: Section II
discusses the generalized ladder diagrams which
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mesons in the generalized ladder series of Feyn-
man diagrams (Fig. 1). Following Abarbanel and
Itzykson, we use an economical formalism which
generates this set of diagrams by functional differ-
entiation of external potential amplitudes as fol-
lows:

-i(2m) ~ V'(s, t)d~ }(k,' +k,' —k, —k2)

=«&', I T(A, ) I &,& &&l IT(A. ) I &J I,=

Here Ay k2 are four-momenta of the baryons be-
fore scattering and k,', 0,' are those subsequent to
scattering, s = (k, +k,)' and t = (k, —k,')'.

The scattering of baryon 1 in a scalar external
potentialA, (x) is described by the matrix element
of the operator

+ + ~ o ~

T(A, ) =A, +A, G, (A, )A, ,

where G(A, ) is a Klein-Gordon propagator

G, '(A, ) =P' -m, '-A, (x) +ie.

(2)

+ ~ ~ ~

The external potential amplitude for baryon 2 in
(1) is similarly defined.

Finally the functional-derivative operator' which
generates the generalized ladder diagrams for
meson exchange (see Fig. 1) is

+ ~ ~ ~

X'=exp dy
Jl

dy 6A ( )D(W-X )6A ( I)

FIG. l. The generalized ladder set of- Feynman dia-
grams is depicte'd through sixth order. In the 2nth
order of perturbation theory, g t distinct graphs account
for all possible crossings of the meson lines {wiggly)
exchanged between the two baryon lines {straight). The
functional derivative formalism discussed in the text
generates the full set of graphs.

are taken as a model for relativistic two-particle
scattering. Section III reviews the functional-
derivative approach to the relativistic eikonal ap-
proximation and establishes our notation in some
detail. Section IV, in conjunction with the ap-
pendixes, details the relativistic eikonal expansion
development of first- and second-order correc-
tions to the eikonal limit and Sec. V presents a
summary of our results in light of previous studies
of the eikonal expansion. A relativistic wave
equation suitable for two-particle scattering at
high energy is suggested. Conclusions are pre-
sented in Sec. VI.

II. RELATIVISTIC TWO-PARTICLE SCATTERING

Consider the scattering of two massive, scalar
baryons which interact via exchange of scalar

The notation of (1) means that after the functional
derivatives are carried out, the fictitious external
potentials A, and A., are set to zero.

The causal propagator of the exchanged meson
is given by

D(y -y') =
4

tl'(7 9 }D(f 2)
(2m)4

D(f 2)
l —p, +z6

(6)

It is clear that'exchanges of nonelementary objects
can be modeled by the phenomenological choice of
D(l')

The model of scattering represented by Eqs.
(1)-(6) is incomplete as renormalization, vertex
corrections, meson-meson interactions, and pro-
duction channels are omitted. Nevertheless, the
model is appropriate for scalar, relativistic, two-
particle scattering in the same sense that the
SchrMinger potential theory is appropriate for
nonrelativistic two-particle scattering. We refer
to the scattering particles as baryons to empha-
size that all diagrams in the model have two con-

where, for the exchange of a scalar meson of mass
P. q
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V'(s, i) = Vz(S, i)+ q'z'(s, i) +7' (2zs, t)+ ~ ~ ~ . (7)

The series (7) is unambiguouslydefined by choosing

yz(s, i ) to be a specific eikonal approximation to the

generalized ladde r diagrams and then perturbatiyely
developing the corrections to this approximation.
The correction terms q'~, q'~, etc., vanish in-
creasingly rapidly as s-~.

In general, the series (7}is more interesting in

the case of fermion-fermion scattering via vector-
meson exchange. Using the Block-Nordsieck ap-
proximation, y," = (k,"+k,'&)/2m„ the scalar limit of
fermion-fermion scattering is easily related to the
simple scalar scattering model described above.
Foi either scalar baryons or fermions, we obtain
a relativistic eikonal expansion (7) which has many
similarities to a nonrelativistic eikonal expansion
developed some years ago. ' "

III. RELATIVISTIC EIKONAL APPROXIMATION

The relativistic eikonal approximation is briefly
reviewed to establish our notation for the subse-
quent development of explicit corrections to the
eikonal limit.

To obtain the eikonal approximation for fixed
momentum transfer q, the momentum operators
of the scattering particles are expanded about the
following on-mass-shell eikonal momenta:

«, =((k'+m ')'~' tj k)
(8)

«, =((k'+m, ')'~', 1}, -k),

tinuous particle lines (solid lines in Fig. 1) be-
tween which mesons are exchanged in all possible
orderings of emission and absorption. The role of
the relative time coordinate of the baryons is com-
pletely specified by the relativistic dynamics.

Our present interest in this model centers on
determining its structure for high-energy small-
angle scattering. To this end, the amplitude
q'(s, i), for fixed t, is expanded about the eikonal
limit through second order in the following rela-
tivistic eikonal expansion:

g, '(A, ) =2«, [P --,'(k, +k', )] -A, (x)+ie,

g, '(A, ) =2«, .[P ——,'(k, +k,')] -A, (x) +ie.

(11)

(12)

The simplicity of the eikonal pzopagators is evi-
dent in the followikg relations:

&k) i [&+A,g, (A))] I x)

=e'"~'" exp -i dvA, x —2K', 13a
0

~ "exp -i
0

dtA (x 2K T)
)

. ((3b)

'The effect of the external potential is simply to
phase-shift the initial or final plane wave, and
similar results hold for particle 2.

It follows 'that the eikonal approximation to the
. relativistic external potential amplitude [E(I. (2)

with g, (A, ) in place of G, (A, )] is

=(2w) 'f d'xe '" -'(''*

x exp -i d7.A, x-2K,v. A, x
p

of Ref; 1 lies in our use of eikonal momenta (8)
in place of the average of initial and final mo-
menta (k, + k,')/2 and (k, + k,')/2. This difference
shows up in the z components +k in (8) in contrast with
+k cos(—,

' 0) of the Abarbanel and Itzykson approach.
The eikonal momenta (8) are preferred because
they automatically yield a Fourier-Bessel repre-
sentation in the relativistic eikonal expansion.

The eikonal approximation to the series of ladder
diagrams is very simply obtained by making a
standard eikonal approximation to the external
potential amplitudes in (1}. The propagator G(A, )
is replaced by an eikonal propagator g, (A, ) which
is linear in the momentum operator P" as follows:

where k = ~k, ] is the c.m. momentum. The z di-
rection along which K, and K, have components k
and -A, respectively, is parallel to the average
momentum of particle 1 (the projectile):

—(2&)-4 d4 -i(k)-k') g~
X —— ~L+a +1~+~

I 8 - L
2 6Q a=p

(14)

R, +%,'
(%, +k,']

where we have written the line iptegraal symboli-
cally as

Thus the momenta K] and Kg are orthogonal to the
momentum transfer

d7 A, (x —2«, ~). (15)

q = (k, —k,') = (0, (I, 0), (10)

where q is a two-dimensional vector in the (x, y}
plane. The only departure here from the approach

The parameter a is introduced as a lower limit
on the integral in the phase fg.ctor so that the fac-
tor A. ,(x) can be replaced by the operator (1/i)
x d/d(). followed by the limit ()t =0.
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Substituting the eikonal external-potential re-
sults into (1) and using the fact that the functional-
derivative operator is a shifting operation leads
directly to

-i(2w) ' 1's(s, t)5' (k,'+k,' —k, —k, )

=-(aw)-' jd'x d' e-'""-"'*""-""'
x—,exp( L,„L-' D(x —x')]d

a-n =p (16)
)'

since m, m, /)('s -m„ is the reduced mass, Eq. (21a)
represents only a kinematic generalization of the
nonrelativistic eikonal approximation which in-
volves m„/k.

Invoking the Block-Nordsieck approximation, we
can immediately determine the spin-nonfiip ampli-
tude appropriate to the scalar limit of fermiori
fermion scattering via vector-meson exchange.
The changes in (21a) and (21b) for the fermion-
fermion case are

In this expression the line integration symbols
mean

where

dh U(b, z), (21c).

L,„L,'„D(y)= dr d7'D(y —2~, + 2)(,r') (1.7)
a' U((, z)=- —t.

' f yd, p(y„(ts), (21d)
Six of the eight integrations in (16) can be per-
formed. Writing y = x-x' and integrating over
x *x', one first extracts the energy-momentum-
conserving 6 function. By further writing

p =6 —2K~0 +2K20'

where

b =(O, b, 0),

(18a}

(18b)

'and 5 is a, two.-dimensional impact vector, the
equality reduces to

d4 $qoy d
ee do''

x exp dr dv'p(( -2~,v+2&,v')):
~l

(18)

d2b e&a' () (e&xp(& Ia) 1)2ri (20)

where the- eikonal phase shift is

Finally two more integrations over o and'cr' (in
place of y„y, ) are carried out to obtain the rela-
tivistic eikorial approximation

f '(s, t) = (8v/s ) ' &s(s, t)

and D' is now the appropriate vector-Meson propa-
gator. Specifically in massive QED, the potentia. l
is U(r) = (ee'/4v) e ""/r, where e and e' a,re the
charges of the fermions. Notice that the kinematic
factor a, ~ )(,/(k/s ) in (21c) is precisely E~/k~,

. i.e., the inverse of the laboratory velocity. Thus
the scalar limit of fermion-fermion scattering
corresponds to a much larger phase shift at high
energy as is evident from comparison of the en-
ergy dependence of (21a) and (21c).

In the corrections to the eikonal limit which we
consider, the simple replacement m, m, - K~ K2,
which transforms (21a) to (21c), only partia. lly ac-
counts for the corrections to the scalar limit of
fermion-fermion scattering.

IV. RELATIVISTIC EIKONAL EXPANSION

In the functional formalism, the cori.ections to
the eikonal limit are calculated by improving upon
the approximations used to represent the. external
potential amplitudes. Consider particle 1, for ex-
ample. The neglected part of the two-particle
propagator in the external potentialA, is ex-
pressed as

X.( }=-- k~™'

with

dg U(b, z}, (21a) a, '(&,)-G, '(&,)=N, ,

where

N) = —(P —k,') ~ (P -k, )-%2k(P, —k cos(-,'B)]

(22)

00

U(b, z) =
4 m, m2

dy, D(y„b, e) . (21b)

U(b, z) is completely analogous to a nonrelativistic
potential, which, in this case, is defined by the in-
tegral over relative time of the causalpropagator
D. For the scalar-meson exchange of Eq. (6), one
easily verifies the Yukawa notential form U(r)
=-f' e "/(4'), r=(b'+&')'~', provided we define
f'=—gg, /4mm, . The phase shift yp(5, s) is identi-
cal in form to its nonrelativistic counterpart, and

. (23)

represents the defect of the eikonal propagator
and where

A. =1 —cos(-,'B) .
For small-angle scattering, X= B'/8 is quite
small. The organization of Eq. (23) is motivated
by a prior study of the nonrelativistic eikonal ex-
pansion' where X-dependent terms canceled out.

Expanding T,(A, } about the eikonal limit leads
to a perturbation series in the neglected part as '
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follows:

T '(A'j) (A(+A)g)A))+A(g(N(gkA.

1gl lg 1 lg1 1

=T~(A, )+ T2E(A, )+T~(A, )+ ~ ~ ~ . (25)

The procedure is essentially the same as that of
the nonrelativistic expansion. Using Eqs. (13),
and deferring treatment of.the A, terms of (23), the
first order in N, correction to the external-po-
tential matrix element is developed as follows:

(k,'~ 7' (d, ))k ) = — k,' exp(-i
I

oo 0
dtd, (x- 2x t) (2 —2,')„(2—k)" exp —i dt d, (x —2x, t )) k,

Commuting (P —0,')„ leftward and (t) —0,)" rightward gives

(2,') 2' (d, )
~

2') = 2,' exp (-i t dd( x2x, t)') 2„f dt, d, ( kxt, )exe
0

dt, d. ,(x —2e, t,) k, ),
(26)

i

where P" =i 8" is used. The second order in the N, terms of (25) is developed in Appendix C. We have the
following:

(20 C)

(kl)1'*(d ) Ik ) =( 2,' r dx exp -i dtdr(x —2rr t))
~ d)0

dt, A, (x —2K,t, ) 8 p dt 2A, (x —2K, t2)

x 9" dt, A. , x-2g, t3 —v-

0 )

0

dt, A, (x 2K, (t,.—T))

0

dt, A, (x 2K,t, ) -8„8" dt, A, (x- 2K, (t, —T)) 8„ dt3A, (x - 2K, (t, —T)),

&0
dt, A. , (x —2K, t, )

0
8„8" dt2A. , (x —2K, (t2 —T'))

~ CO

cto

8„dt,A, (x —2K, (t~ —T))
0

+i 8' dt, A, (x- 2K, t, ) 8„8"
L 0

r
0

d t,A, (x —,2K,t, ) 8„8"
~ 00

dt, A. ,(x- 2K, (t, -T))

dt2A, (x —2K', t, )

0

8q dt, A, (x —2K,(t —T ))

dt, A, (x —2K, (t, —T))

dt, A, (x —2K, t, )
~0

0
e„a~

dt, A, (x —2K, t, ) 8„8„

dt2A)(x —2K(t2)
08„dt,A, (x —2K, (t, —T))

dt, d, (x —2x;(t, —r)) k,).
Oo

(27)

When (25) and a similar expansion for particle 2 are used in Eq. (1), the leading-order correction to the
eikonal lim. it is seen to be

', r,'(s, t)d" (u,'+I(,,'-a, —&.) = X[&l'2 I TK(A, ) I&& &&2 IT~(A. ) l~ &+&&li T~(A))1~2& &~21 T'(A. ) l~,&) l~=~ =. .

The functional differentiation proceeds by standard rules as before. .When the results (14) and (26) are
substituted into (28), we find

+@=—z d pe; exp1 & -4'9
Z 6N

47' d7

dT'8 "D(y —2K, T+ 2K, T') dT dT D8()(g
—2K T+2K T )

+ (Kk —K22 ()t
' % )

0!=OL =0 (29)
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after the energy-momentum 5 function has been eliminated as before. The eikonal correction involves two
parts, of which only the first is explicitly shown, the second being obtained from it by the indicated substi-
tutions. It is convenient to convert the integration over y„y, to integration over the variables u, o in (19),
with the result

OO

V' = —(4kde f d be'e' de de' ——exp -( ds dk'D(b —Be,s eke, s'))
~40 ~40 ~ Z g ~4+

dT
0

dT'8" D(b -2z, T+2z,r')

geo 00

dT dr's„D(b —214,v+2&,T')
"a ~l

+(e == —K, e s}I (30)

Finally, the integrations over 0, 0' are performed to obtain the leading-order correction to the eikonal
approximation in the simplified form

i4k-/s d b e' '"e'"D ' iy, (b, s),

where y, (b, s) is as previously defined by (21) and the essence of the leading-order correction is

2,(bs) =f d,e' f de
4)o 00 0

ds'B" D(b —2z, e +2s,s') ds f ds BBD(b —2s,'s+2s, s')

~0 +0

dg dT' dT 8 "D(b 2z)r +2-z, rd)
40 ~a

ds' f dsB„D(b —2z, s +2s, e')
oo ~ 00

(32)

In terms of the scalar-exchange potential, U(r),
defined by Eq. (21b), we show in Appendix A that
the four-gradients in (32) simplify to three-grad-
ients and at the same time relativistic effects in
(32) largely cancel out. The result is that y, (b, s)
reduces to

calculation lies in the kinematics.
The second-order correction is considerably

more involved. In the functional formalism, this
correction is generated by

y, (b, s) =-~™ dz Vy+ (5, z) ~ FX (6, z)/2k,
S ~ 00

(33)
where

(6, z) = m™ ~

dz, U(-6, z, )a
(34a)

, (S, z) = m™ dz, U(5, z,}.
S

(34b)

v'~ = i 4k& s d'b e' ' be'xo~ "&y[1 —iZ, (b, s)]. (35)

Apart from kinematical factors, the phase cor-
rection X, is identical to its nonrelativistic counter
part w, (b) of Ref. 8. To leading order, our result
is that the relative time plays no role and hence th~

only relativistic effects are kinematical.
For subsequent use, the first-order ~ correction

is next given. Using the functional techniques al-
ready outlined, we find (Appendix 8)

=X[&k', IT'z'(&, ) Ik,& &k2IT'z'(&. ) lb.&

+&k,') T~'g~(A, ) (k,) (k,') 7 z'(A, ) (k,&

+& kI I Ts'(Ak) lkk& & k2 I T'z(A. ) Ik.&& I ~, =~,=.

(36)

After operating with X and setting A, =A, =0, the
following result is obtained (see Appendix C for
details):

V™'(s,e)= 44k/v fd'be"'Be'—" ""'

(37a)

with y, as defined by (33) and with

Be(b, s)=f dzV, V 2 ((, z) f dz'S(V 2, ((z'), ,

(37b)

As in (33), the only hint of this being a relativistic and
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m2+m ' 1
OO

g

x dz" bd' X, (b, z")

dz'V, z (b, z')+ J dz'V, z, (bz'),

2m/m~ 1
dt dz 8~8„—)

—D(t, b, z),

CO g~ 1 g2

x a]' dz'X (b, z')+a]' dz'X, (b, z') e" dz'X, (b, z')
L g ~ oo ea 00

1

(3 7c)

where l andm are summed 1-3 and

z, =(z —v, t)(1 —v, ') 'i'2

z, = (z + v, t)(1 —v, ') ' ' . (37d)

Equations (37) are very similar to the nonrela-
tivistie results [Eqs. (2.44) to (2.51) of Ref. 8].
The nonrelativistic limit (v„v, -0) of Eq. (37c)
corresponds to 7, (b) —U, (b)/(4k') of Ref. 8 while
Eq. (37b) is exactly the same W, (b) which is given
by Eq. (2.51) of Ref. 8.

A partial cancellation of the A. correction Eq. (35)
with part of the second-order correction has been
demonstrated for the nonrelativistic case. Like-
wise, in the present relativistic case, a partial
cancellation of A. to.order 1/k' can be shown.
Following Ref. 8, the sum of the second-order
eikonal correction (37) and first-order A, correc-
tion (35) ean be written

Fourier integral of (38). This part vanishes
identically as its Fourier transform is zero. Equa-
tions (38) and (39) correspond to Eqs. (2.55)
to (2.57) of Ref. 8 and nonrelativistically our
(d, (b, s) and X,(b, s) become identical to &u, (b) and

T, (b) of Ref. 8.

V. SUMMARY OF RESULTS

Qur results are summarized and extended by the
following statements. The scalar scattering am-
plitude at high energy and small t takes the
Fourier-Bessel form

i(s, i)=b(2 i) ' fd bs' '" [2'(b, s) —1], (dls)

where the impact-parameter S matrix is written
in exponentiated form as

q»+g &= &4~ & d ~e~q b L X~i ~

2
e'x(&. )- (&, ) (41b)

—~, (b, s)+iX.(b, s)
and the high-energy expansion of the eikonal phase
shift is

—(X+v'/8k')(1 —i Xo(b, s)) e'"o('', X(b, s) = X,(b, s) +X,(b, s) +X,(b, s) + ~ ~ ~, (41c)

(38) ~(b, s) =(d, (b, s)+ ~ ~ . (41d)

b
(b ) Xo Xo

Bk' (39a)

and

where the Laplacian operator acts on everything
to its right, and where

The exponential form (41b) is valid in either the
relativistic or nonrelativistic case as discussed
in Ref. 9.

Our results for the eikonal phases can be written
in rather simple forms based on the meson-ex-
change potential

/2
XOXo

X2(bs s) =X2 + (39b) U(r) = -i (4 m, ]n, ) '-dt D(t, r), (42)

with primes denoting differentiation with respect
to b. The partial cancellation now can be seen by

expanding A, :
X =[1 —(1 —q'/4k')' '] = q '/8k2 + Q (1/kd).

and the causal propagator D. Utilizing the nonrela-
tivistic results of Ref. 8 [specifically, Eq. (2.41)
and Eqs. (2.50) to (2.54)], expressions in Eqs. (33),
(37b), and (37c) are reduced to the following:

Thus to order k ', the combination (&'+q')/8k'
appears in the integrand of the two-dimensional

Xo(b, s) =-2k@ dz U(r),
0

(43a)
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OO

dz 2 +r —U'(r)dr

(43h)

The second-order eikonal phase term consists of
two Parts as follows:

X„(b,s) = -ke' dz & + -y' —+—y' — U y']

dr 2

t

—b[Xo(b, s)] '/(24k') . (43d)

where y„ is identical in form to the nonrelativistic
result,

y, (b, s) =[(m, '+m, ')/s] y„(b, s)

+(2m, m, /s) y„(b, s), (43c)

However, y» involves the relative time t and can-
not be reduced to a form involving just the poten-
tial U(r):

y„(b, s) =(4k')-' iBpB~D(t& b, z)
4kMs

dz'y (b, z')+s" 'dz'y, (b, z')
I Qo

x s' dz'y, (b, z'),

+ (8k') '[z, ~ a2/(m, m2)] y, (b, s)[y,'(b, s)] ' .

(u2(b, s) =by,'(b, s)V'y, (b, s)/(8k'), (43f)

just as in the nonrelativistic case.
The above expressions are valid for scalar scat-

tering. The scalar limit of fermion-fermion scat-
tering although similar, is not identical to the
scalar' case. Nevertheless, the major difference
between the two cases can be accounted for by the
substitutionm, m, -a, ~ z, as mentioned before.
Hence the expansion parameter e in Eqs. (43) has
two values of interest. For the scalar case,

e =m, m, /(k2s'i2), (44a)

, while for the fermion-fermion case,

e = x, ~ x2/(k2s'~'), (44b)

either of which reduces to the correct norirela-
tivistic limit,

e„=m,/k',
where m„=m, m, /(m, +rn, ) is the reduced mass. At
high energy, the eikonal phase corrections y, (b, s)
and y, (b, s) become small due to the expansion
parameter e and also due to the parameters
m, /s' ' and m, /s' ' evident in Eqs. (43).

If one particle is much more massive than the
other (e.g. , m2»m, ), then the contribution of y»
in Eq. (43c) becomes negligible since m, /s'~2-0
andm2/s'~2-1. In the static limit the eikonal ex-

The integration limits ~, and z, depend on relative
time as seen in Eqs. (37d). If the limits z, and z,
are replaced by just z, then the time integration in
(43e) can be performed using (42) and y»(b, s) also
can be reduced to the form given by Eq. (43d).
However, in the general case, we have been un-
able to obtain a simplified form of y»(b, s). The
real part of the eikonal phase is given by

f2e

4w (45b)

and then one has

y, (b, s) = -2k&,K,(pb), (45c)

y, (b, s) =[(m, +m, )/s'~2] [-2k',2K, (2 pb)], (45d)

y„(b, s) =-3k', '[K,(3pb) —(3pb) 'K, (3pb)

+ (Vb/9)K, '( p b)], (45e)

(45f)~2(» s) = --'(~e, )'Vb&, (eb)&.(ub),
where K„(x) are modified Hessel functions; iVon
elernenta~y exchanges can be modeled by other
choices of ihe D function for zvhich the results
(4&)-(43) prouide a succinct summary of the high
en«gp expansion io the corresponding sum of
generalized ladde~ graphs.

An effective Schrodinger theory which produces
the same eikonal phase expansion as the general-
ized ladder set of Feynman diagrams is readily
deduced.

The relativistic Schrodinger equation is

pansion results are identical in form to the nonreIa-
tivistic eikonal expansion results based on Schrodin-
ger potential theory, the only relativistic effectbeing
thekinematic parameter q of Eq. (44b).

For completeness, analytic expressions' for the
eikonal phase shifts, except y», are given based
on the simplest choice for D(t, r) which corre-
sponds to the Yukawa potential

U(r) = -—e I' /r . -f'
4m

A dimensionless expansion parameter is defined
by
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where'k is the c.m. momentum
4

k =P, m, /s",
)

(46a)

(46b)

e' and hence is expected to be small at high energy.
The relativistic kinematics imbedded in Eq. (45)
has been used in formulating the eikonal correc-
tions to high-energy multiple diffraction theory. "

and the energy parameter E is so determined that

E/k' = « ~ «,/(k's'~')

This condition equates the e parameter of Ref. 8,
using E in place of the two-particle reduced mass,
to the e parameter of Eq. (44b). The E parameter
so deduced is expressed in terms of the laboratory
energy, EJ. , of particle 1 as follows:

E =Ez m, /s' ' . (46c)

In the nonr'elativistic limit, E becorpes the re-
duced mass m„and Eqs. (45) become the usual
SchrMinger theory.

The potential V(r) in (46a) is related to the
meson-exchange potential U(r) defined by (42) as
follows:

v(r)= U(~) (a —1)e ('1+ ,r ll'(r)+ ~ . -—d
dr

(46d)

where
/

o.—= (m, +m, )/s' ' (46e)

In the relativistic limit or the limit n 1, V(-r)
= U(r).

Terms of order e(n-1) have been dropped in

(45d), hence at high energy the potential V(r) used
in (46a) reproduces the relativistic eikonal ex-
pansion results only through the leading correction
y, (b, s). Among the higher-order terms omitted in
(46d) is the nonstatic, relative-time effect im-
bedded in y»(b, s) which would suggest the rather
complicated nature to be expected of th@ missing
(but small) terms of (46d).

Notice that the dominant part of the potential in
the relativistic Schrodinger theory defined by Eqs.
(45) is spherically symmetric and has a, definite
relation via Eqs. (45d) and (42) with the underlying
field theory. Formal treatments"* " of two-par-
ticle relativistic potential scattering show that an
arbitrary nonlocal potential U(r, p), where p is the
c.m. momentum, is in general necessary. How-
ever, it has never been clear how the arbitrary
potentials of Refs. 11, 12 were connected to the
fundamental meson propagators. Our result sug-
gests that a quite simple relativistic wave equa-
tion and potential combination duplicate the leading
teems of a high-energy expansion of the full set
of generalized ladder diagrams. The momentum
dependence of the U(r, p) appropriate to the rela-
tivistic wave equation (45) is apparently of order

APPENDIX A'. FIRST-ORDER EIKONAL CORRECTION

To reduce Eq. (32) to obtain Eqs. (33) and (34),
consider the four-vector-

d7' dr s)'D(b —2«,~+ 2 r«')

= (44Ms) ' J dy, f dy, 4 "D(4)),
~ oo

where y=-v, (y, +2oMs), and using

y =(2«„7' —2«„r, b, - k2(~ +')r)

(A1 )

(A2)

v, =k/«„, v, =k/«„. (A3)

Perform a Fourier-transform of D(y), shift y, to
absorb v,y„perform the y, integral to obtain a 6

function, and finally perform the q, 'integral with
the 5 function and find

I~= (4k))'s ) '(2«) '
80

dy, d'q(iq")e '"' "
2o2v sa

x D(-(1 —v, ')q, ' —q, '), (A4)

VI. CONCLUSIONS

The point of view upon which this work rests is
that a well-defined high-energy, small-t, ex-
yansion of the relativistic scattering amplitude is
generated by the relativistic eikonal expansion of
the generalized ladder set of Feynman diagrams.
This expansion has been carefully defined and
evaluated in some detail to second order in cor-
rections to the eikonal approximation in this paper.

Our results are suggested as a benchmark
against which approximate descriptions of relativ-
istic scattering should be tested. For example,

I

one may examine the validity of various approxi-
mations to the exact kernel of either the Bethe-
Salpeter or the Blankenbecler-Sugar equations by
determining whether they produce the same high-
energy expansion as the full set of generalized
ladder diagrams. The validity of various rela-
tivistic wave equations and kinematics may be
similarly tested.

Our results show that high-energy scattering has
a strong resemblance to potential scattering; how-
ever, the second-order corrections to the eikonal
limit at relativistic speeds show that the relative
time plays a role.
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where

=(-V292t q) .
Scaling q2 and y, by (1 —v, ')'/' and 1/(1 —v, ')'/', respectively, and using Eq. (21b), we find

d ' v
-V 1 8,

(1 —e')'~ey ' '' (1 —e*)'" ey )pS y) (A5)

where z =-2V2m/s /(1 —v, ')'/'. Then use (34) to
find

Surprisirigly, upon contracting, the Lorentz fac-
tors disappear, leaving

I 2
(1 v 2)1/2 Ss 1 bt (1 v 2)1/2 Ss X t

I'„=Vx. &x (A9)

(b, z), (A6)

-V~

(1 v 2)1/2 et

which defines the differential operator 6", (b, ", is
given by replacing v, by -v, ). Similarly,

0 a
di dv. B& D b —2K~'T +2K2i'

The only remaining vestige of relativity lies in
the kinematic factors, m, m2/k)/s, used in the def-
inition of X, . Performing the parallel operations
on the remaining term gives the same result ex-
cept with v, --v, in the ~„operators. Finally,
convert the o', o' integrations in (32) to a common
z integration with multiplying factor

[(1 —v ')' '/v, +(1. —v ')' '/v ]/(22/s )

-1
+bt

(1 21172 8 X+ ( 1 ) ~

1 v2g
(A8)

= (m, +m2)/(2k)/ s )

to obtain the result, Eq. (33).

APPENDIX B: FIRST-ORDER X CORRECTION TO THE EIKONAL

+egin by forming the X correction in the compact functional formalism:

-i(2~) '~'~ o'(k1+k. —kI -k2) = XI(kg IT'I' Ik & &k2IT". Ik2&+(1 —2)llew, =~,=2 ~

The A. correction to the single-particle external potential amplitude is found using Eq. (13):

(k', (y'(A, )(k)=-(2e) ' d'x, e' ''. exp -i dxA(x, —2xx)) —1
0

(»)

0
x X2k[p, —k(cos2'8)] exp -i d7 A(x, —2e, r) —1 e"1 1

with the c.m. frame used. Since ((t, —k cos 20) annihilates the plane wave, commute it past the bracket to
give

(k', t
T' (2,) ~k,&

= 2Xk(2v) ' d4x, e '~ 1

0

dT A, (x, —2&,T)
Bz~

exp —i
0

dxA(x. , -2x,x) —exp (-i dx'A(x, —2x, x)

Using Eq. (4) operating with X yields, after the overall momentum-conserving 5 function is extracted,

«"= 2~u d4y esq ' P

2dQ

8
d1 D(y —2K1T+ 2K2T')

a &3

x exp

—exp

(20

dx' dx'D(y —2 x, x))ekxx,
~a

0 OO ")

dr dT'tD(y —2/(, T+2s2r) + (1-2) .
a
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Letting y =b —2',o + 2«(:,a' so B/By, = -k '(B/Bo'+B/Bo') permits the y, and y, integrations to be performed:

dt't=-tl25Me f d'be'"'e f dtt f dt D('b —2e e+2e t )'
0

e x0(b) exp dt D(5 '—2e, t+2et')) , + ((—2) . (85)

Using d/dq to pull down the t integral in the second term gives, upon integration,

f«', = i2kt-s d'b e'~ «([ iy-(b)e'"()' +e' o" —1]+(1-2) .

Because «(. -0 as q-0, the u'nit term in the. bracket does not contribute giving E(l. (35) when added to the
1 2 term.

APPENDIX C: SECOND-ORDER EIKGNAL CORRECTION

The second-order correction is written in the compact functional formalism as

i(21r) '-1'"b'(-k, +k, —k,'- k,') =x[&k']T"(A ) jk & &k,') T,"'(A,) ~k,&

+(1-2)+&i; (rI «(A, )]k,&&k,'lr( «(A. )lk, & 1 l.,=,=.,
t

corresponding, respectively, to the three terms

(I (2) g(2) + g
(~) + (T'(2)

a b c

(Cl)

(C2)

The evaluation of V' ' will be presented in three steps. The first step is to evaluate T ' (A) and then
(g'~'„ follows by the replacement v, —-v, ). Secondly 0'(2« is computed, and finally the conglomerate

of terms is reduced to E(l. (49). For efficiency the following shorthand will be used:

L„(t) =— dt, L,(T) =
+ d)Q 0

dT, L (t') -=dt', I„,(t) -=

L .(t) -= dt, Z„(t) -= dt, A, (x, t) =. A, (x —2z, t), A, (x, t') =A,(x-2z, t'), (C3)

D(x, t, t') = D(x —2)t, t+ 2)(:,t') .

A. Evaluation of 9
t

To evaluate this term, the second-order correction to the external potential amplitude is needed. Using
Eqs. (13) and (23) one finds

=-i(22«) ' d T d x 8 & exp -sL t A x t

x (p —k,') ~ (p —k, ) e~p[-iL~ (t)A(x, t —T)]

x (p —k,') ~ (p —k, ) exp[-, iL (t)A(x, t T)]e"2'-
Define q= k, —k,' and commute the I. (t) phase to the left:

(C4)

&k,'~r"«(A) ~k,& =z(2~)-' dT d xe" "exp[-iL„(t)A(x, t)]

x [p+q —BL (t)A(x, t)] ~ [p-BL, (t)A(x, t)]

x [p+q —BL (t)A(x, t —v)] BL (t)A(x, t —r) .

Asstuming A(x) vanishes on a surface x-~, the following combination vanishes:

(c5)

0= d xe""exp -iL„.tA x, t P" +q'"- ~'I„ tA x, t I x

Therefore, we have
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d xe"'"exp[-iL„(t)A(x, t)]

x (8'I.,(t)A(x, t)(p, —8, L (t)A(x, t)][B~L,(t)A(x, t- T)](B„L (t)A(x, t —T)]

+(8'L, (t)A( xt)[p, —B,L (t)A(x, t)], p"

8"I,„(t)A(x, t- T)] B„L (t)A(x, t- T)).

Evaluation of the commutator terms gives Eq. (27). Next form the ainplitude I(,'):

-i(2)T) '&". (b, s)b'(&,'+&,' —&, —&,) =X &b.'IT'."(A.)lb, )&&,'ITP'(A, )I&) I~,=~,=.
Let X first operate on T(,'~(A, ) shifting its argument by

(C8)

(C7)

'y, D(y, —x, +2x, t)b/5A, (y, )

But as T,')(A, ) is in exponential form [analogous to Eq. (14)] the result is itself a shifting operator acting
on the more difficult T(', l(A, ) term. Perform these shifting operations, transform to center-of-mass and

relative coordinates, integrate over c.m. coordinates and use y =& —2z,&+2~,0' to firid

I(2)(b, s) =-i4kv s d'be'~' dy da- e&Xp~t')

x (—[L„(t)L, (t')8 "D(b, t', t)][L„(t)I. ,(t')B, D(b, t', t)]

x[L-(t)L+.(t')8"D(b, t'- T, t)][L (t)I. ,(t')B„D(b, t' o, t)]-
+IL-( )L+0( ')8' ( i t'i t)][L-(t)L+g(t')BVB "D(bi t' —Ti t)][I, (t)L, ,(t')B,D(b, t'- 0, t)]

+[L„(t)L (t')O'D(b, t', t)][L (t)L (t')B,D(b, t' 7; t)][L„-(t)L (t')8"D(b, t'- y, t)]

-(L (t)L„(t')8'D(b, t', t)][L„(t)L„(t')8,8 "D(b, t', t)][L (t)L (t')BqD(b, t' —z, t)]

+
I L-(t)L .(t')8'D(b, t', t)](L (t)L„(t')8,8'D(b, t', t)][I.„(t)I. ,(t')8 D(b t'- T t)]

+IL-(t)L+a(t')8 D(b, t', t)](L-(t)L .(t')8,8 "D(b, t', t)][L„(t)L (t')B,D(b, t' —T, t)]

-[L„(t)L„(t')8"O'D(b, t', t)][L„(t)L,(t')8 B„D(b, t' t)]] .

Using methods analogous to those used in Appendix A, transform (C8) to

VI (b S) = i 4@Ms—
Jt

d'b e "~egxo((g)(~ '/s)(2b)-2

x '(-] dzVg (b, z) Vg, (b, z)f dz, Vg (b, g, ) Vg, (b, g, )

z

dz Vy (b, z) ~ V dz, V~ (b z, ) ~ V~ (b z )
(bO

(CS)

+i dye V g bz V y bz, dzVy bg,
OO z

—i dz V,y (b, z)V, V y, (b) dz, V y, (b, z,)
OO ~ OO

Qog, 8
. dzVV g (b z) d, VV ( g)Ibg,

where l and m sum 1 to 3. 9'~,') follows from (C9) by the replacement m, for m, .

B. Computation of V',

As usual begin by forming V' ', in the functional formalism

(C9)

(C10)-i(2~) 'I')(b, s)8'(&, +b, —bl - b,') = x&bb I T", (Ai) Ibb&&&2 IT(". (A.) I&& l~,=~,=.

Using Eq. (26) perform the X operation in the straightforward way setting A, =A, =0 at the end, integrate
over c.m. coordinates, and set the relative coordinate y =& —2&,&+2&,0 in the by now familiar way to ob-
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tain

dtJ'r(bs) =-izbt s d'4 s'"' exp( L (t)-L„„(t')D(b, tt')) ,f dir f ds'
I

x (-[L„(t)L,, (t')B,D(b, t, t')][L (t)L (t')8'D(b, t, t')]
x [I, (t)L (t')B~D(b, t, ti)][L„c(t)L„(t')BqD(br t, t')]

+ [L„(t)L,,(t') 8'D(b, t, t')][L,(t)I „(t')8,8"D(b, t, t')] [L,„(t)L„(t')8)tD(b, t, t')]

+[L (t)L„, (t')8'D(b, t, t')][L .(t)L .(t')8.8'D(b, t, t')]IL. (t)L-(t')8)ID(b t t')]

+ jL„(t)L ..(t')8'D(b, t, t')][L,.(t)I....(t)8.8 "D(b, t, t')] [L .(t)L-(t')BP(b, t, t')]

+[L (t)I„(t')8 D(b, t, t')][L,c(t)L c (t')8,8 "D(bl tl t )1[L a(t)L -(t')BP(bt t, t')]
—[L,(t)L, ,(t')B„B„D(b, t, t')][L, (t)L (t')8"8 D(b, t, t')]
—[L..(t)L„..(t ')B,B,D(b, t, t')] [ L.(t)L ..(t')8 "8'D(b, t, t')]J.

Further reduction of V", ' is left to'the next section.

Reducgion of g + g + ga b c

(C12)

This is combined with the fourth-degree terms in V',(2) and 1b"), (C9) by using the equality

Begin by considering the terms in V'(', ), V'b(2), and 1 (2) of fourth degree in the causal propagator, D(x).
The first term in Eq. (C11) is such a term and is reduced by the methods of Appendix A to

2
-i4kv s d'b e"'"e' ()"'(m,m~/s)(2k) ' i ds '}(X (b, z)' Vg, (b, z)

I m CO

ttz rid (b z) px (b 4) dz trx (b 4 ) px (t z ) = —i f tts pb (b 4) pz (b z)
CO ~ CO a CO ~

(C13)

Using Eq. (33), the degree-four terms combine to give the first term in Eq. (3V).
In considering the terms of degree three in D(x) first examine the degree-three terms of Eq. (C9). Be-

gin by writing yc(b) as )t.(b, z)+ X (b, z), then Fourier-transform and do all line integrals, adding or sub-
tracting a small imaginary part where necessary to ensure convergence. Let Y, (b) denote the essence of
these third-degree terms defined by

[Degree three terms of K(2)] = -i4kv s d'b e"'"e'x()(b) Y,(b),

Y,(b) =i(m, '/s)(2k) ' (q' q")(q" q"')( /k~s)'
(2m)'
I t

x U(q")U(q"')U(q"") exp[-i (q'+q" + q") 'b](2v) 5(q,'+ q,"+q,"')

1 1X
(q,'+iE)(q," —iE)(q,"'+if) (q,' —i&)(q," —i('.)(q,"'+ic)

1 1
(q —it)(q + iE)' (q + i&)(q + q + iE) (q' —1&)(q —if )(q + if)(q + q + iE)

(C14)

Use the 5 function to evaluate the q," integral. Next let q,'- -q,' and q,"- -q,"' on the third fraction, then re-
arrange the fractions to obtain

Y, (b) =i(m, '/s)(2k) '(2w) ' d'q'd'q"d'q" (q' q")(q" q")(m, m, /kv s)'

x U( l2)U( ll d)U( III2}t' (q"'+i&)' ( '+ 'C)' (
' —'I')' (C15)
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Now retransform the fractions back into line integrals, and reinvert the Fogrier transforms to find

Y(b,)= (m, 'is)(qk) ' J ds(m, m, (kqs)q, q Il(b, s)
wqpo

dz 'k/, g (b, z)+ dz V, X,(b, z) «'& X,(s'), (ci8)

where l and m are summed 1-3. The corresponding term for the degree-three terms of T'~"' is given by
replacing m2 by m, .

Next consider Y,(b) defined by

I

[Degree-three terms of E(2'] = i4k&s— d 'h e"' b e'"""Y', (b) .

After Fourier-transforming and evaluating all line integrals, find

Y(b)= (,16s, s„k~s'(bs)' J d'q' d'q" d'q s'"''""""'"""

1 — 2

&& L) 1 (q//+ v q//)2 +t e+g D(quid)D
& lqll v qll)2 q///, +e/

—V 2 1 —VV2 V
+ 1 2

q q +
1 . 2 Vl 2 V1 V2

q q q// + 1 q//2 ~// ~m
—V 1 —v v V

1 .2 Vl V2 V1+ V2

1 1 ' 1 1

(q,'+ v,q,"+ iE) (q,"+.v,q,' —iE) (q,' —v,q, + i E) (qo —v,q,' —if )

(C17)

Next define

(C18a)

(q" eq") q" -(q" e))q--V2 1
V +V 0 1 Z ~ j

V +V 0 1 Z
1 2 1 2

and use p,,' p,"' symmetry to obtain

P,(b)=2[)bs, s, k&s(s, +s)]'(bs) ' d'P' Jd'q" f d'P" esp[ —I (p,'+q,"+p,'")'b)
I

(pl q
/l

) (q
// p ll/)D (p /2)D (q //2)D (p ///2)

(C18b)

1 1X'
(p,'+ iz)' (p,' —'ia)'. (p,"+ '&)' ' (C19)

Now backtrack; insert p,' and p,"' integrals along with the Fourier integral representations (in y, and y, )
of the appropriate t) functions according to (C18), then reintroduce the line integrals-for the transformed
fractions. Next scale p,' and'p, "' by (1 —v, ') ' ' and (1 —v, ') 't', respectively, and finally let

I

1', (b) = i(2m, m, /s)(2k) ' dt'dz(4k' s) 'is~~„D(t, f), &) dz' &, y (b, z')+
Z1

)
Z2

ds' &",y, (b, z'),

t= (y, -y, )/(v, +v, ) and z= (v, y, +v, y, )/(v, +v, )

to obtain

Z1

ds'~,"y.,(b, s')
CO

(c2o)

(C21)

where z, =y, (1 —v, ') '~', z, =y, (1 —v, ') '/', and where &, and &, are defined by E[l. (A6). When combined
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with 1', and 1'~, (C16), and when the &" operators inside the z' integrals are converted to 8" operators out
side the integrals, one obtains'the degree-three term, iy „Eq. (37d).

'The second-degree terms of &,"' and V,"' are already in the proper form so only the degree-two terms
of 1',"' need be considered. Examine H, (b) defined by

[Degree-two terms of 9;"']=i4kWs ett2' b elx p(2i s)H (b)

As usual begin by Fourier-transforming, next perform the line integrals giving two 6 functions and 3.

fourth-degree fracti. on

si (2)= (2e)'f d'q f d q'e '" "l'", (q'2', )'qs(q')ss(q")(qe) Il(2e (q+q'))il(2s (q+q'))

1 1
(2z,q+ it)(2)(2q —ic)(2v,q' - ie)(2lc2q'+ it) (2z,q —ic)(2a'2q —i&)(2(2,q'+i@)(2&2q'+ ic)

(C22)

Use the 5 functions to evaluate the q,' and q,' integrals, then rewrite the fractions to obtain

H, (b)=-(4k' s) '(4~„(2„)'(2w) ' d'q, d'q e~'"'2"&'" dq, dq, ( q, '+q,-'-q, (1'L)'D(q')D(q, '-q, -q2'qd)

1 8 ~ 1 2 1 1
X'(q, —it') sv; sv, v, +v, q, —vq, +it q, +vq, +it q, +vq—it) ', (C23)

Reverse the order in which the parametric differentiation and momentum integration are performed and use
the relation t

1 I'
=—+ imb(x)

X+Z& X

applied to the fractions within the bracket. The principal-value part vanishes if a Yukawa or superposition
of Yukawats is taken for the form of D{q'), and so the 6-function part only is considered:

't

( )t=i(2(222/s)(22) '(tqqs) '(2s) ' d'q, f d'q'e ' t' ' '&'

dqD( r)' q, ')D( -r)' —q,")(q'-—q, 'q', )'(q —i&) '. (C24)

Introduce an p' integration using a 5 function to maintain the equality and find

H, (b) = i(2k, 'k, /s)(2k) '(4k' s) '(2))) ' gz d'q d'q' e "~~'~j-'"

l

dg'e ""'"'"D( q' —q,')D( q"-q,")[ v-)q'-q-, q,']-'()7'+is) '(q-iz) '. (C25)

The fractions may now be returned to line integral form and the Fourier transforms inverted to find
(

H, (b) = (2k, 'k, /s)(2k) ' dz VP.)) (b, z)
I

dz' ))',&„)i (b, z') (C26)
wCO F00

using (35) and (21b), and where f and rn are summed 1-3. Combining the degree-two terms of T.,"' and

TP' with (C26) gives (37b) when the {2k) ' factor is extracted.
This completes the derivation of (37).
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