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The ten generators of the Poincare algebra for quantum electrodynamics and other gauge
field theories are given in the null plane such that they all expli. citly correspond, in the free-
field case, to the Bacry-Chang group-theoretic forms. The internal oscillator content is
extracted for both gauge theories and dual resonance models. In contrast to manifestly co-
varianf or other theories, Bacry-Chang —type generators have the advantages of not referring
to dependent spin components and of being rational in the canonical variables. The last
property implies a simple position-space representation. Since the forms are independent of
spin magnitude and allow inclusion of charge quantum numbers at will, they seem to repre-
sent an advantageous free-particle starting point for a hadron field theory with positive
spin-mass trajectories (SMT) and with interaction. The interaction terms from manifestly
covariant tQeories are considered in the null plane and found to be cubic and quartic in the
fields. A straightforward extension of these interactions to SMT has not been found. The
dual model, however, encompasses SMT and is known to have interactions even though the
full details of the model's interaction terms are not worked out here. Consequently, the
approach indicates how a realistic spectrum might be achieved::without composite hadrons
and incorporating full Poincare invariance.

I. INTRODUCTION

Experiment indicates that hadron resonances
may come in infinite spin-mass trajectories. Un-

happily, the construction of a rigorously realistic
theory of interacting trajectoriesseems to be an
arduous task. In the years 1966-1968 infinite-com-
ponent wave equations were examined and attempts
were made to fit their spectra to hadrons' and to
the hydrogen atom. ' The latter succeeded, but
the former suffered from spacelike solutions' and/
or unrealistic spin-mass spectra. It was never
proved, however, that these disadvantages could
riot be overcome by more complex second-order
equations. ' Contemporaneously, the infinite-mo-
mentum-frame method was discovered' and its
relation to Dirac's "front form" realized. ' Some
theorists comprehended that the null-plane (NP)
approach might lead to a relativistically covariant
theory containing a positive inass spectrum. '
Thus NP field theory was devised and applied to
@ED,' "to a ggg model, "to fermion —massive-
boson theories, "' and to Yang-Mills theories. "'"
Advantages of the NP approach were clearly per-
ceived in this work. For example, in numerical
@ED calculations of the fourth-order contributions
to the magnetic moment of the electron, the in-
herent elimination of redundant field components
and the avoidance of subsidiary conditions re-

duced the computer time by a factor 2 to 5."
Although the experimental evidence for purely

linear Hegge trajectories is meager, they are an
appealing simplification from some theoretical
viewpoints. In fact, in the dual model, which
evolved during the last decade, they are an essen-
tial ingredient. " Several authors have analyzed
the dual model as an NP field theory'~'-' —the first
one to incorporate infinitely rising trajectories.
Relativistic covariance was proved ingeniously. "
The method of proof, however, did not exhibit ten
quantized Poincare group generators with inter-
action terms and without redundant components.
No one could incorporate currents with rigor and
it seemed that 26 transverse space dimensions

- were required. '""
Also during this period, Dirac and others ad-

vanced the first quantized models having linearly
rising positive spin-mass spectra. " An NP for-
mulation of the Dirac model was devised and in-
terpreted as describing a composite relativistic
object possessing two constituents interacting
via action-at-a-distance forces.

In this paper we illustrate how an NP prescrip-
tion elegantly describes trajectories with positive
mass spectra. First, however, we examine some
aspects of the NP technique which seem likely to
provide a theory of hadrons. In Sec. II, the univer-
sal form of the Poincare generators appropriate
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to the -NP technique is derived. " &2 In Sec. III,
all standard free field theories are reduced to a
second-quantized version of the universal form.
It is pointed out that the number of field compon-
ents does not appear. Since fields for infinitely
rising trajectories must have an infinite number
of components, this is a crucial advantage in the
construction of a trajectory field theory. In Sec.
IV, a free-field theory of spin-mass trajectories
is constructed by invoking the method of dynamical
groups to replace the mass-squared and the spin
symbols by products of harmonic oscillators. Sev-
eral examples of internal spaces are mentioned,
ranging from the simplest, the Dirac model, to
the most complex, the dual model. In Sec. V, we
show how the isospin-type groups can be intro-
duced easily; we describe how the SU(6) x 0(3)
model of hadrons is naturally built with the NP
Hamiltonian technique. In Sec. VI, the modifica-
tion of the Poincarh generators is discussed when
interaction is present. Vertices and seagulls are
presented for @ED and the general kinematic
stxucture is described. The zero-slope limit of
the dual-model vertex is -calculated and compared
with those of standard field theories. The dual-
model seagull term has not yet been explicitly de-
duced but should be extractable from a certain
known diagramp Section VII is a statement of the
algebraic problem posed by a hadron theory in NP
form. In Appendix A we derive the form of the in-
ternal-coordinate angular momentum operators 2,
in terms the components of the Pauli-Lubanski vec-
tor W„. The reduction of a vector-gluon field theo-
ry to NP form is sketched in Appendix B.

II. NULL-PLANE REPRESENTATION OF THE POINCARE

GENERATORS

Denote the generators in covariant tensorial
form by P„M „(p,=0, 1,2, 3) with metric (g«, g»,
g», g») = (1, —1, —1, —1). The commutation rela-
tions are

(2.4)

satisfying

[J„J,]=is, J„[J„K,]=ic, K„
[K„K~]= i-e,zp Jp,

in terms of which

{2.5)

(2.6)

These vectors are stepping stones to the special
combinations used in null-plane theory.

Unfortunately, there are a variety of notations
and normalizations used in the. literature for these
quantities. Our choice. emerges from a unitary
transformation selected so that the metric g„„is
transformed to

A

g U Pg Ufy gPv

0 0 0 1

0 -1 0 0

0 0 -10
1 0 0 0

(2.7)

where the real matrix U is given by

UP
V

/v2 0 0 1/W2

0 1 0 0
(2.8)

0 0 1 0

1/W2 0 0

A A

A'=A. =Ao=A, = (AP+A')/W2

A =A,=A'=AD= (A' -A')/v 2.

Under this transformation a vector A" is trans-
formed to 4"= U"„A.". To avoid an excess of carets,
it is convenient to use A', A. ,A„A instead of
A', A, ,A„A„respectively. Thus

[P„,P„]=0, [M„„Pp]=ig» „igpp p -(2 1)
[M'„„,M „]=ig„PIp p + z g „„M,p igpP p p —ig-„+p„.

+AB, A,B, . Ten-sors .are treated
in a similar way and we define

The Pauli-Lubanski vector is the sum. of products

(2.2)

F,. = M„=(1/&2)(K, —e „Jp),
Gz = Mz —(1/v 2)(K, + cz~ J~).

(2.9)

obeying

. [W„,P„]=0, [M„„,W ]=ig~„qW„ig„~W„, -
[W„, W„]=ie„„„W'P'. (2.3)

Then we have

Wf P 6fgF ' ~ P+6)JGJ ++36)/PJ'S

W, = P, J3+c,.~P,F~, (2.10)

The Casimir operators are P' and W', and it is
true that W ~ P= 0. It is convenient to introduce
three-vectors- J„K,via

W=-P J,+&,.~G,-P,-.

The commutation relations of the generators are
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[K„P,]=+iP„[J„E,]=.ie,,E,,
[K,E,]=i.F, , [Z„G,. ]=i&,,G, ,

[K„G,]= -iG, ,

[F, , P ]=iP;, [G), P,]=iP, ,

[E;,P~]=i 6'qqP„, [G, , P, ]=i&;)P,

[E,, G,.]=i&,.,.K, -ie, , J,.
Additionally, we have

[K„w,]=+iw„[z„w,]=i~„w,,
[F„w,]=i6„W„[F„W]=iw„

[G(, W,]=i W;, [G), W~]=i&)JW,

[W„W;]=i@;,(P,w~ —W,P;),

[w, w,.]=i~„(wp, -p w,.),

[w„w,]=i(w~ w p,),
[W„W ]=is)qP;W~,

(2.11)

(2.12)

The ordering seems to be unique up to a change
of variable, which can give the order in Ref. 26.
The ordering is post facto justified by the realiza-
tion of the Poincare group commutation relations.
Notice that we may regard all the generators as
given in terms of the canonical pairs (Q+,),
(q,P,), and M and j,. The latter two are in turn
to be specified in terms of canonical internal co-
ordinate pairs as will be discussed in Sec. IV. It
is important to nott„. that M and M' are allowed to
be operators in this formulation, contrary to the
case in other formulations" or in standard field
theories. The latter are discussed in Sec. III.

To understand the significance of the j„one
should examine the Casimir operators of the Poin-
care group P„P" and 8' W'". When the former is
put equal to.&', the latter comes out -M'jJ, ;
which shows that jg, is a I orentz-invariant quan-
tity, the rest-frame spin. Also, j, is the only in-
variant of the seven-dimensional kinematic sub-
group'8 ( O'„K„F;,P;, P,) known as P, ,

other commutators are zero.
The spin s and mass M defining an irreducible

representation are related to the Casimir opera-
tors as follows:

PI2 —M~s(s+ 1) = W12

where P" and W' are the eigenvalues of the Casi-
mir operators at the representation in question. It
is a remarkable fact that the three quantities

(2.13)

satisfy the commutation relations of angular mo-
mentum.

(2.14)

in the timelike case M'&0. This form of the j, and
their commutator follow from the rest-frame ex-
pressions by the Wigner boosting procedure. The
details are given in Appendix A. After substituting
for W„ from (2.10) one can solve (2.13) to express
G~, G2, and J, in terms of j,,

Consequently, we obtain the universal NP form
of the Poincare generators for the case P'&0:

G,.= .'(q„p )+p,q.+ ~-„(Mj,+ p,j,.)/p„

(~.(x), ~J(y)]=6.,6'(x-y), ~, P=1, 2

(@ (x), 4'~(y)j=0,
' (%' (x),4',(y)]=0,

(3.1)

III. STANDARD FREE-FIELD THEORIES
fHE NuLL-PLANE HAMIL+OMAN FORMALISM

Beginning with the covariant Lagrangian for QED,
others have illustrated how NP coordinates and'

NP y matrices are defined and used to completely
eliminate redundant components from the Ham-
iltonian. '"" Similarly, expressions for the. NP
Poincare generators without redundant components
have been given for a model with interacting
(pseudo-) scalar bosons and Dirac fermions. " We
present for the first time all ten NP Poincare gen-
erators for the vector-gluon model, which includes
QED as a special case (mv= 0). Only the free field
expressions are given in this section; the addition-
al interaction terms are stated in Sec. VI. An out-
line of our derivation is given in the Appendix B;
here we have merely summarized the results.

The fermion commutation relations for x = y
are

J3= @~P2 —2P~+ js (2.15) where 6'(x —y) = &(x' —y')&'(x —y). The vector field,

where

q, =F,/P„q, = ,'(K„.1/P. .], E, = P,-q, ,

PP M
(2.16)

A= A,

x, )
has the commutation relations, for x"=y,

(3.2)

[q„p,]=is„, [q., p.]=i. [&.(x),&,( y)]= —
4

& ,&(x' —y')~'(x —y),
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a, P=1, 2, 3. (3.3)

More conventional commutation relations result
from the introduction of the auxiliary field
A=(&„A„A,) defined by

Differentiation of the preceding commutator, for
x y, yields

[A (x),AB(y)]=4~ 8~'(x —y), o, P=1, 2, 3.

(3.6)

A.(x) = i S.A„(x). (3.4) Taking x"=0 our results are

)

P]= xdx', = d'xdx'4~i8, 4+Ai&,.A

P,= d'-xdx'a', = d'xdx'(4'ti 9,4+Ai B,A),

d'xdx'dy'e(x' —y') [et(x)(m' —V') @(y) +A(x)(m ~' —t(")A( y) ],
(3.6)

d'xdx. 'x, 6', -x,p, +4 j,C+Aj, A,

K, = — cPxdx'(x'a', + ,'i 4'4}, -

d xdx'xg 6'„

G&= — cPxdx' x'6'& -x, (P„-—. dye x -g 4' x Egg, j3i&,+ j~~~ —2~~8g
2

+«((x)«,«( j,io„+j„m«)A(ol]I.

I'o

j,'= 0

(o

o o).
0 -1

—1 OJ

(o)

ooo)

Here j~= o,/2 and

t'o o ()
0 0 0

t10 0)
(3.7)

with

(&.(P), t (t(q))= (2&)'2P.~.(6'(P —q})

(&.(P),&g(q)}=(b'. (P), f g'(q)) = 0,

(d.(P), dg(q)) = (2v)'2P.6.$6'(P —q),

(d.(P), d&(q)) = (d." (P), &&(q)) = o,

(a„(p),af(q)) = (2m)'2P, 5 z5'(p —q),

(a, (p), a()(q)) = (a (P), a(t(q)) = 0.

(3.9)

which satisfy [j,,j,]=i@„,j,. The unusual j, rep-
resentation comes naturally from Yan' s choice of
fields using the "null-plane gauge. ""

The verificati6n of the Poincare group commut-
ation relations is nontrivial because A (A ) does
not commute with itself. Diagonalization is ach-
ieved by a Fourier transformation with respect to
x+ x& x2 ~

p
p

'- p'"
+ d'. (P)e-'&"],

&«(«)=
(o,), t o'o J (

)'„. {(«(o)«"* {o.o)

+d (P)e""],

"dp-
2
' [a.( )P~e+a' (P)e-' ],

Note that iff(pg is the x' Fourier transform of
f(x'}, then the transforms of

o«'«(x'- y'If(y') ooo ——f oy' «' —y' f(y') .

(3.10)

are, respectively, f(p)/p, and f(p) /p2. Hence
one can see by inspection that the free-field gen-
erators are in the universal form of Sec. II. One
can also observe that charge quantum numbers and
other group indices may be added; they result in a
mere contraction over the representation index.
Additionally, there is the crucial observation that
in all cases the free fields occur in a matrix con-
traction whose form is independent of the spin. To
get different spins one adopts differ. ent represen-
tations of the j,. The method of dynamical groups
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introduces .harmonic- oscillator r epr es entations of
the j, and M' with profound consequences.

IV. FREE-FIELD THEORY OF TRAJECTORIES

j,=-,' (a~a —btb).

A familiar form for these is

where

(4.1)

(4 2)

a

~ ~ ~ ~The operator M', which must commute with j„ is

(4.8)

When the j, and M' have been specified in terms
of a set of harmonic oscillators, we say that an in-
ternal space of,hadrons has been selected. It is a
Fock space spanned by oscillators a„, a~

where Q is a charge-type index and n is a general-
ized Poincare mode number, which has some space
interpretation. The index n may be discrete, con-
tinuous, unbounded, or naturally partitioned into
sets. The "simplest example" ~ 't 2 contnins two
oscillators a and b with [a,a~]= 1, [b,bt]= 1, and

j,—=j,+ij,=a 5, j —=j,—ij, =ah,

ja ~abc bpc &

[r„p,]= i6,„. (4.7)

A general case with N oscillators has been stu-
died. " Here is a cubic one':

(4.8)

The operator M' must be rotationally invariant.
[Note, with the j, in Eq. (4.8) the sum x„x~, for ex-
ample, is not. ] A function of j,j, always works,
but by no means exhausts the possibi. lities.

Noteworthy is the dual model, whose cubic con-
struction is different. There are twelve "kinds"
of oscillators" for each "mode". A kind is labeled
by z (= 1, 2, . . . , 12) and a mode by m (=+1,+2, . . . ).
Furthermore, for each pair of these there is a
"transverse" label i (= 1, 2). These oscillators
Q,. ' satisfy

number of multiplications a„a„'~ ~ a„m 0) in
n3 na ea

the specification of a single-trajectory state. A
reducible representation with all spins is thus ob-
tained.

A second example is the well-known three-oscil-
lator r epresentation:

M'= 2 (ata+bt+1)+m, '.
It is true as an operator identity that

(4.4) [~m K orat ~] —~~6m Hsob 6K ~
'f j

Out of them we form operators

(4.9)

with

(4.5)

j'= —,'(a ta'+ b"' b') +—,'a~ahab+~ (a~a+be), (4.6)

Mja=
m&0 n &0

m+n &0

12

1 Qn, ~Qm KQ -n-res K
s

K, X=-1

and nz, a constant. The rest-frame space-direct-
ional significance of the osci113tors is determined
by their commutators with j,. In the special model
just mentioned a and b constitute a two-component
spinor. In general their commutator with j, may
be a product of a' s. Neither j, nor M' need to be
quadratic. If a standard field theory of spin- —,

' or
spin -1 particles is expressed in the Schwinger
formalism, ' the spin part of the single-particle
state contains only a single oscillator at „0); the
representation of the Poincare group is irreduc-
ible. For example, in the gluon model of Sec. III
terms like —,'o, which act on single-particle states

+~ 12

Qny KQ-fl~ K
1

(4.10)

12

M2 + Qn KQ-n K
i

n=1 K=1

[cvj„mj,] =iM j,. (4.11)

The rotational property of Q is unusual. A state
is formed beginning with product-type operators
(omit II)

Here & is an arbitrary constant. Poincard algebra
closure is enforced through the relation

correspond to j~„given by Eq. (4.2), which acts on
single-particle states

[4t(x)a'+e,'(x)b']
~
0).

The method of dynamical groups's "s"generalizes
the standard theory to trajectories by allowing any

Q nt1Q nt2Q in3 ~ ~ ~ Q n1Q n2Q n3 ~ ~ ~

1 1 1 2 2. 2

[~2 ~m, rc] m~~m ~ rc
) . j j (4.12)

shows that products of Q with an identical super-

A sum of such operators is required to act on
~
0)

to produce a state. The relation
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script sum have a common mass. Only such prod-
ucts may, therefore, constitute the terms in a sum
creating an eigenmass state. Starting, for exam-
ple, with a state formed with a single product of

I

o. 's, one may generate the partner (j,) states by
acting with step-up operators Mj, =—Mj, + iMj2 and
step-down operators Mj =—Mj, —iMj, using the re-
lation

Oo 12

n+m, X -n, P
[MJ»i ~i ' ]= ~~ ~ ~ a&»i5;r5xu + &»,6g;~z» oj»

X,/ =1 n
n&0

(4.13)

The (mass)' of a state is the eigenvalue of M',
after finding it one may find the spin by operating
with (Mj,)'+ (Mj,)'+M'j, ' to obtain M'j(j + 1) and thus

j itself. We rema, rk that, strictly speaking, the

j, are quadratic since M and j, are quadra, tic, and

Mj,. are cubic in oscillators. A second remark is
that the above is not exactly the dual model in 26
space-time dimensions that one usually finds.
Using the z variable giv'es a larger spectrum, "
but in four dimensions, as we always require.
Note that choosing j, and/or M' to be of higher
order in oscillator variables does not yet intro-
duce interactions.

To match the oscillator representation there is
a set of basis states with appropriate spin indices.
The 5 function in the commutation relatioris should
be suitably generalized. We eschew discussion of

31'32

V. THE SU(6) XO(3.) MODEL

For a more realistic choice of M' and j, , we use
the quark model as a guide. The three quarks in a
ba.ryon are labeled by an index p (= 1, 2, 3). The
pth quark is associated with a pair of oscillators
g, 5 . Since there are two relative space-posi-
tion variables for three quarks, two additional sets
of three oscillators A, and B, (a=1, 2, 3) are re-
quired. " These oscillators all commute with each
other and satisfy [a, at] =1. Replace A, and B, by
Her mitian combinations

R, = (A, +At), P, = — (A, —At ),
(5.1)

where

(5.3)

A simple choit;e for M' is"
M'= ,'(P~. +P-,P.)+ ,' ~'(R.R-. + r. r, ). (5 4)

One specifies that only the ground state of p, b~

(which appear in j, but not in M') may be occupied.
Generalizations of M' include spin-orbit coupling

(P to R) a,nd additional potentials V(R, R„r,r,);
the j, are left unchanged. Charge-type labels may
be added in the usual way to obtain a realistic had-
ron spectrum. Evidently, the analog of quark-
antiquark mesons may be constructed with any
potential function of the interquark distance
(R, R,). This model now contains the spectrum but
not the interactions of the usual models. It is
relativistic as it stands; a correct incorporation
of interactions keeping this property is yet to be
found (see below).

VI. INTERACTIONS

It has long been recognized that the introduction
of an interaction changes only P and G, which
acquire terms proportional to powers of a coupling
constant g that are cubic and higher in the fields.
The free theory is recovered by putting g= 0. Both
sets of ten generators G(g) and G(0) must satisfy
the Poincard algebra.

If we define the interaction terms I and I,. by

r, = (B.+Bt), P, = — (B,—Bt). P (g) =P (O)+I (g),

G, (g) = G,. (o)+f,.(g),
(6.1)

. Then choose

j»=4 ~&44' +en~i(RsPg+ iPgr) i (5.2)
then the interaction terms for the vector-gluon
model described in Appendix B are

I (g) = d'xdx'S (x)

d'xdx'dy'e x'-y' m~4~ x 4 xA, y +%~ x 4 x 9 ~ +9~ 0 x 4 xA~ y

(x)A»(x)(8»+iE»i(738 g +E»iopz)4(y') + '24 (x)(B» —iE»(o3sg + 6»)o'(tB)4(y)A»(y))

+ 4. d'xdx'dy "[c(x' -y')4'~ (x)A„(x)(5„,+ is„o,)A, (y)4(y) —i~ x' -y'i et(x)e (x)et(y)e(y)] . (6.2)
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By means of integration by parts, the arrange-
ment of the differentiation arrows in Eq. (6.2)
has been chosen so that I, has the particularly
simple expression

and

2 ~ 2vl ~ + p ~

P] =
2 p pg~'Og

p1+ p2+ p3 —0~ $1+ 'g2+ 'g3 —0. (6.7)
1,.(g) = d'xdx+x, .e (x). (6.3)

It should be stressed that these are exact ex-
pressions in'g; they just happen to be quadratic.
To our knowledge only P (g) has appeared pre-
viously in the literature. ' ' ' To identify with
the NP formulation of QED in Ref. 11, one puts

mv —-0, g=e, A =(A~, A2), O'„,„=U4',

, (10
o f)

(6.4)

(The third component of A decouples if m„=o.)
Also found in Ref. 11 is the momentum-spaqe ex-
pression for P, m~=0, which is discussed in
terms of Feynman-type diagrams. In contradis-
tinction to the quantities of Eq. (3.6), it is unclear
how to generalize the QED expressions for I and

I,. to allow 4 and A to have an infinite number of-
spin components. For example, the term 8~A.~

presumably would generalize to 8„I'~~ A, , where
I'~™is some Clebsch-Gordan coefficient and the
indices (j, rn) run over the infinite number of spin
components of A; when j=1, I~ ™=6'. However,
the value of 1"~' for other j~1 is obscure.

We remark that, as was also the case for /gal
theory, the Poincare group commutation relations
must be verified by direct tedious computation. It
would be more satisfactory if one could find an
operator U which carries out the transformation
from the set G(0) to G(g):

exp Q P ANNE f r~ f 8
' 2 t'gS tfy m

(6.8)

where

and

Q1 Q2 Q3 Sln

Q„Q, nQ„+mQ,

xf„(—n„.,/n„) f„(-n„,/n„), (6.9)

1 fi~y'}

8 (6.10)

The coefficients are functions of g„q„g3. Sim-
ilarly, the g2 term couples four particles and de-
pends on q,. (i =1 to 4') with g,.q,.=0, but it is in-
dependent of the p, . These terms, for the rather
complex Yang-Mills Lagrangian, have been re-
cently obtained by Gasher-. " Nonetheless, such
covariant Lagrangian theories embody no trajec-
tory. The only existing interacting field theory
with a trajectory is the dual model. Unfortunately,
the interaction Hamiltonian for this model has not
yet been extracted, but steps have been taken in the
right direction. We can at present understand com-
pletely the term linear in e and cubic in the fields
by virtue of the zero-slope-lirpit concept applied
to the three-Reggeon vertex. The relevant ex-
pression"'"'" is

G(g) = U( g)G(o)U '(g). (6.5)

~1P2 ~2P1 ~2P3 ~3P2 ~3P1 ~1P3 &
(6.6)

where for the ith particle

Since similarity transformations preserve commu-
tation relations, the Poincare algebra. would auto-
matically be maintained. We have tried and failed
to find U for QED. This is a challenging, purely
mathematical problem. It is also worthwhile be-
cause the solution might indicate how to construct .

U's for hadron theories.
An analysis of the structure of P (g) for the

ggQ, gluon, and dual models shows that, in gen-
eral, the interaction Hamiltonian contains a lin-
ear and a quadratic term in g. The linear term
couples three particles at a vertex and contains
either a mass or the universal transverse two-
vector"

Here x (=1,2, 3) labels a particle at the vertex,
f.„ is an nth-mode oscillator, n„ is a longitudinal
momentum (g„~n„=o), and p is discussed above.
We expand the exponential, keeping only terms
containing the product of a1 a] and a,' and lin-
ear in each; thus retaining only the single excita-
tions of the trajectory. Furthermore, we keep
only linear terms in 6, noting that f,(y) =1, and
find

5' a a 'a
cyclic

is the coefficient of the. vertex isospin factor E"'
in Yang-Mills theory. No extra factors of g are
present.

It remains to check the e2 term of the dual-model
Hamiltonian. It has not yet been explicitly com-
puted, but it corresponds to the instantaneous four-
string vertex. ' 1"' It should provide terms"
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(n, -n.)(n, -n.)
q

4()lo + ri2)(ri3+'g~) 1 2 3 4

and

6&3 ~2&4 &i&4 &a&3'

At present this has the status of a conjecture.
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VII. CONCLUSIONS APPENDIX A

The NP Hamiltonian method has several. advan-

tages, in comparison with the infinite-component
wave-equation technique, which point tomards its
usefulness for devising an interacting trajectory
theory of hadrons. The masses are all real, and

rising spin-mass spectra are easily accommo-
dated, . e.g. , see Eq. (4.4). Also, charge and other
quantum numbers are accommodated straight-
formardly. The distinction between fermions and

bosons arises from the difference in commutation
relations, and fermion antiparticles are indicated
by an interchange of creation and annihilation .

operators in the momentum expansion of the field.
It is important to realize the significance of the

internal oscillator coordinates in NP theories as
opposed t'o internal (relative) Minkowski coordi-
nates in theories of composite hadrons. The had-
rons appearing in NP theories might be called
"pseudocomposites" to.point out the absence of a
relative Minkowski coordinate together with a
spin-mass multiplet structure. In both cases the
usual center-of-mass Minkowski four-vector ap-
pears. Note that, in general, for a model of
pseudocomposites to be relativistic, the internal
oscillators must have unusual (but precise) Poin-
care transformation properties.

Because no three-trajectory vertex was found for
the infinite-component mave-equation system, no
interactions of such particles are known. At the
present time this is also true for the NP Hamil-
tonian formulation, but we have just begun to look
for a vertex. If such a vertex is found it might
lead to an NP theory of elementary pseudocompos-
ite hadron trajectories. Perhaps it will be pos-
sible to obtain a vertex by constructing the oper-
ator U, of Sec. Vl, in the form U= exp(iA) where
A will be cubic and quartic in the fields with co-
efficients mhich are exponential functions of the
oscillators and the universal vector d', as in the
dual model.

We remark that if baryons are NP pseudocompo-
site objects, then currently existing procedures
for interactions a1|d couplings, including decays
and electromagnetic processes, will not be rela-
tivistic. Also, parton ideas may not be applied
to them.

( p') = exp ( ep) —,'

) exp Oe ' K, ) I 0), (A1)

where e =))2p,'/M. Since we may diagonalize one

W„as well as all four P„, ~P') may also be chosen
as an eigenstate of, say, R'„' thus we may write
~p', w,'). The two-by-two representation of these
boosts is familiar. Put

1
~a = a~a~

and find

K =-'cr
a 2 a

0 pi 2 i/2

j L.

0

(A2)

Since

/o o

1

(o ol
(A4)

it follows that

1
exp —, p,'P', =

(p,'v'2

(A5)

I

exp i —,' I'; exp in'K, =

Any four-vector Xz satisfies

[Mq„Xp] =ig„pXq —igqpX„, (A7)

Here we derive, by the Wigner boosting method,
the j, expressions used in Sec. II. It is well known
that if P& ~P') =P& P'); P, ~0) =0, and P ~0)
=2 '~2M 0), then P') may be expressed as
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and has its eigenvalues represented as a two-by-
two matrix

X' =xo+x~ o, (A8)

f2 p,' p,'-ip,'

upon which the boost acts in the form B~XB~. The
two examples at hand are X=P and X=W. In an
arbitrary frame P is given by

in Ref. 14. The prime anticipates a particular
phase transformation for g. By standard methods
we construct the unsymmetrical energy-momentum
tensor

7'"= g'"-2+ B"'s"B,+ —g' y' 9"g' (82)

The meaning of the caret is given in Sec. II; here-
after we will drop the caret on all terms.

The field equations are
P=

in the rest frame P has the form

(A9) [y"(ze, gB,)——m] @'=0,

y'[y" (-is. —gB„)—m]= 0,
Bvv 8 gBv &vB

Bv'+m 'B"=j',
Y

where

lt is easy to see that M BrBr =P. The equation
W, = P,J, + e&,P, E& shows that in this same rest
frame u,' is related to j,' by se,' =2 ' 'M j,', where

J,
l
o& = j,'l 0&. Similarly, W,.

l
0& suggests that the

set

~'
W —'W

M +' (A10)

might satisfy the angular momentum commutation
relations when they act on rest states:

j"=g4'y 0'. (84)

Thus

0

In the NP frame there are only seven independent
field components which we take to be B„B„., and
the nonzero components of A, g', and 7))'A y = P'~A„
where A, are the projection operators defined by

&2W+ wz 1'lp&, Wz
lp&

W) Wp
l
p), W+M2

l 0)
M ' M M

(A11)

(A12)

1 0 0 0

0 0 0 0

0 0 0

0 0 1

0 0 0 0

0 1 0 0

0010
0 0 0 0

UV')=exp( —, pip, ) exp()e'K, ) (A13)

We can easily find three combinations of the Poin-
card generators which obey the same commutation
relations when acting on boosted lP'w,'& states by

applying the unitary transformation
/ p

l6,'+ 6,'o'

(B6)

gula
I and v'=-a„(HV)

to the J„because

(A14)

where 0, are the usual Pauli 2 x 2 matrices. The
field equations split into two sets, namely the
equations of motion of the independent field com-
ponents,

Carrying out the transformation we find Eq. (2.14).

APPENDIX 8

Here we sketch the derivation of Eqs. (3.6),
(6.2), (6.3); starting with the massive vector-
gluon model Lagrangian:

& B,=-B, + B,B

8 B„.= j,e + 9,B; + 8,.B,.; —m ~ B, ,

(is —gB )A,p' = yo[y~(is~ —gB~)+m]A )I)',

and the constraint equations for the redundant
field components, e.g. ,

(is, gB,)A g' = y, [y,(is, —gB,)+ m]A, p'. (89)

+ )t)'(y' —' z s, —m)p' —gp'y, g'B'. (B1)

Pur discussion is closely related to similar work
The constraint equations for the redundant vector-
meson components may be solved to yield
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B&(x)=*f dy't(+' 2')IBw(y)+alB (y)I

(x) =-. f dy x(
'x- 2') [2 B( 2) x m'B. (y) -j.(y)I (B10)

B;(x)=,' f dy'[x' —y'] [(v' —m„')B„(y)—aapB„(y) —am '2 B(y)+ a& j (y)+ a j(y)],

B (x) = —'
I dy'~x'- y'~[28&B,&( y)+(22'+m~')B, (y) -j,(y)] ~

Here V' is the transverse two-dimensional La-
placian, q(x}=sign(x), and y" =(y', x', x ).

The presence of the B, term in Eq. (B9}causes
a special difficulty. It is at this point that the
gauge invariance of the manifestly covariant theory
is required. The usual method of dealing with the
problem is to put B,=O. Another way to solve the
constraint, Eq. (B9), for A g' is to introduce

The Poincare generators are given by Noether's
theorem as

P~= d xdx'T, „,

where

A(x)=-', f dy'a(x' —y')B,(y).

(B11)

(B12) where

—,
* 2(., B..]d),

B„(x)=B.(x) —S.A(x)

dp& x —g B+~ (B13}

This transforms the field equations for P' to simi-
lar equations for p in which B„is replaced by

d 2g = dgjdg 2

t
exp, v +au+xv +xv+ov

(B16)

Note B.=-O, B,„=B,„, and j,=gT[)'y„g'= ggy„g
Thus, this transformation efffectively imposes the
gauge condition B,=O in Eq. (B9). The solution of
the transformed constraint equation for A P is

A 4(x) = 2. dy'e(x' y')y. —
2z

x (y~ [i &q B~(y}]—+ m] A, g( y) . (B14)

(B17)

The task now is to use the solutions of-the con-
straint equations to e&iminate all of the redundant
components, B„B., B,, A g, etc. , and thereby
obtain P, and M„„in a form where the integrands
explicitly contain only the independent components.
As an example consider

P]= d2xdz' B,B;B,—B~,e;B„+— p,8] +j,8]A

d xdx'
2

T])(x)y,e,.g+ j,(x)&(A(x)

dy'& x' —y' ~&B,& y +I~2B, y —j, y B&B, g -B,z g 8& B,z y + 8&B, y

= l[ d'xdx'((W22'(x)A. a;d(x)+-,' dy'a(x' — )[ ym (x)B, a(B)„'+ y( B) , xa(yB)]), (B18}

f 42)
ala —22 4

~
~

alit 21 / (q a)ga]a) (B19)

where the surface terms coming from an integra-
tion by parts have been put equal to zero.

It is convenient to define

A = (-iB„,-iB„,-im„B,),

( B,(x) )A(x)= B (*) = -' )dy'a(x'-y')A'(y).

k-, (*))

(B20)
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Then P, ta.kes the form given in Eq. (3.6). A more
instructive example is

J3 = d xdx xi T,2 —x2T,~
—B,iB2+B,2 Bi

d'xdx' x,6, —x,o, + —.
' +'o,+

dy'q (x' y—') [B„(x)B„(y)

d'xdx'(x, a, —x,g, + +'j,'++&j,'a), (B23)
By taking account of the parts integration used in
the I',.' reduction and making use of the identity

P y.y, y, P=.-%. t(6, , + iq, ,o,)

one obtains

where 6',. is the integrand in Ecl. (3.6), j,. =-,' o'„and
the j, are given in Sec. IQ. ' The other generators
are obtained by similar but more lengthy calcula-
tions. I

*Work performed under the auspices of the United States
Energy Research and Development Administration.
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