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Suppose that G is a simple gauge group governing a unified gauge theory. We shall then
prove that the existence or absence of the triangular anomaly is equivalent to the same ques-
tion for symmetrized third-order Casimir invariants of G. Consequently, we show that the
group SU(n) (n ~3) is the only simple Lie group with possible triangular anomaly. For this
case, the anomaly coefficient has been explicitly computed in terms of the n —1 parameters
specifying irreducible representations of the group SU(n). Various anomaly-free groups have
been discussed, and it is argued that the best candidates for anomaly-free simple gauge
groups are E6, 80(4n +2) (n ~ 2), and the vectorlike SU(n) (n ~ 3) theories.

/

[X)»X»j = C)&»X) &

where the repeated index on A. implies an automatic
summation over X=1,2, . . . ,P. For the sake of
simplicity, we shall use interchangeably the same
symbol G for both the Lte group as well as its Lie
algebra, since this will not in practice cause any
confusion. Suppose that positive and negative chi-
ral components of all elementary fermions entering
in the theory form separately' the basis of two
representations f p,}and (p }of G, which are not
necessarily i.rreducible. If t „' and t~„are repre-
sentation matrices of X& in representations f p,}
and fp }, respectively, then the condition for the
cancellation of the triangular anomaly is given by

(2)(+) — (-)h. ~„g =h~y), ,

where comple'tely symmetric triple-linear forms
h&,), are defined by

h(')„—Tr((t(~) t(&:)} t&„'))

if both representations f p,}are self-contragra-
dient, i.e., if we can find nonsingular matrices S,
satisfying

[$
(~) jr —~-&

$ (~)S

then it is easy to see that

h.&'i =0pu)

identically, where the superscript T in Eq. (4)

(4)

One problem facing the unified non-Abelian gauge
theory i's the possible occurrence of the triangular
anomaly which may spoil the renormalizability of
the theory. Georgi and Glashow' gave a general
condition for the cancellation of the triangular
anomaly. Changing notations, their results are
stated as follows. Suppose that G is a simple Lie
group underlying the unified gauge theory, and let
X& (p, = 1, 2, . . . ,P) be infinitesimal generators of
G with Lie commutation relation

stands for the transpose matrix. It is known in the
literature' ' that all representations of the groups

SU(2), SO(2l + 1), SO(4l), G„F„E„E„Sp(21) (6)

are self-contragradient, so that Eq. (6) holds al-
ways for these groups. We may remark that this
fact is also related to the ambivalence" of these
groups as well as absence" of genuine odd-order
Casimir invariants for these Lie algebras. At any
rate, these groups lead to anomaly-free theories.
Moreover, Georgi and Glashow' proved by a direct
computation that all SO(n) groups with nx6 are
also anomaly-free, thus eliminating the case
SO(4/+2) (l ) 2). Therefore, they concluded that
simple Lie groups with possible anomaly are re-
stricted to SU(n) (g) 3) and E,. In this paper, we
shall not separately count the exceptional case
SO(6) group in this list, since SO(6) is locally iso-
morphic to SU(4).

The purpose of this note is to generalize those
results found by Georgi and Glashow. . We shall
first prove that E, is also anomaly-free. Hence,
the only simple gauge groups with a possible an-
omaly are the SU(n) (n) 3). As we shall show in
the Appendix, these facts are intimately related
to the fact of nonexistence of genuine third-order
Casimir invariants for simple Lie algebras except
for the algebra A„(n) 2) corresponding to the
SU(n+1) group. Second, we can compute the ex-
plicit form of h(&'„)) for the SU(n) (n) 3) in terms of
eigenvalues of the third-order Casimir invariant
in the representations ( p,}and (p }. Towards
this end, we introduce the standard n'-1 Hermit-
ian traceless n)& n matrices )(„(o.= 1, 2, . .. , n' - 1)
which satisfy the normalization condition

Tr()(„)(())= 25~8& TrA.„=0 .
Moreover, the completely antisymmetric f„s and
completely symmetric d z& triple-linear forms
are defined as usual by"
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1
f„s, = —.Tr(P~, ~s]

dnsy = »(bn~ ~s}+~y) ~

=1
(8)

O &) g2.) ~ ~ )g„. (17)

As we may easily check, o& are invariant under
the substitution

f,-f, +e, k=1, 2, . . . , n (18)
so that the product A. As can be expanded as

2
A ~A s 5~ s E + (d«tsy + 2f~ sy )h

yn

Here, E is the n&&n unit matrix. Accordingly, we
choose the basis of the algebra A„, so that the
representation matrices t ' satisfy

tf( ) f( )] —ff f( ) (10)

'We shall then prove the following in the Appendix.
We have first

(11)

for all n, P, y = 1, 2, . . . , n' —1, and second the con-
stants K ' can be evaluated in terms of eigenval-
ues of the third-order Casimir invariants. Since
any representation of the semisimple Lie algebra
is fully reducible, it really suffices to consider
the case of an irreducible representation, where
the value of K ' is a sum of contributions from
irreducible components contained in the reduction
of (p,}. We shall refer hereafter by (p} to the
generic irreducible component representation con-
tained in this reduction of (p,}. If t„ is the'repre-
sentation matrix of X in (p) and if we set

Tr((t. , fs},t, ) =d„„K(p),
then K is a sum of K(p)'s.

It is convenient for our purpose to embed the
SU(n) group into the U(n) group whose irreducible
representations are specified" by n integers sat-
isfying «

(12)

&» ~ ~ ~ )» (13)

m;=f, -f;„, 1&j&n —1.
Let us now define o, (1 &j & n) by

(14)

1
(y, =f, + ~ (n + 1) —j —— f« (15)

which satisfy a constraint

as well as the ordering

Let e be an arbitrary integer. Then, all repre-
sents. tions with signatures (f,+e,f, +e, . . . ,f„+e)
of the U(n) group correspond to a single irreducible
representation (p) of the SU(n), specified by stan-
dard n —1 non-negative integers m„m„. . . ,m„,
with correspondence

for any arbitrary constant e, so that o; actually
depend only upon m„m„. .. ,m„,. The value of
K(p) is now calculated in the Appendix to be

n
n

K(p)= („2 1)(„2 4) d(p) Q ((y, )' (n~ 3),

where d(p) is the dimension of the irreducible
representation (p} with

n

d( )
&~ «((y~ —(y«)

(20)1!2!3! ~ ~ ~ (n —1)! '

The contragradient representation (p*} of (p) is
characterized" by integers o „o„... ,o„' such that

0 =-0 1&) Cn

From Eq. (19) it is easy to check that

K(p*)=-K(p), d(p')=d(p),

(21)

(22)

so that any self-contragradient representation p
= p* leads to an anomaly-free theory with K( p) =0,
in accordance with the statement made earlier.

If (p,}is equivalent to (p }, then we have K('
=K so that the anomaly is automatically canceled
between two representations (p,}., As has been
already remarked by Georgi and Glashow, ' this
corresponds to the case of vectorlike models.
However, more interesting cases are when we
have K ' =K =0 identically whether (p,}is
equivalent to (p }or not. We may refer to such
cases as natural cancellation of the anomaly.
Then, all representations of all simple groups ex-
cept for the SU(n) (n ~ 3) as well as self-contra-
gradient representations of the SU(n) (n~ 3) are
cases of natural cancellation. More generally,
suppose that (p,}and/or ( p }are reducible and
that their irreducible components always contain
(p} and its contragradient (p*} in pairs as well as
any number of self-contragradient representations.
Then, in view of Eq. (22), we find K ' =0 so that
this case also corresponds to the natural cancel-
lation. However, there are other cases where the
cancellation mechanism is less obvious. An ex-
ample is the SU(5) theory of Georgi and Glashow, "
where the representation space is chosen to be a
direct sum of (5*}and (10}for (p,). We may
check from Eq. (19) that contributions from (5*}
and (10}cancel each other in this case to give an
anomaly-free theory. The deeper reason behind
this cancellation may be due to the fact that the,
SU(5) group can be reg'arded" as a subgroup of
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SO(10) and that the 16-dimensional irreducible
representation of the SO(10) reduces to a direct
sum (1) 83 (5*]63 $10j representation of the SU(5)
subgroup.

So far, we were assuming implicitly that G is
the dynamical group governing the gauge theory
which unifies all strong, weak, and electromag-
netic interactions. However, if we are interested
only in the cancellation of the triangular anomaly
in the Weinberg-Salam theory (referred to as WS),
of the weak and electromagnetic interaction, then
we may regard G simply as a classification (ra-
ther than dynamical) group of all elementary fer-
mions entering in the theory, provided that G con-
ta.ins the WS group SU(2)I3 U(1) as its proper sub-
group and that the sum of all WS weak currents of
given types can be expressed in terms of currents
of the group G.

If G is the dynamical gauge group for all strong,
weak, and electromagnetic interactions, then
presently available experimental data on the strong
interaction can be used to further restrict the

group G. As we shall show elsewhere, any simple
group G listed in Eq. (6) as well as any self-con-
tragradient representation of the SU(n) (n ~ 3) will
lead to a difficulty of explaining violations of the
quark-line rule. " If we combine this fact with the
required absence of the triangular anomaly, then
the only simple groups compatible with these two
requirements are E, and SO(4n+2) (n & 2) as well
as possibly the SU(n) (n & 3) groups For .the SU(n)
group, the representations to be used must be non-
self-contragradient with no anomaly. Although
such representations can always be found as we
noted, such cases are rather accidental except for
the vectorlike models in which (p, j and (p ) are
equivalent. Therefore, we argue that possibly the
best candidates for the simple group G are E„
SO(4n+2), and SU(n) (n~ 3) groups. For the SU(n),
only vectorlike models are preferred. We should
emphasize that this conclusion may change if G is
assumed to be semisimple rather than being sim-
ple.

Next, we shall investigate a problem when G is
now assumed to be a classification rather than a
dynamical group in a sense stated already. We
have then to distinguish two cases; where (i) both
leptons and quarks separately form two represent-
ations of G, or (ii) leptons and quarks together
(but not separately) form a single representation
of G. Although the second case is perhaps more
interesting, "we shall consider here only case (i)
since it is easier to analyze. Let JLp,j denote now
representation spaces of all positive and negative
chiral components of all quarks, respectively. We
may assume without a great loss of generality that
at least one of {p, j and ( p j is irreducible, and

we denote it by (p). If all quarks have standard
fractional electric charges of the form -3 plus
integers, and if thd charge operator Q is a mem-
ber of a Cartan subalgebra of G, then the dimen-
sion d =d(p) of the representation (pj must be of
necessity an integral multiple of 3, since the sim-
plicity of G requires TrQ =0 in the representation.
Together with the assumption of the natural-can-
cellation mechanism K(p) =0, this imposes a se-
vere constraint for admissible representations
(pj. Let n be the rank of G with fundamental
weights A„A„.. . , A„. Then, the highest weight
A of the representation f p) is expressed as"

A = m,A, +m, A, + ~ ~ ~ +m„h„, (23)

We also nate that for special cases n = 3 and n =4
the constraint

g =0

leads to
3

2 1,( p) = g (o,)' = 3a,o,o„ for SU(3)
/=1

4

2 I,( p) = Q (o,)' = 3 (o, + o,) (o, + o,) (o, + o,),
/=1

for SU(4)

which immediately reproduce Eqs. (11) and (12) of
the paper by Banks and Georgi. The author would
like to thank Professor H. Georgi for calling his
attention to the above-mentioned paper.

where m& (1 &j & n) are non-negative integers
specifying the representation (p). Here we shall
adopt the lexiconal ordering of n simple roots of
G as in Patera and Sankoff. " Then, we can enu-
merate all possible groups and their admissible
irreducible representations (pj satisfying the con-
dition K(p) =0 with dimension d(p) less than 24 in
Table I. Note that we neglected the cases of SU(2)
groups, since it does not contain the WS group
SU(2) S U(1).

Note added. After this paper was completed,
Professor H. Georgi informed me that the anomaly
coefficient K(p) for the SU(n) group had been com-
puted in a somewhat different form by J. Banks
and H. Georgi [Phys. Rev. D 14, 1159 (1976)].
Their notations q~ (1 &j &n —1) and A. (A) with N
=n, are related to ours by

Q') = m) + 1 = g) —Q'g+ )) 1 &j & n —1

a(fi) =2K(p) .
Conversely, our 0, is expressible as
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TABLE I. List of all admissible irreducible representations {p) and groups G satisfying
the natural-cancellation mechanism with dimension less than 24. See the text for the symbol
m, as well as for details.

d = dimension
of the representation Type of simple

lie group G

Admissible irreducible
representation

12

24

(a) SU(4)
(b) sp(6)

so(9)

(a) Sp0.2)
{b}so(12)

{a) SU(4)
(b) so(15)

(a) So(18)
(b) Sp(18)

(a) so(7)
{b) sp(6)
(c) SO(21)

(a) SU(5)
(b) so(24)
(c) Sp(24)

(o, 1,o)
(1,0, 0)

(1,0, 0, 0)

m) -—1, e)=0 (2~j~ 6)

(1,o, 1)'

m, =1, e,.=o (2&)&7)

m, =1 m. =O {2~q~9)

(o, 1,o)
{2,o, o)
m, =1, e,.=O (2&q&10)

(1,0,0, 1)
e&= O (2 & q

& 12)

The author would like to express his gratitude to
Professor L. C. Biedenharn for kindly informing
him of Refs. 6, 7, and 10. Also, he has benefitted
greatly from many useful conversations with par-
ticipants of the International Weak Interaction
Workshop held at Kobe, Japan, 1977.

APPENDIX

First, we shall make a brief mathematical prep-
aration in order to prove various statements made
in the text. Let G be any (not necessarily semi-
simple) Lie algebra with Lie equation (over com-
plex number field)

[X„,X„]= C„'„X„. (Al)

Then, a collection of p elements T„(p,
= 1, 2, .. . ,P) belonging to members of the universal
enveloping algebra of G is called a vector operator
of Q, if we have

Ãp T .1=C„'.T~ . (A2)

Obviously, X„ is a vector operator, but this is not
in general only one. We can also define vector op-
erators T„ in a given representation ( p) of G, if
I& and T„are now d & d matrices satisfying Eqs.
(A1) and (A2). Here, d=d(p) is the dimension of
the representation (p).

Hereafter, we restrict ourselves to the case that
G is a simple Lie algebra of rank n, and that (pJ
is irreducible with highest weight A as in Eq. (23)

nv(p) =n -n, (p),
where n, (p) is the number of m&'s which are zero.
In other words, nv(p) is equal to the number of
rn s which are positive. In particular, we are in-
terested in the case in which (pj is the adjoint
representation (p, ) of G. Note that the adjoint
representation must be irreducible because of the
simplicity of G. With the lexiconal orderings of
simple roots as in Ref. 20, the highest weight Ap
of the adjoint reyresentation (Pc) of a simgle Lie
algebra G is given by'

A, +A„, A„(n - 1),
a„(n&3) and D„(n&4),

A, = ( 2A„C„(n&2),

A~, 62, F4, E~, and E6,

(A4)

A6& E6 o

Therefore, the theorem quoted above implies
nv (p, ) = 2 for 2„(n& 2), but nv (p,) = 1 for all other
algebras. As we shall see shortly, this is equiva-
lent to the fact that the algebra A„(n & 2) alone
has one symmetrized third-order Casimir invar-
iant, while all other simple algebras possess

of the text. Let nv (p) be the number of all linearly
independent vector operators in the representation
(p). Then, it has been proved elsewhere" that we
have
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none.
Let us set

into a constant multiple of the second-order Casi-
mir invariant

(A6) I, =g j"X„X,. (A15)

so that its (n, P) matrix element (n, P = 1, 2, . . . ,P)
is given by

(A6)

Then, P&&P matrices f„satisfy, of course,

[f„,f.]=C,',A. (A7)

Also, Cartan's criteria" of semisimplicity implies
that the bilinear form g„, defined by

g„„=Tr(fj„f„) (AS)

is nonsingular with its inverse g "'. Let p ~P ma-
trices h& be a vector operator in the adj'oint rep-
resentation {p, }, so that

[f~,h„] =Cq, kg.

%e introduce h. &8 and hz„„by

~~8= (4) 8

h~p. =g'x. &p.

(A9) ,

(Alo)

In particular, if we choose h„ to be equal to f~,
then the corresponding triple-linear form

fptl x. EpT Cvx (A11)

is completely antisymmetric. Also, in terms of

h~„, , Eq (A9) is. shown to be equivalent to"

C„BII,),~, +C„ph8g, +C~, h.8p), =0. (A12)

We, can prove" that hz» satisfying (A12) can be
chosen to be either completely symmetric or com-
pletely antisymmetric and, moreover, that the

completely antisymmetric h„, ), must be propor-
tional to f„,q. The result quoted just after Eq.
(A4) implies then that only the triple-linear form

h»z satisfying Eq. (A12) is precisely f&, z (apart
from a multiplicative constant) for all simple Lie
algebras except for A„(n ~ 2) and that we have"
an additional completely symmetric form d»), for
A„(n~ 2). Hereafter, we define and normalize

f&, q and d„, z as in Eq. (6) of the text for the case
of the SU(n) group, corresponding to the algebra
A

pg $0

Next, for any h&, q satisfying Eq. (A12) we set

h'"' =g ""g"'g"~.gy (A13)

Then, k "' is also either completely symmetric or
antisymmetric. If we set

(A14)

then it is not difficult to prove" that I, is a Casi-
mir invariant of G. However, for the antisym
metric case h&, „„=fq», we can always reduce I,

h„„g= Tr((t„, t,},t~) . (A16)

, Obviously, h„, ), is completely symmetric. More-
over, it sa.tisfies Eq. (A12), if we note a trivial
.identity

Tr([t„,Q]) =0, Q = It„, t,},t, .
Therefore, by the result stated above, we find

identically for all simple Lie algebras except for
A„(n ~ 2). Second, since the algebra A„(n & 2)
can have only one symmetric form dz„&, we con-
clude that

h p p x. d p p x.K( p) q (A17)

where the proportionality constant K(p) depends
in general upon the representation ( p}I. The nu-

merical value of K(p) can be determined from

dpv xhpu x dpv xdpv XK(p) (A16)

Define now the second- and third-order Casimir
invariants of the algebra A„, [or SU(n) group] by

I2 =X),Xg, (A19)

where the X„'s are normalized by

[X~,X„]=i f~„kg, (A2O)

and where fz&, and dz„„are now given by Eq. (8).
In this case, we need not distinguish the upper in-
dices from the lower ones, since g» is propor-

Therefore, only the case corresponding to com-
pletely symmetric h», =d»„defines a genuine
third-order Casimir invariant. Conversely, if I,
is a symmetrized third-order Casimir invariant
of G, we can always rewrite I, in the form (A14),
where the completely symmetric hz„„obtained in
this way via. Eq. (A13) satisfy Eq. (A12). This fact
will be reported elsewhere. Summarizing these
facts, we have shown that the algebra A„(n ~ 2)
has only one symmetrized third-order Casimir
invariant, while all other simple Lie algebras have
none. This can also be seen" from known orders
of all algebraically independent Casimir invariants
of simple Lie algebras in the mathematical litera-
ture.

After these preparations, we will now prove our
main results stated in the text Le.t f& (p
= 1, 2, . . . ,P) be the representation matrix of X„ in
a generic irreducible representation (p} of G, and

set
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tional to 6» for our choice of the basis.
If I,(p) and I,(p) are eigenvalues of these Casi-

mir invariants in the irreducible representation
(p}, then we obviously have

where o, (j= 1, 2, . . . , n) are defined by Eq. (15) of
the text. Especially for the fundamental represen-
tation (p, }, we compute

&i v~&i, ~ =2~(p) Ia(p) (A21) I,(p,)= 2—(n -1),1

dil & kdiiii k ~(pl) I3(pl) t

where (p,}refers to the n-dimensional represen-
tation specified by the signature (1,0, 0, . . . , 0) with
generator t„=-', X„. The eigenvalue I,(p) can be
computed immediately as in Ref. 21. Or we may
reduce it to a form studied by many' authors~ "
as follows: L'et the lower-case latin indices
a, b, c,d run from 1 to n, and define

n2 1

I3', = g (Z„)„X„,
(A22)

(n'-1)(n'-4)
d„„qd„„~= 4nI, (p,) =

n

(A27)

(A28)

so that Eqs. (A21) and (A18) reproduce Eq. (19) of
the text.

For the contragradient representation f p*}of'

$p}, we have"

n

&a=a Q (~a)ta&a
a, 5=1

When we note an identity

then (A20) is rewritten in the standard form

l&'o &u] =5~&o -6'»'u

I

After some computations, we find now

n

I,(p) =-.' g (o,)'-~n(~'-1),
n

Ia(p) =-' Q (o;)',
j=l

(A23)

(A24)

(A25)

(A26).

As the result, we have I,(p) =0 for any self-con-
tragradient representation t p}. Let us consider
the converse problem. We can prove easily that
I, (p) = 0 implies f p}= (p*}for the cases of SU(3)
and SU(4) if we use Eqs. (16) and (17). However,
for the case" SU(n) (n~ 5), the same is not true.
For example, SU(5) has a non-self-contragradient
representation f,=8, f, =3, f, =2, f,=-6, and

f,=-7 with 2I,(p) = 10'+4'+2'+ (-7)'+(-9)'=0.
For SU(n) (n ~ 5), we have algebraically indepen-
dent odd-order Casimir invariantsI„ I„etc.so that
wecouldhaveI, (p) =0, butI, (p)00, sothat p0 p".

Concluding this paper, we simply remark that
any calculation of an N-fermion closed-loop dia-
gram is related to a study of the Nth order Casi-
mir invariant I„of G. The present triangular
problem is a special case of N=3.
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