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The field-strength formulation of non-Abelian gauge theories opens the gate to a description in terms of
local gauge-invariant variables. As a first step in this direction, I work out a gauge-invariant formulation of
the self-dual sector. A simple extension, using the ideas of Corrigan, Fairlie, and Yates, provides a gauge-
invariant characterization of broader regions within the saddle point.

I. INTRODUCTION

In a previous paper, ' I proposed a local formula-
tion of non-Abelian gauge theories in terniIs. of
field strengths G"„„. 'The formulation focuses at-
tention on the inverse field strength (9 ')'„~„, 8'„'„
—= f"G',„, and configurations with det9= 0 (all x~)
are singular. ' To go beyond semiclassical ex-
pansions about nonsingular configurations, one
must prescribe G contours (or regulators) near
the singular configurations —such that the G-
functional integral equals the original integral over
potentials. I will discuss this question elsewhere.
The present work is addressed to another aspect
of the field-strength formulation, and I will limit
myself here to nonsingular configurations.

Having a formulation in terms of variables
which "rotate" only (under gauge transformation)—
instead of rotating and translating, as do the po-
tentials —points the way to a local gaug e-invariant
description. In this paper I am going to treat only
the very simple case of a self- (or anti-self) dual
sector —plus a simple extension, using the ideas
of Corrigan, Fairlie, and Yates, ' to broader re-
gions of the saddle point. Hopefully some of the
strategy I employ in the self-dual sector will be
of aid in the more general case.

II. CHOICE OF VARIABLES AND STRATEGY

1
p v 2 gvpfy G

pfy y ~0i.23 + (2. I)

Here we expect 9 —3 = 6 independent gauge-invariant
variables. I express self -duality by writing

In this paper, I treat only the gauge group O(3)
in four space-time dimensions. ' The field strength
G'„v has 6& 3=18 components. Three of these can
be removed by gauge transformation, and so one
might expect to specify the gauge-invariant con-
tent of the theory in terms of 18 —3 = 15 gauge in-
variants.

I will not pursue the full problem here, but
rather go to the self-dual sector (Euclidean metric)

a & I
Qv i liQv & i 4~iwv

liPv ~0i Pv ~P i ~v0+ ~vi ~&0 '
(2.2)

g' is the self-dual 't Hooft tensor. ' Of the nine
components of the electric field E; (the upper
index is color, the lower is spin), three can be
removed by gauge transformation (and two signs
fixed).

Consider the six gauge-invariant quantities

E'E'=—g (2.3)

In matrix notation E; =- (E)„,
(2.4)

$=—2detE (2.5)

has fixed sign, for then $ = 2 (detg)'~' up to that
fixed sign. For the general case of a boundary
(sign change of $) I will include g itself as a
variable to measure the remaining sign. I found
it convenient to use this overcomplete set (g, $}
in the algebraic details of the reformulation. It
is a conceptual advantage, however, to note that
a complete set of (just) six gauge-invariant vari-
ables is easily found. Such a set is

(2.6)

that is, a unimodular metric g and $.
The reader may find it instructive to work out

the preceding paragraph in a particular gauge. A

convenient choice is the following: E (the matrix)
upper-triangular, and E»& 0, E»~ 0. It is not
hard to solve Eq. (2.4) explicitly for E(g, f),

and E-OE, 0 orthogonal, is the gauge transfor-
mation. For reasons of provocation, I will refer
to the symmetric 3 & 3 gauge-invariant matrix g
as the "metric tensor. " From this point of view,
the electric field is the "dreibein" field for the
metric.

The metric tensor is adequate to describe those
regions of the self-dual sector in which (det is
determinant)
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E . =

E22 =

E
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(gll) (gllg12 g12 ) (g23gll g12g23) 1

(8u„. + el'' „„)E„'=0 (2. 11)

ately. "Away from the singular configurations, E
has an inverse. The field equations

33 2$(gllg22 g12 )

I should say before proceeding that my choice
of variables was just to get off the ground in.the
first place; many other hopefully superior, more
elegant choices can be made. My variables are
not even covariant, so I can expect no more from
the reformulation. It may be helpful, e.g. , to
work in terms of the redundant but covariant
variables I~„,.„and K„„,

a a I r
ovpe uv pe +if tfuv~fpv &

III. FIELD-STRENGTH STRUCTURE AND

GAUGE-INVARIANT FORMULATION

As described in Ref. 1, we have for O(3) in four
dimensions

(9-')"= Gac'Z-'

&ffkG fof6 k

(3.1)

are then equivalent to the gauge-invariant descrip-
tion

(2. 12)

gff yg ffQv ffpa uvf pa 7

Z„„='e'~'(G'G -JG')„„=g~„„.

(2.8) In the self-dual sector K is proportional to the
unit matrix, and we have the "gluon" g,

My first attempt to solve the problem was along
the following lines: I know the field-strength sad-,
dle-point equations' (e is the gauge coupling),

K= $=2detE.
(3.2)

S',„(Z[G])+eG:„=0,
pa g ga g @a ~abc@ b pcpv 4 v v V &

4'„[Gj= (9 ')'„'„s,G,'„.

(2.9a)

(2.9b)

(2.9c)

(2.10)

where ~ is a function only of the gauge invariants.
I shall show that this is precisely what happens.
The gauge-invariant description follows immedi-

In the self-dual sector, these are equations for
the electric field. If I go to a particular gauge,
say the upper-triangular gauge, I have the form
E=E(g, $) explicitly Eq. (2.7). This form is of
course gauge dependent, but if I substitute into
Eq. (2.9), I obtain equations for g, $ which must
be independent of gauge choice. Unfortunately
this gauge is not rotationally invariant, and so
the resulting equations for g, $ are in a terrible
scramble. Other gauges (that I studied) suffer
from compensating drawbacks. I report this
"brute-force" approach for two reasons. First,
anyone who tries to will believe it can be done
in principle (and hence for full Yang-Mills?).
Second, it provides a grim background against
which to appreciate the relatively simple results
I will present below.

The basic strategy of the next section is as fol-
lows. By using Eqs. (2.2) and (2.9b), (2.9c) we
can construct &u„(E) (0 as a function of E and its
derivatives). At first sight, this is a horrible
expression; with a moment's thought, however, 5
must be a function of E such that it rotates like E
under gauge transformation. It is therefore rea-
sonable to hope' that it can be put in the form

Fa „=6„„. (g, $)E',

8&u is a (global) color-singlet spin density. " In
this way, after some algebra, I can express the
gluon as'

pa ( l(8u ~ 3)l Q g )Ea

&y Tr(g') (3 4)

where Tr means trace.
This form shows the gluon gauge-transformation

property nicely, Under the infinitesimal rotation

gEa ~abc~bEc

X' arbitrary, the spin density changes by

&&,"= -5SuX'E,',
Ea ~ i&abc& Eb Ec-

ifk f k~

(3.5)

(3.6)

Thus, I verify the gluon gauge transformation,

~pa g a ~abc bg c (3.7)

Note that det9 not identically zero for all x, im-
plies the same for g and detg.

Our first real task in this paper is then to sort
out the numerator of the gluon 8„'. I would like
to do the sorting in such a manner (consistent with
our strategy) as to show the gauge-transformation
properties of the gluon. Each term in the gluon
numerator is cubic in E, with two color indices
contracted. %hen this pair is separated by a de-
rivative, I separate out the gauge-invariant part
with the identity

EleuE' = 2(eu gim+ eimpffb) i

(3.3)
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with the spin density providing the translation
term. In fact, the first term in'.

ga —$-1g» Ea &&akcEke Ec
m m & l e l~ (3 6)

has, by itself, the correct transformation prop-
erty [Eq. (3.7)]. This gives us a simple laboratory
to test our strategy.

I have computed the simpler object 6."»„(3).
Helpful identities are

et jk~jlm~kka (6 6 6 6 )d j jm
SP &q fc

Multiplying our result by g ~ puts the equations
in a form resembling general relativity (say in
the gauge with g» = 1, g„=0) with a cosmological
constant.

Other interesting quantities are easily evaluated
in terms of our variables. For example, ignoring
the "Faddeev-Popov" terms, ' I find for the field-
strength action, using Eq. (3.12a),

8 = d 4x ——G'„„5'„„-4G'„„G'„„
2e

+ (6jk 6, —6 k5j )aj",
(3.9)

d'x --(8~„+8„., )g,. —Tr(g)e

Ej Ej ——(g ')jj, E,=Ek(g ')ka.

With the hefp of the first four identities and Eqs.
(2.3), (3.6), I can manage a contraction to 1, g
or g ' in each of the terms in c'"g„8'„. Then I
eliminate all E's in favor of E via the last ident-
ity. After some algebra, I find that all terms
with derivatives on E cancel, leaving the simple
result

(3.10)

'This certainly shows the correct gauge-transfor-
mation property. I can also put it in the desired
(linear-in-E) form by the identity

I., i
6'

,(3.11)

Thus encouraged, I have computed the remain-
ing terms in P'»„(g). After some similar algebra,
I obtain the desired result,

where 8 is the usual dual of 0.

IV. SIMPLEST ANSATZ

8 = 8'+ 8, 8+ = ~k(8 + 8) . {4.1b}

I will seek a so'lution to these in the form of the
simplest conceivable ansatz

$ = 2Xa.
(4.2)

From Eq. (2.6), this is equivalent to g= X',
I have used X instead of just $ itself only

to make contact with Ref. 1. The equations of
motion (4.1a), (4.1b) become, respectively,

'The gauge-invariant equations of motion, Eq.
(3.14), are conveniently grouped, following Ref.
1, as self-dual and anti-self-dual parts,

(4. la)

+Qv pvam m 0

8»„; = kg[as»(g )cogoks (g ) MZ+z»cd]

(g )mr~red

(3.12a)

and

~„XB„X 1 QA, +2e=0
4V 2

(4.3a.)

+ p vm v Pm

+ k(g-') &(s»gj„z„„s„g&„z»„),(3.12b)

(3.12c)

The first term in 8 corresponds to Eq. (3.10) A

nice check on the form of 8 is to remember that
F„„is scale invariant under G -z' 'G. Now,
under g-ag, f-tc' 'g, 8 is homogeneous of de-
gree k 'j'. The form Eq. (3.12) for 0j»„ is much
simplified over previous work, and will be an aid
in the field-strength formulation itself.

The field-strength equations of motion Eq. (2.9)
are then

8 &8 g & &8 x 1 8 X 1
mi 4 y3

8]$9 g 8 ]g 3 8)ABOX ~O8gA,

(4.3b)

These equations are preoisely those implied (be-
fore the A[R] assumption} in Ref; 1, now divided
by A. . (The ansatz there was equivalent, E;= O', X,
g»' = —q'j»„ke„ink. ) Note that the simple variable
change X = p' ($ = 2/a) brings the self-dual part of
the equations of motion [Eq. (4.3a}]to the form'

(8„„,.+ eq„„„)E„'= 0. (3.13) , +2e=0. (4.4}

~f v, m+ e~mwv = 0 ~ (3.14)

And, as discussed in Sec. II, the gauge-invariant
formulation is simply

Nevertheless, as stated in Ref. 1, when taken
together Eqs. (4.3a), (4.3b) have as their only
common solution the translated pseudoparticle'
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4b
e [(x-x,)'+ b]' (4.5)

with b, x,„arbitrary. In the next section, I will
discuss the circumstance under which Eq. (4.4)
survives without interference from the anti-self-
dual Eq. (4.3b).

There are also known' self-dual solutions of the
form V'„= -(1/g)g'„= (1jg)q,„„&„in/, '&f& =0 (q is
the anti-self-dual tensor in our notation). Except
for the pseudoparticle itself, however, these are
not included in our simplest ansatz Eq. (4.2).
(However, see Sec. V. )

V. CORRIGAN-FAIRLIE-YATES AND A BROADER
GAUGE-INVARIANT CHARACTERIZATION

Corrigan, Fairlie, and Yates (CFY)' have re-
cently distributed a very interesting paper that
independently observes the simplification of 8 '
in the self-dual sector. ' They also observed that
the same simplification describes broader re-
gions of the saddle point: one need not set the
anti-self-dual part to zero.

They begin with the saddle-point equations (2.9)
in the form

6'„„„(4)+eG;„„=0,

G =G, +G, G'„„=S']pi] „, S-1~ipv &

(5.1a)

(5. Ib)

(5.1c)
(5.Id)

. ga Sa
+g

Equations for S,
F;„„(g[s,])+es;,.q;'„„=0,
6- „„(j[s.])+es',.q,.„„=0

(5.4)

(5.5a)

(5.5b)

reduce to ours if S', =0. In general, CFY point
out that, given S„S may be computed from
(5.5b). The resulting G will solve the original
equations: We have already satisfied (5.1a) in

Equation (5.1d) follows from Eq. (5.1a). Instead
of setting S =0 (as I did), they combine (5. lb) and

(5.1d) to obtain

(5.2a)

a + ~abc@5 Gc (5.2b)

Equations (5.1a) and (5.2a), (5.2b) are equivalent
to the original set. If (say) G, has an inverse
9, ' then

(5.3)

On inspection of Eqs. (2.2) and (5.1c), it is evi-
dent then that 9, ' and 8'„(S,) are precisely our
forms in the self-dual sector with the identifica
tion

toto [and hence (5.1d)], and (5.2a). Subtracting
(5.2a) from (5.1d), we obtain (5.2b).

It ip easy then to link up the advances of the
present paper with the observation of CFY: All
results of this paper for & should be read in
terms of the map Eq. (5.4), and the anti-self-dual
parts of the equations should be used to compute
S . One is then reading, e.g. ,

g)(=S;,.S;, , $ =—2detS, , (5.6)

etc. , in (say) Eqs. (3.4) and (3.12). The field-
strength equations read

(8'„„.„+eq„',„)S',„=0, (5.7a)

(5.7b)

[and (5.7b) determines S ]. Finally, the gauge-
invariant equations for g, $ are (just the self-
dual part of our previous equations)

(5.8)

a 1
trav;$S+f &

For example, one easily computes

K„„=&e'"(GGG),„

6e3 ~tpI ~v p, & ~pa, g~av, t . (5.10)

The CFY observation works as long as not both
detS, = 0. This-is not as broad as the "full" sad-
dle point (det9 NO), which presumably needs 15
gauge-invariant variables.

Following CFY, I can also find the CPP = 0 so-
lutions' as a limit. As mentioned in Sec. III, un-
der S,- tc.

' 'S„we have g -g, f -a'~'$, 8- w '~'8.
Thus with S.= ~' 'S'„g = ~' '$' we have, in the
llmlt K ~0,

8;„.„(g, (')=0,

8";~(g ~
&')S +S'- & -=0.

(5.11a.)

(5.1lb)

The ansatz (4.2) for $' then comes to P 'CPP = 0
and (5.11b). Thus (still) J'„=—q', ~„e„in/ but the
solutions are anti-self -dual.

Thus, under the "simplest" ansatz (4.2), the re-
sult (4.4) stands without interference. It deserves
emphasis then that the Wilczek-Corrigan-Fairlie
ansatz is, within the gauge-invariant formulation,
the simplest conceivable ansatz.

Note that all gauge invaxiants can be constructed
from g, $ using, say,
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Note added in Proof. After submission of this
manuscript, I received a report from H. R. Pagels
[Aspen report (unpublished)] which overlaps the
work of Ref. 3.
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