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The field-strength formulation of non-Abelian gauge theories opens the gate to a description in terms of
local gauge-invariant variables. As a first step in this direction, I work out a gauge-invariant formulation of
the self-dual sector. A simple extension, using the ideas of Corrigan, Fairlie, and Yates, provides a gauge-
invariant characterization of broader regions within the saddle point.

I. INTRODUCTION

In a previous paper,' I proposed a local formula-
tion of non-Abelian gauge theories in termb‘:,:‘of
field strengths G%,. The formulation focuses at-
tention on the inverse field strength (§7')35, -85
= f%G¢,, and configurations with det§=0 (all x,)
are singular.? To go beyond semiclassical ex-
pansions about nonsingular configurations, one
must prescribe G contours (or regulators) near
the singular configurations — such that the G-
functional integral equals the original integral over
potentials. I will discuss this question elsewhere.
The present work is addressed to another aspect
of the field-strength formulation, and I will limit
myself here to nonsingular configurations.

Having a formulation in terms of variables
which “rotate” only (under gauge transformation) —
instead of rotating and translating, as do the po-
tentials -— points the way to a local gauge-invariant
description. In this paper I am going to treat only
the very simple case of a self- (or anti-self) dual
sector — plus a simple extension, using the ideas
of Corrigan, Fairlie, and Yates,? to broader re-
gions of the saddle point. Hopefully some of the
strategy I employ in the self-dual sector will be
of aid in the more general case.

II. CHOICE OF VARIABLES AND STRATEGY

In this paper, I treat only the gauge group O(3)
in four space-time dimensions.* The field strength
G4, has 6 X3 =18 components. Three of these can
be removed by gauge transformation, and so one
might expect to specify the gauge-invariant con-
tent of the theory in terms of 18 — 3 =15 gauge in-
variants.

I will not pursue the full problem here, but
rather go to the self-dual sector (Euclidean metric)

G=G ’ G-?w=%€uupocgo: €us=+1. (2.1)

Here we expect9 - 3 =6 independent gauge-invariant
variables. I express self-duality by writing

G?‘v=E‘:"7§w, E‘§=%’72uv0‘2m 2.2)
Miuy = €ogup = OuiOyo+ 8yi0uo -

7’ is the self-dual ’t Hooft tensor.® Of the nine
components of the electric field E$ (the upper
index is color, the lower is spin), three can be
removed by gauge transformation (and two signs
fixed).

Consider the six gauge-invariant quantities

E{E}=g,,. (2.3)

In matrix notation E%=(E),,,

ETE=g (2.4)

and E ~OE, O orthogonal, is the gauge transfor-
mation. For reasons of provocation, I will refer
to the symmetric 3 X 3 gauge-invariant matrix g
as the “metric tensor.” From this point of view,
the electric field is the “dreibein” field for the
metric.

The metric tensor is adequate to describe those
regions of the self-dual sector in which (det is
determinant)

t=2detE (2.5)

has fixed sign, for then £=2 (detg)'/Z up to that
fixed sign. For the general case of a boundary
(sign change of &) I will include £ itself as a
variable to measure the remaining sign. I found
it convenient to use this overcomplete set { g, £}
in the algebraic details of the reformulation. It
is a conceptual advantage, however, to note that
a complete set of (just) six gauge-invariant vari-
ables is easily found. Such a set is

{&,2=(etg) 3g=(|£|/2)*/%}, (2.6)

that is, a unimodular metric g and §.

The reader may find it instructive to work out
the preceding paragraph in a particular gauge. A
convenient choice is the following: E (the matrix)
upper-triangular, and E,; >0, E,,>0. It is not
hard to solve Eq. (2.4) explicitly for E(g, £),
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E\;=(g,)" %8y,

Eb=(g1)" (81182 — 812 @.7)
Euy= (217 (811812 = 8122 (825811 — £12825) »
Eyy= 38(81, 820 - 210972,

I should say before proceeding that my choice
of variables was just to get off the ground in the
first place; many other hopefully superior, more
elegant choices can be made. My variables are
not even covariant, so I can expect no more from
the reformulation. It may be helpful, e.g., to
work in terms of the redundant but covariant
variables I,,,,, and K,

I

2)1/2,

wvioo=Ghy Goo=81Mu Moo s
8ii= ,—lenguvn;'auluv;pw (2.8)
K,,=3€"*(GIGIGh), = £5,, .

My first attempt to solve the problem was along

the following lines: I know the field-strength sad-
dle-point equations!' (e is the gauge coupling),

Fe,(I[G]) +eGo,=0, (2.92)
F,=9,92-9,9% +e°gb gc, (2.9b)
I51G]=(871128,G3, . (2.9¢)

In the self-dual sector, these are equations for
the electric field. If I go to a particular gauge,
say the upper-triangular gauge, I have the form
E=E(g, &) explicitly Eq. (2.7). This form is of
course gauge dependent, but if I substitute into
Eq. (2.9), I obtain equations for g, £ which must
be independent of gauge choice. Unfortunately
this gauge is not rotationally invariant, and so
the resulting equations for g, £ are in a terrible
scramble. Other gauges (that I studied) suffer
from compensating drawbacks. I report this
“pbrute-force” approach for two reasons. First,
anyone who tries to will believe it can be done
in principle (and hence for full Yang-Mills?).
Second, it provides a grim background against
which to appreciate the relatively simple results
I will present below.

The basic strategy of the next section is as fol-
lows. By using Egs. (2.2) and (2.9b), (2.9¢) we
can construct F4,(E) (F as a function of E and its
derivatives). At first sight, this is a horrible
expression; with a moment’s thought, however, F
must be a function of E such that it rotates like E
under gauge transformation. It is therefore rea-
sonable to hope® that it can be put in the form

F4,= 0y m(T, E)ES (2.10)

where 6 is a function only of the gauge invariants.
I shall show that this is precisely what happens.
The gauge-invariant description follows immedi-

ately. ‘Away from the singular configurations, E
has an inverse. The field equations

(Buysm+ €My, )EL=0 (2.11)

are then equivalent to the gauge-invariant descrip-
tion

Ouvim* €Mmuy=0. (2.12)

III. FIELD-STRENGTH STRUCTURE AND
GAUGE-INVARIANT FORMULATION

As described in Ref. 1, we have for O(3) in four
dimensions

(61 =GIiGK™", . (3.1
K = 3€/*GIGIGk

In the self-dual sector K is proportional to the
unit matrix, and we have the “gluon” g,

gi,: g-l(GjGi)u.ualG{u ’
K=£(=2detE.

(3.2)

Note that detS not identically zero for all x, im-
plies the same for &£ and detg.

Our first real task in this paper is then to sort
out the numerator of the gluon Ji. I would like
to do the ‘sorting in such a manner (consistent with
our str_ategy) as to show the gauge-transformation
properties of the gluon. Each term in the gluon
numerator is cubic in E, with two color indices
contracted. When this pair is separated by a de-
rivative, I separate out the gauge-invariant part
with the identity

E,El=300,g,,+ €1mp@p),

3.3
@ = B0, S ©:3)

@} is a (global) color-singlet “spin density.” In
this way, after some algebra, I can express the

gluon as’
c‘qz = ‘E-l(a: + n;uvauéjm)E‘r‘n ’
° (3.4)
gjngjm - éajmTr(g) ’

where Tr means trace.
This form shows the gluon gauge-transformation
property nicely. Under the infinitesimal rotation

6EY = €*"°x°E¢, (3.5)
x® arbitrary, the spin density changes by
8G} = -£8,x"Ey,
E%=¢t"€"¢,  EYES, (3.8)
EE)=6,, EpE%=05".
Thus, I verify the gluon gauge transformation,

599 = -9, x° + €2°xvge | (3.7)



with the spin density providing the translation
term. In fact, the first term ind. ‘

J8=¢7@LEL = 3 E%, ES, (3.8)
has, by itself, the correct transformation prop-
erty [Eq. (3.7)]. This gives us a 81mp1e laboraiory
to test our strategy.

I have computed the simpler object F4,(J).
Helpful identities are

elikgitmehba _ —(6”5“ - 6!q51p)€jim
+ (015 Oq = Omp0;)€ Y,

E‘:auEli,= —E?aui‘:, EgauE';: "EgauE‘:, (3.9)
E3E%=(g™)y;, ‘E:=E§(g-1)ba' ) (s
With the help of the first four identities and Eqgs.

(2.3), (3.6), I can manage a contractionto 1, g
or g™ in each of the terms in €**°g} JS. Then I
eliminate all E’s in favor of E via the last ident-
ity. After some algebra, I find that all terms

with derivatives on E cancel, leaving the simple
result

' sfw(j):%a“(g )ea€as®(&” l)ba‘”’zEjEk (8.10)

This certainly shows the correct gauge-transfor-
mation property. I can also put it in the des1red
(linear-in-E) form by the identity

€REJEf = 3EEN (™) 0p€00a - . ,(3. 11)

Thus encouraged, I have computed the remain-
ing terms in & (g). After some similar algebra,
I obtain the desired result,

F v =Ouvim En) (3.12a)
Ouvim=2E[59,(87)ca 80620 (8 ™ V0a+ Z e Z,4d)
X (8 ) mr€rea
+9,2,,-3,2,,
(3.12b)
(3.12¢)

+ -é—(g“)m,(aug,"Zv" - 8,81mZun) s
Zui = g-lnéuuaaéai .

The first term in 6 corresponds to Eq. (3.10). A
nice check on the form of 6 is to remember that
§,, is scale invariant under G - '/?G. Now,
under g—~«kg, £-k3/2£, 6 is homogeneous of de-
gree k"*/2, The form Eq. (3.12) for &%, is much
simplified over previous work, and will be an aid
in the field-strength formulation itself.

The field-strength equations of motion Eq. (2.9)
are then

(Bp;m+ €Ml JEL =0 (3.13)

And, as discussed in Sec. II, the gauge-invariant
formulation is simply

Byim+ €My =0. (3.14)
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Multiplying our result by g,, puts the equations
in a form resembling general relativity (say in
the gauge with g,,=1, g,;=0) with a cosmological
constant.

Other interesting quantities are easily evaluated
in terms of our variables. For example, ignoring
the “Faddeev-Popov” terms,' I find for the field-
strength action, using Eq. (3.12a),

S= fd" (-—-G“ e, icz,,cz,)
:qux[_

where 8 is the usual dual of 6.

(Oi3m+ éoi;m)gmi - Tr(g)] ’

IV. SIMPLEST ANSATZ

The gauge-invariant equations of motion, Eq."
(3.14), are conveniently grouped, following Ref.
1, as self-dual and anti-self-dual parts,

Orsm+ €Mpu, =0, 605,,,=0, (4.1a)
B=0"+6", 6*=3(6+0). (4.1b)
I will seek a solution to these in the form of the
simplest conceivable ansatz
g=1,
=20, (4.2)

From Eq. (2.6), this is equivalent to g=2% &
=223. I have used X instead of just ¢ itself only

" to make contact with Ref. 1. The equations of

motion (4.1a), (4.1b) become, respectively,

2, 09,0 10%

-t 2-)?—+2e 0 (4.3a)
and
[§<a!xa[>\ aoxaox> 1<302>t 1 a,a,x)]
mlZ\Tx T Jt2\w T2 TR
3 99,1 8,9 3 980 9,9,\
R A
(4.3D)

These equations are precisely those implied (be-
fore the A[R] assumption) in Ref. 1, now divided
by A. (The ansatz there was equivalent, Ej= ),
gt =-nj,,39,Inr.) Note that the simple variable
change )= ¢? (£=2¢°) brings the self-dual part of
the equations of motion [Eq. (4.3a)] to the form?®

2
D(bf +2e=0. 4.4)
Nevertheless, as stated in Ref. 1, when taken
together Eqs. (4.3a); (4.3b) have as their only
common solution the translated pseudoparticle®
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4b 1
A= [(x —x,)%+ b 4.5)
with b, x,, arbitrary. In the next section, I will
discuss the circumstance under which Eq. (4.4)
survives without interference from the anti-self-
dual Eq. (4.3D).

There are also known® self-dual solutions of the
form V¢ = —(1/g)9% = (1/g)n,,,9,1n¢, P =0 (7 is
the anti-self-dual tensor in our notation). Except
for the pseudoparticle itself, however, these are
not included in our simplest ansatz Eq. (4.2).
(However, see Sec. V.)

V. CORRIGAN-FAIRLIE-YATES AND A BROADER
GAUGE-INVARIANT CHARACTERIZATION

Corrigan, Fairlie, and Yates (CFY)® have re-
cently distributed a very interesting paper that
independently observes the simplification of §-!
in the self-dual sector.! They also observed that
the same simplification describes broader re-
gions of the saddle point: one need not set the
anti-self-dual part to zero.

They begin with the saddle-point equations (2.9)
in the form

39,,(9)+eG%,,=0, (5.1a)
8,G%, +€*gLGS,=0, (5.1b)
G=G,+G_, GL,,=S4Mu,, Glu=S1Miu,
(5.1c)
8,G4, +€%°93Ge, =0. (5.1d)

Equation (5.1d) follows from Eq. (5.1a). Instead
of setting S_=0 (as I did), they combine (5.1b) and
(5.1d) to obtain

8,G%,, +€g9%G¢,, =0, (5.2a)

+hy

9,G2,, +€g2Ge,, =0. (5.2b)

Equations (5.1a) and (5.2a), (5.2b) are equivalent
to the original set. If (say) G, has an inverse
8,”! then

g% =(8,"1)%28,Gb,, . (5.3)

On inspection of Egs. (2.2) and (5.1¢), it is evi-
dent then that §,! and J%(S,) are precisely our
forms in the self-dual sector with the identifica-
tion

Bl S, (5.4)
Equations for S,

Fe,, (9[S.])+eSint,, =0, (5.5a)

32, (9[S.]) +eS%1;,,=0 (5.5b)

reduce to ours if S =0. In general, CFY point
out that, given S,, S_ may be computed from
(5.5b). The resulting G_ will solve the original
equations: We have already satisfied (5.1a) in

toto [and hence (5.1d)], and (5.2a). Subtracting
(5.2a) from (5.1d), we obtain (5.2b).

It is easy then to link up the advances of the
present paper with the observation of CFY: All
rvesults of this paper for E should be vead in
terms of the map Eq. (5.4), and the anti-self-dual
parts of the equations should be used to compute
S.. One is then reading, e.g.,

g:;=5%,5%;, E=2detS,, (5.6)

etc., in (say) Eqs. (3.4) and (3.12). The field-
strength equations read

(Bw mt ent,,)8, =0, (5.7a)
oS +Se 0 (5.7b)

uD,m mnmuv

[and (5.7b) determines S_]. Finally, the gauge-
invariant equations for g, £ are (just the self-
dual part of our previous equations)

e:w;m'*‘en:nuvzo' (58)

Thus, under the “simplest” ansatz (4.2), the re-
sult (4.4) stands without interference. It deserves
emphasis then that the Wilczek-Corrigan-Fairlie
ansatz is, within the gauge-invariant formulation,
the simplest conceivable ansatz.

Note that all gauge invariants can be constvucted
from g, £ using, say,

1
G':lv: - z euv;isii s
_ 1 - (5.9)
G:uz - E uv,zsa
For example, one easily computes
K,,=3€"(GGG),,
== é-e—seiikguo;iéna;jew;k' (5.10)

The CFY observation works as long as not both
detS,=0. This is not as broad as the “full” sad-
dle point (det§+#0), which presumably needs 15
gauge-invariant variables.

Following CFY, I can also find the 0% =0 so-
lutions® as a limit. As mentioned in Sec. III, un-
der S,~«'/%S,, we have g~g, £—«3/2t, 0—k"1/20,
Thus with S, =«'/2S, £=«%/2£' we have, in the
limit k =0,

0h,:m(g5 E')=0, (5.11a)

Orvim(Z 5 E')S%, + 52, M, =0 (5.11b)
The ansatz (4.2) for £’ then comes to ¢=*00°¢ =0

and (5.11b). Thus (still) g% = —n},,9,In¢ but the
solutions are anti-self-dual.



Note added in proof. After submission of this

manuscript, I received a report from H. R. Pagels

[Aspen report (unpublished)] which overlaps the
work of Ref. 3.
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