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The WKB method for systems with many degrees of freedom is developed. Using a given imaginary-time
(Euclidean) classical solution of the equations of motion, we explicitly construct the WKB wave function in
the classically forbidden region of configuration space. Similarly, we construct the wave function for the
allowed region using a real-time (Minkowski) solution.. For this purpose we use the collective-coordinate
method previously developed for solitons in quantum field theory. The present WKB method is an extention
of that by Banks, Bender, and Wu to systems with many degrees of freedom and field theories. This paper
is intended to present ideas and the general formalism: two applications are briefly discussed: the
quantization condition for periodic solutions and vacuum tunneling in field theories.

I. INTRODUCTION

The WKB approximation is one of the basic
methods for studying quantum systems. It is,
however, simple only for one degree of freedom.
In the general case, one difficulty has been that
one does not know the WKB wave functions explicit-
ly. Keller,! Gutzwiller,? and Maslov® developed a
method based on functional integrals in order to
avoid the explicit introduction of WKB eigenstates.
The method has been applied to field theory by
Dashen, Hasslacher, and Neveu! and has led to
very interesting developments in field theory
based on semiclassical approximations.®

It is clear, however, thatone cannot always
avoid the use of wave functions. For instance,
in the semiclassical treatment of soliton scatter-
ing by path integrals,® eigenstates of the Hamil -
tonian had to be built so as to establish the scat-
tering formalism, although the method used there
is only formal because the eigenstates so obtained
involve the momentum of the field. However, the
use of wave functions is obviously unavoidable if
one wants to discuss matching at turning points.
This problem arises especially in connection with
recent studies of vacuum tunneling in field theory.

In two remarkable papers’ Banks, Bender, and
Wu studied this question in particular systems
with two degrees of freedom. Their basic idea
was that barrier penetration occurs mostly in
small tubes in configuration space around certain
classical solutions so that the WKB approximation
is essentially one dimensional and they could de-
termine the ground-state wave function.  These
classical paths correspond to classical solutions
with pure imaginary time.

5

Up to now, vacuum tunneling in field theory has
been studied mostly by path integrals in Euclidean
sbace -time. In a recent paper® we proposed an
interpretation of Euclidean classical solutions in
Minkowski space-time which, as we later realized,
is the generalization to field theory of the ideas of
Banks, Bender, and Wu. In Euclidean field theory
the problem of matching is avoided through the so-
called dilute-gas approximation.® As we shall
argue later on, this is not satisfactory for theories
with no mass scale, and one seems to be forced
to really handle the matching at turning points in
field theory. ‘

In studying this question we found that, contrary
to the common belief, general WKB eigenfunctions,
to the first two orders in 7 and for a given classi-
cal trajectory, are rather simple objects which
can be systematically written down once one has
solved the classical problem of small fluctuations
around the classical trajectory considered. This
is the subject of the present paper. We should re-
mark here that if one applies this WKB method to
the soliton problems the basic formalism is simi-
lar to that of Christ and Lee.°

The general ideas are developed in Sec. II. Two
examples of applications are given in Sec. III with
special emphasis on vacuum tunneling. This paper

.is intended to be self-contained and to be under-

standable to readers who are not familiar with
field theory. Hence we use the language of quan-
tum mechanics though we also have in mind field-
theory implications.

1L DETERMINATION OF WKB WAVE FUNCTION

Let us consider a system with N degrees of free-
dom. We denote the generalized coordinates by R
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and the potential by V(R). The Lagrangian of the
system is assumed to be £ = iR? — V(R). Field
theory can be regarded formally as a system of
infinite degrees of freedom, N — <. The simplest
way to deal with the 7% expansion is to introduce a
parameter g such that V can be written as

V®R)=(1/g2)v(gR), ' @.1)

where U does not depend on g. This means that

in V, the nth power of R has a coefficient propor-
tional to g™2. From (2.1) one sees that any classi-
cal solution and classical action is, respectively,
proportional to g=* and g~°. Letting %=1, we thus
see that g ? plays the role of 7 and the semiclassi-
cal approximation will mean expansion in g.

As is well known, in the leading order in the
WKB approximation, the Schriédinger equation re-
duces to the Hamilton-Jacobi equation. Namely,
if we let

HYy=E$, p=e*”,
we get, to leading order,
€? (GW

> )2+V(ﬁ)=E. ' 2.2)

Obviously, we can choose €®=1 if E> V (classi-
cally allowed region) and €?= -1 if E<V (classi-
cally forbidden region). Equation (2.2) is the
Hamilton-Jacobi equation with potential €V and
energy €’E. By the standard method, solutions
of (2.2) are obtained as follows:

W(§)=f51ds [2[E-VGED[]7,

dr\? - -
(2%) =1, r(s,)=R,

(2.3)

where the curve T is such that the integral is
stationary. The classical meaning of T is best
shown by introducing another parametrization
denoted by T such that (¥, =d¥/dr)

1

Q?F,%V(F):E. (2.4)

Then ¥ should satisfy

1. -
?r,”, =-VV(r). . (2.5)

Hence, €7 plays the role of time for a classical
trajectory with energy E and potential energy V.
In the forbidden region €7 is purely imaginary.
Note that 9 is a stationary state, and it is thus
clear that 7 has nothing to do with the true time.
In order to obtain the functional form of W(R)
by (2.3) we must know the general solution of (2.4)
and (2.5), i.e., the trajéctory passing through a
point ﬁo and an arbitrary point R in configuration

space. In practice, however, especially in field
theories one knows explicitly only a limited class
of classical trajectories. So we assume that only
a classical solution T(7) with energy E, is given,
and consider the wave function in the vicinity of
the classical trajectory in configuration space.
Then (2.3) is simply the WKB exponent for one
degree of freedom which is the position along the
trajectory. Hence, the dominant effect due to the
existence of a classical trajectory T(r) is contained
in the quantum mechanics of this degree of free-
dom. Following our general method,'! we intro-
duce it as a collective coordinate; that is, we
extract it out of R through the change of variable:

N
CR=F(F@)+ D B, (2.6)

a=2

where f is an arbitrary given function which fixes
the parametrization of the curve, ¢ is the new co-
ordinate which indicates the position on the curve,
and Ha(’r) together with T,(7) form a moving local

, reference frame at the point ¥(7). We choose it

such that
ﬁa. Eb:6ab’ ng* r;=0.

Equation (2.6) can actually represent only a small
neighborhood of the classical curve in configura-
tion space because the vectors ¥,, i, form only a
local reference frame. Consistency will be
achieved at the end when we will obtain the wave
function which decreases away from the classical
trajectory with an exponential decrease of order
g° Indeed, if this is verified, the relevant values
of 7* are such that |17°| << |F(7)| because T(7), a
classical solution, is of order g~'. We shall come
back to this point later on. For the reader who is
more familiar with the 7% expansion we note that
#(r) and 7 are of order 7° and n'/%, respectively,
so that the same picture also emerges.

A straightforward computation shows that

- = ir‘,-(f(q)) < b b)
=—iVe=—0s"5—=\ p-f r
p 1 f'(l‘.,.z—r"' 7‘7) P f;n ag
v BLe, (2.8)
.97 a . 0 b= =
p:‘lal’, g:"7'8,”:1’ T=n,°n,,

(2.9)
> _ a> r — d_»,f
i ‘;?7 Ras /=55

In the above expressions T and i, are to be con-

sidered for T=f(q), T indices mean taking deriva-

tives with respect to 7 before replacing 7 by f(q).

We use the same conventions hereafter.

We insert (2.6) and (2.8) into the Hamiltonian
and expand in powers of g. To the order we are



working, i.e., g° order, the ordering of operators
is irrelevant. One gets

pZ

=~ 2—]5:?7 +V ‘°)(q)+?,;(—;:§—)5 Fope @+ V0o
H2EP VNN - et 2 oy
: | (2.10)
We have expanded the potential: |
V(R)= V() + 0V (@) + 300V (q)++ - .
' (2.11)
It is easy to see that V ™(q)=0(g™?).

Let us now solve the Schrédinger equation to the

first two leading orders by letting

Hy=(E,+E)p, E,=0(g™®), E;=0(g"), (2.12)

(g, M=e*%(g, M), S,=0(g™®), %X=0(g°) .
(2.13)

The Schrddinger equation to orders g=", n
=4,2,1,0, lead, respectively, to the equations

D) - - :

e =0 : (2.14a)
9, 2 .

<—asq—°> =2f°F2|E,- V9|, (2.14b)

(€T, T+ Vi)ne=0, (2.14c¢)

[132_ia 1'""‘3
“yame N\ Fag ~he wpe

i€ 0 - -
+3Wnen® - T 5—(;1:1( 77,2 —El] =0, (2. 14d)
. 3€?
Wab= V;§)+?'5 ’}’.a".’}’:,.. (2,15)
T

Equation (2.14b) is, as expected, the leading WKB
equation for g degrees of freedom, and we get

So(q)zfqdq' @f2F.2|E,-vVO|)p2, (2.16)

It is readily checked to be of order g~ if f is of
order g°. ‘

Next, projecting equation (2.5) onto the vectors
n,(r), a=2, ..., N, one sees that (2.14c) is in-
deed satisfied since (1) is a classical solution.

" Our task is now to solve equation (2.14d). For
this we first remark that as one could have ex-
pected, we only have the combination (1/f7)3/3q,
so that it is simpler to re-express ¥ as a function
of 7 redefined by 7T =f(¢q) in any region where f

is single valued. Note that f should be chosen
such that f is always nonvanishing and we as-
sume f’ to be positive. The next-to-last term

in (2.14d) corresponds to the standard WKB fac-

prgbnagb 31’_2_ (F'r'r : 7.7’)2 .
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tor of order zero in £ for ¢ quantum mechanics.
It disappears if we redefine ¥ as

- X X
= g =t (2.17)
X (FEATET(SH) 72
and we have to solve the equations
KXx=ExX; (2.18)

. 9 9 1 o2
¥C=—ie (5‘1——' "rznaﬁb‘> - E anaz +%Wab77"77b-

(2.19)

This is a nontrivial problem since both I' and
W are functions of 7. The crucial point of our

' method is that (2.18) can be solved if one knows

a complete set of solutions for the equatiorf of
small fluctuations around (7). Denote such a
solution by V. From (2.5) it satisfies

1, 8y

?UTTz_———‘aRiaRj 5 ’Uj- (2.20)

= (1)

We shall assume that the matrix 92V/3aR?aR/|;
is positive definite. Hence, (2.20) will have solu-
tions with real exponential (oscillating exponential)
behavior for €= -1 (€2=+1). Expand ¥V in the mov-
ing frame by

V=V T)F. /T, 2+u,d,. (2.21)
Taking the derivative of (2.5) with respect to T,

one sees that T, is also a solution of (2.20). From
the Wronskian argument one gets

d » > =
-&-;(r,'v,—rT,-?)zo.

So we can choose V such that .

FV,=1,V. (2.22)

From this one can check that (2.20) implies for
u® the equations ' '

DubDbcuc"'(zWabub:O’ (223)
Dy, =(2/37)5,,+ T g ‘ (2.24)

The method of solving (2.18) is based on the re-
mark that if » satisfies (2.23), the operator

A= e-iu-r/e [ua 9

i i((Du)an“jl (2.25)

is such that
[3c,A]=-vA. , (2.26)

Hence, if v is positive (negative), A acts as a
destruction (creation) operator on the eigenfunc-
tions of 3¢. If v is zero, A is not interpretable in
terms of the creation-annihilation operator as it
commutes with 3¢. This will be related to the
well-known zeroth-mode phenomenon, which is
linked to symmetry properties of V.
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The set of v and operators A which can appear
will be specified by the boundary conditions of the
region of configuration space considered. We
shall illustrate this point with two specific ex-
amples: periodic orbit in allowed region, and
the penetration problem for quantum fluctuations
around a local minimum of V. The later example
is obviously relevant for vacuum tunneling. We
shall not discuss a true WKB matching at a turn-
ing point since we have not yet studied this prob-
lem in detail. In order to simplify the discussion
we shall further assume that none of the »’s en-
countered vanishes. Some comments on the gen-
eral case are given at the end of this section.

In the first case we will have

Fr)=Fr+T), (2.27)

and A should be periodic of period 7T so that both

functions (here €==x1)
e/ =g, (Du)e™ /¢ =f (2.28)

must be periodic with period T. At this point the
discussion proceeds along lines similar to Ref. 6.
From (2.23) and (2.28) we see that v is such that

(7))

b s (2.29)
. [€Yap =0gp
® Z(W,, <D, >

a

The periodicity condition makes ® Hermitian with
an inner product

@, 1)= [ Tar(g: f;)oz<g1>, (2.30)
0 fi

and the V’s are the set of eigenvalues of the oper-
ator @. They are necessarily real since ® is
Hermitian. Since ® is purely imaginary, we see
that if (%) is an eigenvector of ® with eigenvalue
v, (j:i) is also an eigenvector but with eigenvalue
—v. Let v, be the set of all positive v’s and u™
be the set of corresponding small fluctuations.
We define '

— =il T [€
Am-e‘*n/[u;"

a > n a
ana—ze(Du )aTl } (2.31)

From the Hermiticity of ® it is straightforward
to check that if we normalize u™ by

i€ [(Du™)Ful —uZ*(Du™),]=1, (2.32)
we have
[ArmAn] = [AI,,,A;] =0, [Am,AI,] =0m - (2.33)

Equation (2.23) has 2N -2 independent solutions

so we get N—1 creation-annihilation operators.
Next we discuss the penetration problem (€

=4+{) for quantum fluctuations around a local mini-

mum of V. We choose E  to be equal to the value

of V at the minimum. Since €®*= -1, the classical
trajectory corresponds to a maximum of potential
energy. If the potential is harmonic near its mini-
mum, it takes an infinite 7 interval to reach the
stability point. For definiteness we choose the
corresponding limit to be 7—-—=«. S, is an integral
with a fixed lower bound so it tends to —« in the
limit. Near the minimum the term involving e~S°
is a decreasing function of the distance to the
stability point. It must be of order 1 as it will be
matched to the oscillator wave function of small ~
oscillation near the minimum, which has the
same behavior. On the contrary, the term in-
volving e5o is an increasing function of the dis-
tance to the stability point. It will be matched
to an exponentially small component of the
wave function of small oscillations, which has
similiar behavior and which appears in solving
the Schrodinger equation near the minimum be-
cause, owing to tunneling, the energies differ
from exact harmonic-oscillator energies.'? We
shall only discuss the matching of the e ~So term
in the present paper.

We introduce

A= T1inr°1°V,§§’ .

We can then obtain a set of solutions of (2.23) such
that

u;n(t) _’f;n et omT ,

5 (2.34)
Af F=3fR, frfa=oi.
: n

The creation-annihilation operators will be de-
fined by
9
Am = e'wm‘l’ [uz’zn“)'é‘,;]‘; +[Dum(+)]an aj} ,
(2.35)

- 9

A= —e“mf,[uf(f) T + [Du™],m “} .
Indeed, using the Wronskian together with (2.34)
one can show that

[AmA)=[4,,4,]=0, [A,4,]=5,,.  (236)
From (2.34) it follows that
oz 17 (g o).
(2.37).

- 9
Am'_".,_,_“, Z'(—W-!-wmn“) .

Hence A,, A, tend to the creation-annihilation
operators of the quantum fluctuations around the
local minimum of V. The WKB eigenstates will
thus match to the eigenstates of the allowed region.
Finally, going back to the general discussion
(e2=+1), we determine the ground-state wave func-
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tion. For both signs of € we have N—1 annihila-
tion operators of the form

Am=e-ivmf/5[u;"aza —ii(Du"')an“]. (2.38)
The ground state x, is the solution of

A, X%=0, m=2,...,N (2.39)
which gives'®

Xo=d(T)exp [~ 39,(T)nn"],

Q= —i€uz'™(Du™),, (2.40)
where u™! is such that

u'"m Uy =8, . (2.41)
This matrix exists because the u)', m=2, ..., N,

are N-1 linearly independent vectors in the (N-1)-
dimensional space orthogonal to T,. It is further-
more easy to check that  is a symmetric matrix.

Equation (2.39) determines x, up to an arbitrary
function d(7) which we compute by inserting (2.40)
into the equation 3Cx, = E%,. Combining everything
we finally obtain the ground-state wave function

0
et€ So eiE1T /€
Yo= (f'T,2)1/2 (detu)‘ﬁeXp(‘%Qab’?“Ti")-
T

(2.42)

This is the generalization of the formula obtained
by Banks, Bender, and Wu.” The excited-state
wave functions are obtained by applying the crea-
tion operators to ;. They will involve, in addi-
tion, the standard Hermite polynomials.

As we explained earlier, our method makes
sense if ¥ vanishes rapidly away from the classi- -
cal path. This will be the case if Re Q is a polsi-
tive-definite matrix. In the allowed region this
condition is readily checked to hold using the
orthogonality relations due to the Hermiticity of
® in our previous example. The normalization
condition (2.32) gives

2ReQ,, =u""1*u"1], (2.43)

which is indeed positive definite. In the case of
the forbidden region we have no such proof. How-
ever if V varies very slowly and if the classical
path is very close to a straight line, one has

o= 1m

Qup=u" TV, Ug (2.44)

which is indeed positive definite since v, > 0. The

condition of positive definiteness will hold when-

ever  does not differ drastically from (2.44).
Finally, we comment on the case where some

of the v’s are zero. This will always be the case

if the potential has a symmetry so that in con-

figuration space we have a continuous set of classi-

cal solutions with the same classical action. Then

the Hamitlonian commutes with the corresponding

infinitesimal generators; this is reflected in the

“fact that the operators with v=0 commute with 3C. ’

This is the usual zeroth-mode problem of semi-
classical methods, which can be solved by intro-
ducing collective coordinates following our gen-
eral method.'! In this context it is simply equiva-
lent to performing the standard separation of
variables in the Schrddinger equation for a sym-
metric potential before applying the WKB method;
we shall not elaborate upon it here.

III. APPLICATIONS

Our result obviously has many applications in
various potential and field-theory problems. We
briefly discuss two of them which are related to
our two examples in Sec. II and postpone more
detailed discussions to forthcoming papers.

A. Quantization condition for periodic solutions

As we discussed above, a state is' characterized
by the occupation numbers n;, i=2,...,N. (Again
we assume that none of the v’s vanishes.) The
wave function must be periodic with period T.

The creation-annihilation operators were chosen
to be periodic in such a way that the quantization
condition does not depend on #; but only on the
particular classical trajectory considered. As
we have seen before, u™e™*n" /¢ is periodic of
period T. From this we conclude that

det[u(-r +T)]=det[u(T)]exp <+ Q; v,T /e) . (3.1)
Formula (2.40) leads to
Do(T+T) = 9o(T)
Xexp [i(EW(E0)+ E—o‘éz:- - ;V" %)],
where W(E) is the action integral over a period
W(E):}{ds[z(E- 1) AT (3.2)
The quantization condition reads (here €=+1)

W(E,) + T<E? —Z?) =2mm, wm integer.
n

This‘can be put into the same form as in Ref. 4
since for any level

E1=E? +ZniVi ’
i
WE)=W(E,)+E,T,
and we get

W(E)=2m1r+Z(n¢’+§)ViT, » (3.3)
7

which agrees with the result of Ref. 4.
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B. Vacuum tunneling in field theories

It will be associated with solutions with €= -1
(forbidden region) such that E; is the energy of the
classical vacuum. In Lorentz-invariant field
theories we are thus led to consider classical so-
lutions of Euclidean field equations according to
Eq. (2.5), i.e., the so-called pseudoparticle solu-
tions first considered by Polyakov.!* We shall
briefly discuss two typical examples.

Example I. Two-dimensional Higgs model. The
Lagrangian is given by

£= ‘%(auAv - auAu)Z

@y miea)p|? 5z M -glo]F, (.0
where ¢ is a complex scalar field. The Euclidean
solutions are the vortex solutions 4, ¢.. (From
now on we use the convention of putting a caret
over any quantity which is relative to Euclidean
space-time, so as to distinguish it from Minkow -
ski quantities since we shall handle both at the
same time.) The vortex solutions are classified
by the topological index (magnetic flux number)

~ e -~ -~ -~
Pzz—nfdz" (0,4, -9,4,). (3.5)

Example II. SU(2) Yang-Mills theory in four
dimensions. The Lagrangian is given by

&= _%(G?Lv)z ’

3.6

GszauAg_avA‘;t*'geabcAubAsy ( )
and the Pontryagin index is defined by

2 ———~fd 4% €,,G iC n- 3.7)

It takes only integer values for field configura-
tions with finite action. Throughout the discussion
we choose the A,=0 gauge so that the classical
solution will be considered in the A,=0 gauge.

As an example we shall look only at the quantum
meaning of one-pseudoparticle (one vortex) solu-
tions. In Example II one can check in the A,=0
gauge, that the solution of Ref, 15 takes the form
(x is the size of the pseudoparticle)

- ~ T8 ~ i -
Aclj(}E,x4)EAglj—2— =0A%0"! _E(a 0)o-!

.7.:1’2’\3

ix-7 o %, ) 1]

0= exP{—(T Ty AD)L /2 l:tan ((1,2+)\2)1‘/'2' -3 .;
Av_ d x2+7? " ‘ (3.8)
"_Ex42+'rz+x2w i@
w—x“zlx';, r2=%x2,
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The gauge condition A, =0 does not break gauge
invariance by a time-independent gauge transfor-
mation. As a result, in (3.8), we could have re-
placed the term —7/2 by an arbitrary function of
x, and there is an arbitrariness in the definition
of tan™!. We choose it such that tan™!(-»)= (z+ 3)7
and call A" the function so obtained. One can see
that

Aﬂ ~JS

Sy L gy, (K™)= A7

vk
N 3.9)
Aglk;::wA';Zl » K=exp [(—1,—;'1%2—)1—/'5}

As expected for 7 -+~ we go to the allowed
reg1on and A , tends to a pure gauge term, that
is, to a class1cal ground state of the theory. This
is the situation in our second example of Sec. IL
These ground states are related by the gauge
transformation K successively. The same dis-
cussion can be carried out in Example I.

From our general discussion we know that the
field-theory eigenstate of the Hamiltonian will be
nonzero only in a neighborhood of the classical
path in configuration space parametrized by the
new quantum variable g through x,= f(g).

In the present examples, one gets a better in-
sight by relating g to the topological properties
of the classical solution through an approprlate
choice of f, which we now discuss. In the A =0
gauge, one has

A + 0 a A~
P [ ar g @=Q6)-Q(-=), (3.10)
Q[A]= %fdxlfil (example I),

~ 2 -~ -~ -~ -~ -~
[A]-5~ / d3x<A‘;3jA‘;+-§—€abcA';A?Ag>€,-jk
(example II). , (3.11)
We can choose f from the equation

q=Q[A" (x, fg))] (3.12)

in the interval of ¢ where one has a solution. Dif-
ferentiating (3.12) we get

-9
1—dqh(q),

e
M) =5 [dx0.4

2
W)= fy [[A%5e,,0(0,45) 82,0 (example ).

(example I), (3.13)

One can check that # does not depend on # as it is
invariant by time-independent gauge transforma-
tions. Equation (3.13) can be rewritten as

1/ary 1
§<a_q-> -5z =0, Fr>0. (3.14)



We have a mechanical analog to a “point” with"
“position” f, “time” ¢, zero “energy,” and “po- "
tential” u=-1/2r%. Since u<0, its “velocity”
never vanishes, and it always moves toward the
right or left depending on the sign of 2. For a
pseudoparticle 2 >0, so f'>0; we look at this case
as a specific example.. From equation (3.10) one
finds '

o df
L Gy P

-0

(3.15)

The Pontryagin index corresponds to the “time”
Ag required by the “point” to move from f =

to f=+«. Thus Aq=1 is the interval where (3 12)
can be used for given n. Patching together the re-
sults obtained from (3.12) for all values of n one
defines f for all values of ¢. It is found to be
periodic of period 1 owing to K gauge transforma-
tions and to be such that, for 0-0,

fln-0)=—

The classical path is finally given by Acl(x,f(q))
which is defined for arbitrary q by

cl(x)f(q)) Al(x,f(q)) n=q=n+1

so that ¢ =g +1 is equivalent to a K gauge trans—
formation on A,.

Example I is similar, and we end up with tra-
jectories in conflguratlon space which are per1odlc
up to a gauge transformation K. Because our
theory must be gauge invariant, the state described
by ® must satisfy this property. Since a fixed
phase factor in a wave function is unobservable,
we can have in general

Plg+1)=e"y(q),

where 6 is an arbitrary angle. In this way one
finds very naturally the degeneracy of the vacu-
um.”!® Moreover, since we have the excited-
state wave function, we can study the spectrum
of excitations of the theory, which is the physi-
cally relevant problem.

Because g - q +1 is equivalent to a gauge trans-
formation, the ¢ quantum mechanics is equivalent
to that of a periodic potential. Hence 6 arises as
in Bloch waves of a one-dimensional crystal.

The matching problem and the determination of
the wave function are possible to handle in ex-
ample II since, owing to O(5) invariance of the
classical solution,!” the equation for small fluctu-

, flr+0)=+,
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ations is entirely solvable.

Finally, we note a crucial difference between
example I (mass scale) and example II (no mass
scale). In example I, f cannot be computed ex-
plicitly but since %(q) is the integral of the mag-
netic field, one has

1) = Ce,
where C is a constant and u is the mass of vector

field. This leads to the following behavior for the
inverse function q(f):

C
qf:*mn+ﬂe'”lf'. _ (3.186)

In example II, ¢(f) can be computed as follows:

a(f) = l:é);sz;)%fz ] +const, (3.17)
which leads to
4,7 ..n" !—- (3.18)

Thus in example I we have an exponential be-
havior, while in example II we have a power be-
havior.

|f]——°° corresponds to approaching the minima
of the potential for ¢ quantum mechanics. The two
different behaviors (3.16), (3.18) show that these
potentials behave in a very different way in these
two cases. In fact, it is harmonic near the mini-
mum in example I while the potential is much
flatter in example II. As a résult WKB matching
will lead to rather different results. In example I
one would obtain a result equivalent to the dilute-
gas approximation® of Euclidean field theory.!®
In example II a different result will come out.
This question is important for the problem of
quark confinement, since in the dilute-gas ap-
proximation the Yang-Mills theory does not seem
to confine quarks, contrary to the initial hopes of
Polyakov.'* This problem is currently under in-
vestigation. According to Sec. II one performs
the canonical transformation®

19

i

Ai =Ahcli(§’f(q)).+A'i(§) ’

fdi A,®)G,q(%,f(@) =0,

which is the method we proposed earlier.®
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