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The WKB method for systems with many degrees of freedom is developed. Using a given imaginary-time

(Euclidean) classical solution of the equations of motion, we explicitly construct the WKB wave function in

the classically forbidden region of configuration space. Similarly, we construct the wave function for the
allowed region using a real-time (Minkowski) solution. . For this purpose we use the collective-coordinate
method previously developed for solitons in quantum field theory. The present WKB method is an extention
of that by Banks, Bender, and Wu to systems with many degrees of freedom and field theories. This paper
is intended to present ideas and the general formalism: two applications are briefly discussed: the
quantization condition for periodic solutions and vacuum tunneling in Aeld theories.

I. INTRODUCTION

The WKB approximation is one of the basic
methods for studying quantum systems. It is,
however, simple only for one degree of freedom.
In the gener@1 case, one difficulty has been that
one does not know the WKB wave functions explicit-
ly. Keller, ' Gutzwiller, ' and Maslov' developed a
method based on functional integrals in order to
avoid the explicit introduction of WKB eigenstates.
The method has been applied to field theory by
Dashen, Hasslaeher, and iWeveu4 and has led to
very interesting developments in field theory
based on semiclassical approximations. '

It is clear, however, thatone cannot always
avoid the use of wave functions. For instance,
in the semi. classical treatment of soliton scatter-
ing by path integr3ls, ' eigenstates of the HamQ-
tonian had to be built so as to establish the scat-
tering formalism, although the method used there
is only formal because the eigenstates so obtained
involve the momentum of the field. However, the
use of wave functions is obviously unavoidable if
one wants to discuss matching at turning points.
This problem arises especially. in connection with
recent studies of vacuum tunneling in field theory. '

In two remarkable papers' Banks, Bender, and
Wu studied this question in particular systems
with two degrees of freedom. Their basic idea
was that barrier penetration occurs mostly in
small tubes in configuration space around certain
classical solutions so that the WKB approximation
is essentially one dimensional and they could de-
termine the ground-state wave function. These
classical paths correspond to classical solutions
with pure imaginary time.

Up to now, vacuum tunneling in field theory has
been studied mostly by path integrals in Euclidean
space-time. In a recent paper' we proposed an
interpretation of Euclidean classical solutions in
Minkowski space-time which, as we later realized,
is the generalization to field theory of the ideas of
Banks, Bender, and Wu. In Euclidean field theory
the problem of matching is avoided through the so-
eaUed dilute-gas approximation. ' As we shall
argue later on, this is not satisfactory for theories
with no mass scale, and one seems to be forced
to really handle the matching at turning points in
field theory. .

In studying this question we found that, contrary
to the common belief, general %KB eigenfunctions,
to the first two orders in @ and for a given classi-
cal trajectory, are rather simple objects which
can be systematically writt;en down once one has
solved the classical problem of small fluctuations
around the classical trajectory considered. This
is the subject of the present paper. %e should re-
mark here that if one applies this %KB method to
the soliton problems the basic formalism is simi-
lar to that of Christ and Lee."

The general ideas are developed in Sec. II. Two
examples of applications are given in Sec. III with
special emphasis on vacuum tunneling. This paper
is intended to be self -contained and to be under-
standable to readers who are not familiar with
field theory. Hence we use the language of quan-
tum mechanics though we also have in mind field-
theory implications.

II. DETERMINATION OF WKB WAVE FUNCTION

I et us consider a system with N degrees of free-
dom. %e denote the generalized coordinates by H
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and the potential by V(R). The Lagrangian of the
system is assumed to be Z = —,'R' —V(R). Field
theory can be regarded formally as a system of
infinite degrees of freedom, N-~. The simplest
wyy to deal with the @ expansion is to introduce. a
parameter g such that V can be written as

V(R) = (1/g ')~(gR), (2 1)

H)=Ef, g= e"

we get, to leading order,

—E (2.2)

where 'U does not depend on g. 'This means that
in V, the nth power of R has a coefficient propor-
tional tog" '. From (2. 1) one sees that any classi-
cal solution and classical action is, respectively,
proportional tog ' and g '. Letting 8=1, we thus
see that g' plays the role of 8 and the semiclassi-
cal approximation will mean expansion in g.

As is well known, in the leading order in the
%KB approximation, the Schrodinger equation re-
duces to the Hamilton- Jacobi equation. Namely,
if we let

space. In practice, however, especially in field
theories one knows explicitly only a limited class
of classical trajectories. So we assume that only
a claasical solution r(r) with energy E, is given,
and consider the wave function in the vicinity of
the classical trajectory in configuration space.

Then (2.3) is simply the WKB exponent for one
degree of freedom which is the position along. the
trajectory. Hence, the dominant effect due to the
existence of a classical trajectory r(r) is contained
in the quantum mechanics of this degree of free-
dom. Following our general method, "we intro-
duce it as a collective coordinate; that is, we
extract it out of R through the change of variable:

R = r(f{q))+Qn, (f(q))n',
a- 2

(2 6)

where f is an arbitrary given function which fixes
the parametrization of the curve, q is the new co-
ordinate which indicates the position on the curve,
and n, (&) together with r, (&) form a moving local

, reference frame at the point r(r) We c.hoose it
such that

W(R) =
1

ds[2 fE- V(r(s))[]' ',

dr =1, r(s, ) = R, ,
(2.3)

whei-e the curve r is such that the integral is
stationary. The classical meaning of r is best
shown by introducing another par ametrization
denoted by & such that (r, -=dr/dv)

Obviously, we can choose c'= 1 if E & V (classi-
cally allowed region) and z'= -1 if E & V (classi-
cally forbidden region). Equation (2.2) is the
Hamilton-Jacnbi equation with potential E V and
energy E'E. By the standard method, solutions
of (2.2) are obtained as follows:

n 'ng=5 g Q 'r '=0.

Equation (2.6) can actually represent only a small
neighborhood of the classical curve in configura-
tion space because the vectors r„n, form only a
local reference frame. Consistency will be
achieved at the end when we will obtain the wave
function which decreases away from the classical
trajectory with an exponential decrease of order
g'. Indeed, if this is verified, the relevant values
of q' are such that

~

q'
~

« ~r(&)~ because r(7'), a
classical solution, is of order g '. We shall come
back to this point later on. For the reader who is
more familiar with the @ expansion we note that
r(w) and g are of order 8' and I'~', respectively,
so that the same picture also emerges.

A straightforward computation shows that

, r,'+ V(r)=E.
2&

'Then r should satisfy

(2.4)
r, (f(q))

++n, C', (2 8)

—,r„=-&V(r) . {2.6) 8 8
P ——&- K = —'E: I =ng'na

a b av

Hence, && plays the role of time for a. classical
trajectory with energy E and potential energy V.
In the forbidden region E& is purely imaginary.
Note that tj is a stationary state, and it is thus
clear that & has nothing to do with the true time.

In order to obtain the functional form of W(R)
by (2.3) we must know the general solution of (2.4)
and (2.5), i.e., the trajectory passing through a
point R, and an arbitrary point R in configuration

(2.9)

a

In the above expressions r and n, are to be con-
sidered for v=f(q), & indices mean taking deriva-
tives with respect to w before replacing r by f(q).
We use the same conventions hereafter.

We insert (2.6) and (2.8) into the Hamiltonian
and expand in powers of,g. To the order we are
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I

working, i.e., g' order, the ordering of operators
is irrelevant. One gets

tor of order zero in g for q quantum mechanics.
It disappears if we redefine X as

2

~I2r 2 I
X X

X (fI 2}1 / 2 (5 I,)
1 / 2 (2.1V)

Hp= (E,+E,)(, EO=O(g '), E,=O(g'),

4(q, n)=8""x(q, n), s.=o(g '), x=o(g') .
(2.12)

(2.13)

'The Schrodinger equation to orders g ", g
=4, 2, 1, 0, lead, respectively, to the equations

(2.14a)

L/&au &V(2) s & ~Feq

!

(2.10)

We have expanded the potential:

V(R) = V'(q)+ q'V,'"(q)+ —,'r/'q 'V,',"(q)+

(2.11)

It is easy to see that V'"'(q)=O(g ').
Let us now solve the Schrodinger equation to the

first two leading orders by letting

and we have to solve the equations

X=&, x, (2.18)

8 8 ] 8
X=- -z~ —I'q', — -+ -,' W,qeq ~.

a 8~& 2 8~+2 a

(2.19}

This is a.nontrivial problem since both I' and
W are functions-of &. The crucial point of our
method is that (2.18) can be solved if one knows
a complete set of solutions for the equation of
small fluctuations around r(&) Deno. te such a
solution by v. From (2.5} it satisfies

1 ] 8'V
'fT 8+48+J ~ 8

R= r(T)
(2.20)

We shall assume that the matrix s'V/sR'&R' ~;
is positive definite. Hence, (2.20) will have solu-
tions with real exponential (oscillating exponential)
behavior for z'= -1 (c'=+ 1). Expand v in the mov-
ing frame by

2

=2f",'~E, V"& ~,Bq

(s'r n + V"') q' —0

1 8 pb ~a
2 Bq~ f sq i~ Bq

(2.14b)

(2.14c)

v=(v ~ r,)r, /r, +u,n, . (2.21)

—(r, v, —r„v)=0.
C

Taking the derivative of (2.5) with respect to v,
one sees that r, is also a solution of (2.20). From
the Wronskian argument one gets

ZE
+ g&,p'r/' —2, s ln(f'r, ') E, l/=0, -(2.14d)

Qq

2
(2) 3~ o 5Was=V. , +

2 (2,.15)

~.(q)= &q'(2f" r 2~E, —V'&()" (2.18)

It is readily checked to be of order g ' if f is of
order g'.

Next, projecting equation (2.5) onto the vectors
n, (&), a = 2, . . . , N, one sees that (2.14c) is in-
deed satisfied since r(7) is a classical solution.

Our task is now to solve equation (2.14d). For
this we first remark that as one could have ex-
pected, we only have the combination (1 /'f) s&/, q
so that it is simpler to re-express X as a function
of v redefined by &=f(q) in any region where f
is single valued. Note that f should be chosen
such that f' is always nonvariishing and we as-
sume f' to be positive. The next-to-last term
in (2.14d) corresponds to the standard WKB fac-

Equation (2.14b) is, as expected, the leading WKB
equation for q degrees of freedom, and we get

So we can choose v such that

D,~a~, u, + e'W, ~u~ = 0,

D =—(s/sv)5„y r,'.
(2.23)

(2.24)

The method of solving (2.18) is based on the re-
mark that if u satisfies (2.23), the operator

8
A-=e '""/' u, , -ic(Du), q'

is such that

[R,A]= -vA.

(2.25)

(2.28}

Hence, if v is positive (negative), A acts as a
destruction (creation) operator on the eigenfunc-
tions of K. If v is zero, A. is not interpretable in
terms of the creation-annihilation operator as it
commutes with X. 'This will be related to the
well-known zeroth-mode phenomenon, which is
linked to symmetry properties of V.

(2.22)

From this one can check that (2.20) implies for
u' the equations
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The set of v and operators A which can appear
will be specified by the boundary conditions of the
region of configuration space considered. We
shall illustrate this point with two specific ex-
amples: periodic orbit in allowed region, and
the penetration problem for quantum fluctuations
around a local minimum of V. The later example
is obviously relevant for vacuum tunneling. %e
shall not discuss a true WKB matching at a turn-
i.ng point since we have not yet studied this prob-
lem in detail. In order to simplify the discussion
we shall further assume that none of the-v's en-
countered vanishes. Some comments on the gen-
eral case are given at the end of this section.

In the first case we will have

r(v) = r(~+ r), (2.2 t)

and A should be periodic of period T so that both
functions (here & = al)

(u)e '"'f' -=g, (Du)e '"'f' =f- (2.28)

(2, I)—= «(z."f.")~.
(
',
1

(2.30)

and the v's are the set of eigenvalues of the oper-
ator . They are necessarily real since is
Hermitian. Since S is purely imaginary, we see
that if (&) is an eigenvector of d) with eigenvalue
)f, (&n, ) is also an eigenvector but with eigenvalue
—v. . Let v be the set of all positive v's and u
be the set of corresponding small fluctuations.
%e define

must be periodic with period T. At this point the
discussion proceeds along lines similar to Ref. 6.
From (2.23) and (2.28) we see that )f is such that

'(')- (')
(2.29)

. (~D., -5.,)

The periodicity condition makes Hermitian with
an inner product

of V at the minimum. Since a'= -1, the classical
trajectory corresponds to a maximum of potential
energy. If the potential is harmonic near its mini-
-mum, it takes an infinite & interval to reach the
stability point. For definiteness we choose the
corresponding limit to be 7'--~. S, is an integral
with a fixed lower bound so it tends to -~ in the
limit. Near the minimum the term involving e
is a decreasing function of the distance to the
stability point. It must be of order 1 as it will be
matched to the oscillator wave function of small
oscillation near the minimum, which has the
same behavior. On the contrary, the term in-
volving e 0 is an increasing function of the dis-
tance to the stability point. It will be matched
to an exponentially small component of the
wave function of small oscillations, which has
similiar behavior and which appears in solving
the Schrodinger equation near the minimum be-
cause, owing to tunneling, the energies differ
from exact harmonic-oscillator energies. " We
shall only discuss the matching of the e 0 term
in the present paper.

%e introduce

m)(+) g m + umq'

fm +2fm fmfn nm5

n

(2.34)

I

'The creation-annihilation operators will be de-
fined by

9~m(+) + [Dgm(+)] )I a

(2.35)
9

A, =-e~, um(-) +[D "' '] )In
7l

Indeed, using the Wronskian together with (2.34)
one can show that

~ay= limVayfWw (2O

We can then obtain a set of solutions of (2.23) such
that

9
A =e '~'f' u — -ic(Du") )I'

m a 8~a, a (2.3l) [A„,A„]= [A, A„]= 0, [A„,A ] = 5„„. (2.36)

From the Hermiticity of it is straightforward
to check that if we normalize u by

From (2.34) it follows that

i& [(Du ),*u, —u, *(Du"),]= I,
we have

(2.32)
8

A = f," —,+ ro vy') .
(2.3'7)

[A. , A„]= [At, At] = 0, [A„,At] = 5„ (2.33)

E(luation (2.23) has 2N 2 independent solu—tions
so we get N-1 creation-annihilation operators.

Next we discuss the penetration problem (a
= ai) for (Iuantum fluctuations around a local mini-
mum of V. We choose Eo to be equal to the value

Hence A, A tend to the creation-annihilation
operators of the quantum fluctuations around the
local minimum of V. 'The WKB eigenstates will
thus match to the eigenstates of the allowed region.

Finally, going back to the general discussion
(e'= +I), we determine the ground-state wave func-
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tion. For both signs of e' we have N-1 annihila-
tion operators of the form

8
A„=e '"m'~' u,"S,—ie(Du"), q' (2.38)

The ground state X, is the solution of

W.X, =O, m=2, . . . ,X

which gives"

yo=d(T)exp[ —aA, [)(&)7i'vl ],
Q~[, = icu-~ (Du )[, t

where u ' is such that

1m ~m
a b ab

(2.39)

(2.40)

(2.41)

0
g g0 e)Z1T /6

a b)„„/,exp', --,'
(f r, ) ( e u)

(2.42)

This is the generalization of the formula obtained
by Banks, Bender, andWu. ' 'The excited-state
wave functions are obtained by applying the crea-
tion operators to [I),. They will involve, in addi-
tion, the standard Hermite polynomials.

As we explained earlier, our method makes
sense if [Ij vanishes rapidly away from the classi-
cal path. This will be the case if Re 0 is aposi-
tive-definite matrix. In the allowed region this
condition is readily checked to hold using the
orthogonality relations due to the Hermiticity of

in our previous example. The normalization
condition (2.32) gives

This matrix exists because the u, , m=2, . . . , N,
are N 1 linea—rly independent vectors in the (N 1)--
dimensional space orthogonal to r, . It is further-
more easy to check that 0 is a symmetric matrix.

Equation (2.39) determines X, up to an arbitrary
function d(v) which we compute by inserting (2.40)
into the equation $CX0 = E',X,. Combining everything
we finally obtain the ground-state wave function

III. APPLICATIONS

Our result obviously has many applications in
various potential and field-theory problems. We
briefly discuss two of them which are related to
our two examples in Sec. II and postpone more
detailed discussions to forthcoming papers.

A. Quantization condition for periodic solutions

As we discussed above, a state is characterized
by the occupation numbers n„ i = 2, . . . , N (Again.

we assume that none of tbe v's vanishes. } The
wave function must be periodic with period T.
The creation-annihilation operators were chosen
to be periodic in such a way that the. quantization
coridition does not depend on n, but only on the
particular classical trajectory considered. As
we have seen before, n e ™~' is periodic of
period T. From this we conclude that

ttet[e(re V)]=det[e(r)jeep(+i+ t/ )r. ($.e1)

Formula. (2.40) leads to

[]),(7+ T) = [t.( )

E0T T
xexp i eW(E, )+ '——Pv„-—

where W{E) is the action integral over a period

infinitesimal generators; this is reflected in the
'fact that the operators with v= 0 commute with X.
'This is the usual zeroth-mode problem of semi-
classical methods, which can be solved by intro-
ducing collective coordinates following our gen-
eral method. " In this context it is simply equiva-
lent to performing the standard separation of
-variables in the Schrodinger equation for a sym-
metric potential before applying the %KB method;
we shall not elaborate upon it here.

2ReA =u '"*u '"
ab a b& (2.43) tv(n)=i[un[a(n v)]'t'. (3 2)

which is indeed positive definite. In the case of
the forbidden region we have no such proof. How-
ever if V varies very slowt. y and if the classical
path is very close to a straight line, one has

I

a&m+a ~ (2.44)

which is indeed positive definite since v & 0. The
condition of positive definiteness will hold when-
ever Q does not differ drastically from (2.44).

Finally, we comment on the case where some
of the v's are zero. , 'This will always be the case
if the potential has a symmetry so that in con-
figuration space we have a continuous set of classi-
cal solutions with the same classical action. Then
the Hamitlonian commutes with the corresponding

W(E) = W(E,}+E,r,
and we get

W(E) = 2mm+P(n, + —,')v, T, (3.3)

which agrees with the result of Ref. 4.

The quantization condition reads (bere e = +1)

)V(E,)+V(E", -Q —=tme, m integer.. 2

This can be put into the same form as in Ref. 4
since for any level

E, = E01+ n, V),
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B. Vacuum tunneling in field theories

i(S, leA„)y i'+, (I -g iy i')', (3.4)

where Q is a complex scalar field. The Euclidean
solutions are the vortex solutions A„, Q„. (From
now on we use the convention of putting a caret
over any quantity which is relative to Euclidean
space-time, so as to distinguish it from Minkow-
ski quantities since we shall handle both at the
same time. ) The vortex solutions are classified
by the topological index (magnetic flux number)

P = d'x (—&,A, —&,A, ) .
2r

(3.5)

Example II. SU(2) Yang-Mills theory in four
dimensions. The Lagrangian is given by

It will be associated with solutions with & = -1
(forbidden region) such that E, is the energy of the
classical vacuum. In Lorentz-invariant field
theories we are thus led to consider classical so-
lutions of Euclidean field equations according to
Eq. (2.5), i.e., the so-called pseudoparticle solu-
tions first considered by Polyakov. " We shall
briefly discuss two typical examples.

&xample I. 'Two-dimensional Higgs model. The
Lagra, ngian is given by

2 = --,'(&„A„—&„A„)'

'The 'gau, ge condition A, = 0 does not break gauge
invariance by a time-independent gauge transfor-
mation. As a result, in (3.8), we could have re-
placed the term —m/2 by an arbitrary function of
x, and there is an arbitrariness in the definition
of tan '. We choose it such that tan '(—~)=(n+-,')m
and call A"„ the function so obtained. One can see
that

A"„~ —K"v„(K ")=- A"

(3 9)

{ .
) /

As expected, for w-+~ we go to the allowed
region"Md A„ tends to a pure gauge term, that

.~r! l

is, to a t'.lassical ground state of the theory. This
is the situation in our second example of Sec. II.
These ground states are related by the gauge
transformation K successively. 'The same dis-
cussion can be carried out in Example I.

From our general discussion we know that the
field-theory eigenstate of the Hamiltonian will be
nonzero only in a neighborhood of the classical
path in configuration space parametrized by the
new quantum variable q through x, = f(g).

In the present examples, one gets a better in-
sight by relating q to the topological properties
of the classical solution through an appropriate
choice of f, which we now discuss. In the A, =O

gauge, one has

O:v= .A: —'.A:+g&»».AAv~

and the Pontryagin index is defined by

(3.6) «., Q =Q(+")-Q(-"),

Q[A] = — dx, A, (example I),

(3.10)

g
16 2 x ~cja 4$ jn16m

(3.7)

It takes only integer values for field configura-
tions with finite action. Throughout the discussion
we choose the Ap 0 gauge so that the classical
solution will be considered in the A, =0 gauge.

As an example we shall look only at the quantum
meaning of one-pseudoparticle (one vortex) solu-
tions. In Example II one can check in the A4= 0
gauge, that the solution of Ref. 15 takes the form
(X is the size of the pseudoparticle)

~a
A,i,.(x, x,) =—A;„.—=OA»O ' ——(S/O)O ',

j = 1, 2, 3
I

~2+ y2 1/2 ~2+ y2 1/2

(3.8)2 2
z x + x

g X4 +X +A,

2

16m

(example II) .

We can choose f from the equation

(3.11)

(3.12)

h (q) =— dx, &,A"„, (example I), (3.13)

2

h(q) =, d'xc„»(&,A;,",.) 0;"„.» (example II) .
16m

One can check that A does not depend on g as it is
invariant by time-independent gauge transforma-
tions. Equation (3.13) can be rewritten as

in the interval of q where one has a solution. Dif-
ferentiating (3.12) we get

1= —h(q),
d
dq

~~
x4 —sx' ~

GO =
+x4

=X
1 df ' 1

, =0, f'h) 0.
2 dq 2h

(3.14)
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We have a mechanical analog to a ' point" witH'
"position" f, "time" q, zero "energy, " and "po-' '

tential" u = -I/2h'. Since u &0, its "velocity"
never vanishes, and it always moves toward the
right or left depending on the sign of k. For a
pseudoparticle k &0, so f'&0; we look at this case
as a specific example. From equation (3.10) one
finds

+ 00

(-2u)'~ ' (3.16)

The Pontryagin index corresponds to the "time"
+ required by the "point" to move from f = -~
to f=+ ~. Thus &q = 1 is the interval where, [3,,12)
can be used for given n. Patching together thy re-
sults obtained from (3.12) for all values of n one
defines f for all values of q. It is found to be
periodic of period 1 owing to K gauge transforma-
tions and to be such that, for o -0,

f (n —o) -—~, f (n+ o) -+
The classical path is finally given by A„(x,f(q)),
which is defined for arbitrary q by

A„(x,f(q)) =A",,(x,f(q)), n ~ q ~ n+ 1

so that q-q+1 is equivalent to a K gauge trans-
formation on A„.

Example I is similar, and we end up with tra-
jectories in configuration space which are periodic
up to a gauge transformation K. Because our
theory must be gauge invariant, the state described
by g must satisfy this property Since. a fixed
phase factor in a wave function is unobservable,
we can have in general

4(q+ 1)= e"|I'(q),

where 8 is an arbitrary angle. In this way one
finds very naturally the degeneracy of the vacu-
um. ""Moreover, since we have the excited-
state wave function, we can study the spectrum
of excitations of the theory, which is the physi-
cally relevant problem.

Because q-q+1 is equivalent to a gauge trans-
formation, the q quantum mechanics is equivalent
to that of a periodic potential. Hence ~ arises as
in Bloch waves of a one-dimensional crystal.

The matching problem and the determination of
the wave function are.possible to handle in ex-
ample II since, owing to O(5) inva. riance of the
classical solution, " the equation for small fluetu-

6+ —e
C

p,
(3.16)

In example II, q(f) can be computed as follows:

1 3A.'f +2f'
q(f) =

4 (~2 fp)3/2 + const (3.1V)

which leads to

15 f
q

- n+ —.—
I y I 16 (3.18)

'Thus in example I we have an exponential be-
havior, while in example II we have a power be-
havior.

~ f ~-~ corresponds to approaching the minima
of the potential for q quantum mechanics. The two
different behaviors (3.16), (3.18) show that these
potentials behave in a very different way in these
two cases. In fact, it is harmonic near the mini-
mum in example I while the potential is much
flatter in example II. As a result WKB matching
will lead to rather different results. In example I
one would obtain a result equivalent to the dilute-
gas approximat&on' of Euclidean field theory. "
In example II a different result will come out.
This question is important for the problem of
quark confinement, since in the dilute-gas ap-
proximation the Yang-Mills theory does not Seem"
to confine quarks, contrary to the initial hopes of
Polyakov. " This problem is currently under in-
vestigation. According to Sec. II one performs
the canonical transformation"

A, =A„,(x,f (q))+A;(x),

dx A, (x)G„„(x,f(q)) =0,

which is the method we proposed earlier. '

r

ations is entirely solvable.
Finally, we note a crucial difference between

example I (mass scale) and example II (no mass
scale). In example I, fca. nnot be computed ex-
plicitly but since h(q) is the integral of the mag-
netic field, one has

h(f) - ce "~,
f~00

where C is a constant and JU. is the mass of vector
field. This leads to the following behavior for the
inverse function q(f):
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