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We discuss the use of normal-product methods in dimensional regularization to effect the renormalization of
quantum field theories expressed in the functional formalism. In particular, we discuss the renormalization of
symmetry operations in this formalism, and the consequent renormalized Ward identities, and apply these to
a discussion of the gauge invariance of general gauge theories, and the definition of renormalized gauge-

invariant operator insertions.

INTRODUCTION

Normal-product methods in quantum field theo-
ries have, since their definition by Zimmer-
mann, "been recognized as providing a very con-
venient and rigorous calculus for deriving finite
relations between Green's functions without having
to consider explicitly the divergences of the naive
theory. In particular, Ward identities can be de- .

rived without using canonical commutation rela-
tions with the consequent appearance and cancella-
tion of "Schwinger" and "seagull" terms. The only
other way of avoiding these complications of the
canonical theory is to use functional methods to
define the Green's functions of the theory and to
derive Ward identities between them. In particu-
lar, the use of functional methods appears to be
essential in the discussion of the quantization and
renormalization of non-Abelian gauge theories. "
For these reasons it would be useful to have at
least a partial marriage between normal-product
method. s and the functional formalism. The actual
renormalization would then be taken care of as
usual by the definition of the normal products
within the Lagrangian, and we would be able to
discuss the invar iances, and hence Ward identities,
of the renormalized theory by the usual powerful
functional techniques. It is the aim of this paper
to show how at least some parts of this project can
be carried through.

To start on the program it is essential to have a
normal-product formalism, that is, a renormali-
zation prescription, which satisfies two basic
criteria. Firstly, with an eye to gauge theories,
it should be compatible with the symmetries of the
theory. Secondly, there should be a convenient
Wilson expansion which can be inverted to express
the normal products in terms of the naive field
products of the theory in a useful way. For both
these reasons we will use exclusively the dimen-
sionally regularized normal products as defined
by Collins. ' The dimensional renormalization
preserves the symmetries of the theory which are

not explicitly dependent on the dimension of space-
time (modulo some difficulties with y, -type chiral
symmetries), and, moreover, as we have shown

previously, ' it allows a Wilson expansion. In par-
ticular, we can express the Wilson coefficients
in terms of dimensional singularities, that is,
singularities in the dimension of space-time, and
thus relate directly the Wilson expansion of opera-
tors with the counterterms in the renormalized
Lagrangian. ' Of course, everything relies very
heavily on the fact that the dimensional renormali-
zation scheme is a consistent local renormaliza-
tion, and that a, renormalized action principle
holds in the renormalized theory. The former
has been shown directly by Breitenlohner and
Maison, "who also proved the latter statement
which was also demonstrated by Collins. '

In Sec. I we will discuss normal products in a
functional formalism beginning with a review of
the definitions of the various types of-normal pro-
ducts, and proceeding to use these definitions to
discuss the properties of the normal products, and
their use in the derivation of renormalized sym-
metry principles within a functional scheme. In
Sec. II we use these methods to discuss the pro-
perties of gauge theories, and provide a normal-
ized analog of the Becchi-Rouet-Stora (BRS) trans-
formations. " With these we proceed to discuss
the gauge invariance of the renormalized S matrix,
and then the definition and properties of renor-
malized gauge-invariant operators within the the-
ory. The main result of this is that the two crit-
eria of gauge invariance proposed by Lowenstein
and Schroer" within a Bogolubov-Payasiuk-Hepp-
Zimmermann (BPHZ) normal-product scheme are
seen to be redundant, in the sense that it is shown
quite simply that any naive field product which is
invariant under the generic BRS transformation
gives rise to a renormalized insertion product
which is invariant under the renormalized BRS
transformation, and whose Green's functions obey
the same Ward identities as the uninserted Green's
functions, and whose S-matrix elements are in-
variant under a change of gauge.
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I. NORMAL PRODUCTS AND FUNCTIONAL METHODS

A. Introduction

Following closely the original definition of
Green's functions of normal products by Zimmer-
mann, "which employed the BPH subtraction
scheme and the definition of the subtractions via
the forest formula, ' Collins' defined the Qreen's
functions of normal products in dimensional re-
normalization. The BPH subtraction scheme is
replaced by the 't Hooft and Veltman' dimensional
subtraction scheme suitably expressed in terms
of a forest formula. That the dimensional scheme
produced a consistent local renormalization was
proved, indirectly by Speer, "and directly by
Breitenlohner and Maison" in the course of show-
ing that a renormalized action principle held in
this scheme. We have shown in a previous paper'
how Zimmermann's method. can be extended to
provide Wilson expansions in the dimensional
method. These are expressible in two terms,
with the singularities of the unrenormalized pro-
ducts expressed either in terms of a space-time cut-
off as usual, . or in terms of a dimensional cutoff, that
is, as poles in the dimension of space-time. This
latter representation is exactly that used for the
counterterms which define the renormalized La-
grangian relative to the generic one, and it was
this property which was exploited to express the
various normal products in a "normalized" La-
grangian in terms of the naive field products. ' It
was found essential to distinguish between various
types of normal products, specifically those ap-
pearing in the I agrangian, of which we demand
that they give finite Qreen's functions for the the-
ory upon arbitrary insertion in the free theory via
the Qell-Mann-Low formula and renormalized in-
sertion products, in particular, those appearing in
the equations of motion, of which we require only
that they should have finite Qreen's functions upon
single insertion in the already renormalized the-
ory.

Once we have reorganized the renormalized La-
grangian into a normalized Lagrangian, where all
the divergences are hidden in the definition of the
normal products, and established the relationship
between these products arid the corresponding in-
sertion products in the finite equations of motion,
etc. , we are free to use this normalized Lagrangiar
in our functional integral which generates Qreen's
functions, and so long as we suitably restrict the
class of differential operations on this generating

functional we generate relations among finite
Qreen's functions expressed in terms of normal
and insertion products.

In the following we shall adopt the convention
that the term "normal products" embraces both
the Lagrangian normal products, 1V-products, and
the insertion products, I-products, and also, if
required, the intermediately renormalized prod-
ucts, A-products. '

B. A review of normal-product definitions and properties

Qiven a classical, or generic, Lagrangian,

with A, coupling-constants and C,. monomials of
fields, quantum field theory dictates that we must
add formerly divergent counterterms to S~ to
form

g&- J
kC E

with I. some matrix with divergent entries, and E
some set labeling field monomials which, without
loss of generality, can be taken to include J, and
is possibly strictly la.rger, or even ot countably
infinite size. The problem of renormalization the-
ory is to choose J so that K=J so that we can then
define bare quantities

so as to reduce the renormalized Lagrangian to the
bare Lagrangian:

Throughput we are using the definitions md termi-
nology- of Ref. 9, in which the attitude adopted is
explained in greater detail.

The problem of "normalization theory" is to
provide a useful definition of a normal product
such that the renormalized Lagrangian can be
written as a normalized Lagrangian:

The way these steps are achieved is via pertur-
bation theory and the Qell-Mann-Low formula;
the N-products are chosen such that

(Ty, (x,) y„(x„))= Tp', (x,) ~ ~ ~ y'„(x„)exp i 2'„„,(z)dz
J

rrp,'(x, ) p', (x,) U JF[@,](z:)dz,
n=O i n,. J

(6)
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is finite. In contrast to other'formalisms, no
claim to,finiteness is made for the individual
terms of the series, only that the sum of all terms
up to order n in the N-products will be finite to
order n in the coupling constants of the theory

The renormalized insertion products, I-products,
are a generalization of the N-products and are de-
fined so that (I-„""-[y,]j is a set of operators which
give Green's functions finite to order n, in p, , the
coupling-constant vector associated with the 4,
when all possible simultaneous insertions up to
the level of n, insertions of I [0,] are considered
in a theory defined by A..

By far the most important I-products are the
N-products,

Nl([@ ]
—IXP', x-xP[@ ] + @ + g

where A., defines 2«, and the single insertion
products,

Ix; A[@ ]

which appear in the equations of motion with each
a BC (/Bp, . or a 8 84,./8(9 (p,.) .

We denote by I [4,; ~ ~ ~;4-„](x,;.. . ;x„)what is
crudely

8 ]. 8
exp(i2-„"-),i Bpl i Bp„

where Z~"=-Z~+Z, p,4, , or more correctly as

exp (zSa-"),
5/z(xz) p z l5 p, „(x„)

where

Sp'-'-=Zg "- z dz

-=S~+ Q zz, (z)4,.(z)dz.

It should be noted that an insertion of

fdx, dx„I[+,;.. . ;4„](x,;.. . ;x,)

defined by a generic Lagrangian Z~ then for deduc-
tive reasons we will define I"[M-,;.. . ;M„] by its
Qreen's functions in the form

(TI [M,-;. . . ;M„](x,;.. . ;x„)q,(y, ) q„(y„))
—= FP (TM, (x,) ' ' 'M„(x,)y, ( y ) ' ' ' y„(y„)) ~ (7)

"FP"denotes a finite-part operation which can be
applied to the right-hand side via an extended Gell-
Mann-Low expansion:

(TM, (x,) V .( y.))

~ ~
~

~

(

TM;(xIrp, ''„(y„)exp i 2'(z)d, „z, ) . (8(

It will be seen that this definition of I corresponds
to the form given above. The dimensionally regu-
larized FP is esseritially as given by Collins, but
see Ref. 8 for an interpretive note.

In a sense these definitions are all we need to
discuss the properties of operator insertions, etc. ,
but in order to apply functional techniques we must
know how the Lagrangian is cast into "normal"
form. To do this we make use of the Wilson ex-
pansion and the.equationS of motion as in Ref. 9.
Essentially from a knowledge of (TI- [M,]y, . y„)
and (TM, y, . y„) we obtain a Wilson expansion
following Zimmermann's methods" as used in
Ref. 8. Applying these to ihe products appearing
in the equations of motion we demand that

N [@]= I BC

a 94
s(&.v) &(B.v)

'N[4'] =I

so that the naive functional proof' of the equations
of motion goes through as if the N- and I-symbols
were absent. ' The properties of the insertion pro-
duct system as proved by Breitenlohner and Mai-
son" and Collins' can be written as follows:

A. Lineaxi ty:

(TI [nzM, + nzMz', Mp;. . . ; M„]y, p„)

= n, (TI [M,;;M„]y, y„)

+ n,'(TI [Mz', . . .;M„]((((, ' y„), (10)

where the z,. 's are independent of v, the dimension
of space-time, and are Lorentz scalars. This, to-
gether with the trivial total symmetry of the i
labels, gives complete linearity.

B. Desi vative property:

(often written II, J N(4', ](x,)dx, by many .authors)
will trivially have finite Green's functions. What
is nontrivial is its relationship to II,. fI[4',](x,)dx, , .

in our notation. ' As, above, all arguments of N-
I

and I-products will be dropped when there is no
risk of ambiguity.

In terms of these definitions we can now give
the properties of the normal products. Given
monomials ~,. of the interacting fields of a theory

8
(TI [Mz j ~ j M ( M&] (xz j ~ ~ y x( y y x&)((pz p&)

Xf

=(TI[Mz&. . . , BpM,.;.. . ;M„] (xz, . . . j x;j. . . ;x„)pz ' 'p„). (&&)'
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C. The quantum action Principle: Let us define
the generating function of connected Green's func-
tions with operator insertions by

W[M; a; A] = T exp i S,„(q](x);a(x); A)dx
C

a are unquantized external fields including sources
for the p fields, say j, and for the monomials M
of these fields whose insertion products we wish to
discuss, say p, . Let us split the generic Lagran-
gian into

Rg —=2~~+ R~~+ Z-'+ R~,

where

2~ defines the theory we wish to discuss,

R~o

-=g t],M, , the monomial sources,

Z'= P j,.p, , the field sources,

R~ contains the rest, say other composite
operator sources, or pieces wholely de-
pendent on the unquantized fields.

Now we can discuss three types of variation of 8'.
(i) Vayiation of the external field:

1 5W
i 5q(x), ,

TI' q o (x)exp i 2s,.„,(z)dz
By

These are the generalized equations of motion,
and can be cast into the more usual form'" by
splitting C~ as above.

(iii) Variations of a parameter:

TI' o exp i 2„',.„,(z)dz, (17)
BTV, B$g
BA, BA.;

where So= 1 Zo(z)dz T.his is merely a degenerate,
but useful, case of (i) when A, cZ o,.„„but also
holds for A, cZ«.

When we pass from the I-products to the W-pro-
ducts we would like to maintain relationships A and
B. A is clear from the definition of N-products,
and B is almost as easy:

—(x[B,c]—B,iv [c])

N[B,C] —8, —IV[C],8 i]I[C]

=I (B,C) —B,I —,8, i]I[4]
64 5

B +I;8 4 -B I54 ' 5 54

TI' ' (x) e~p i Ns,.„(z)dz
5a, x) &a,. L

(14)

so that taking another functional derivative, say

&/5f (x) will denote a functional derivative, where-
as 5/Bf will denote the Euler derivative, 8/Bf
—8 8/8(BP)+ ~ ~ ~ .

There should be no possibility of confusion.
This property (i) is what makes the generating

functional useful. It should be noted that we use
I' to signify that the I-product is with respect to
the whole of 2'. %'e have in particular that

5W TI'[M, ](x,)exp i 2 s,.„,(z.)dz.i Bt],; x,.

(18)

but [&/&q], 8,] = 8„8/Bp on Lagrangian products C

since they contain no second-order derivatives;
so we get

54 94 54 B4"
8 — +I B —-BI — -B I~6@ ~ By, ~ 6p ~ By,

So we see that I[8 4] = 8 I[4'] V4' is a sufficient
condition for 1V [8,+]= B,N [4'].

C. Functional methods

We are now ready to consider the functional for-
malism per se. The essential step is just to ex-
press W[M; a; X] as a functional integral with re
spect to the quantum fields in the usual way:
=-ilnZ, where

1 B

i st], ,(x,.), , ' z]]]=J ~]q]8xp(~~]~]+~~q]. (19)

we pick up two terms, one from I', the other from
fZzdz, thus forming I[M, ;M, ](x,;x,.), and so on. .

Of course, I'[M, ;M,;.. . ;M„]=M,I'[M,;.. . ;M„] for
M, a linear function of the fields.

(ii) Variations of the quantum field: Suppose
q] —q]'= p+ gg, then we will have

Z is the generating functional of full Qreen's func-
tions, and we have suppressed all dependences on
external fields except for the field sources j. S is
the action, the space-time integral of the relevant
Lagrangian density 2, and we have used a notation
in which jy means j y withthe indices suppressed,
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and we include integration in our summation con-
vention. This compact notation of Lee' and Zinn-
Justin' will be extensively used in Sec. II. The
generic, renormalized, and normalized generating
functionals ZG, Z„,Z„, are defined using ihe cor-
responding S's.

The most important part of the action principle,
namely (i) the equations of motion, are derived in
the generic theory by considering shifts in the
fields y, giving just a change of integration vari-
ables in the functional integral. Thus under y —y'
=~+~9,

z, [g]-z,[I]
+ &x d ydxi ~ +ij +50 x

. 5SG . . 5Q

6p

&& eiSg[)01+[/)0~ 0( 2) (20)

where the 5(0)5Q/5y term comes from the Jaco-,
bian of the transformation. So we get to the gene-
ric equations of motion:

0= d y +j + —. 6 0 e'sot'p5S
'

. 1 5Q

6p i 5y

(21)

In diagrammatic terms the 5(0} term corresponds
to the contraction of a single-line loop to a point
if the 5SG,/5y operator acts on a line terminating
in Q. We have not made a Wick ordering of our
original Lagrangian, which would remove these
terms. If the transformation y- cp' is measure-
preserving this term disappears since then 5Q/5y
=0.

We can now' ask how to derive the equivalent re-
sult in the renormalized or normalized, theories.
We know from the renormalized action priiiciple6 "
that the equations of motion will be

0= d y I ~ +jI e~s~r~&'"e; 22
6S
5y

However, we would like to be able to derive these
from a trivia-l change of variables to keep us
wholely within the functional scheme. To do this
consider a change of variables: y-p*= p+qI[Q]
The result of this will be

d[rP] "1[0]1jr[0]—10(0) )s'* 1""'~5S . . 5I
6cp 5y

=0 (23)

ol"

=0 (24)

since we know' that 5„S/rj5( )x=I [5S~/5'] This is.

an interesting result which can be viewed several
ways. It first of all tells us that I [5S~/5 p]I [Q]
—i 5(0)5I[Q]/5y is a finite operator, since ji[Q]
is by definition. This is far from a priori obvious.
If we think of the subtractions needed to render
finite a Green's function containing (5S~/5y)Q as
an insertion, then we would expect to include sub-
tractions for all kinds of subdiagrams involving
lines in both Q and 5S~/5y. What the above tells
us is that we only need subtractions involving a
single contracted loop. In particular, we will have
formed a finite operator by applying a set of mini-
mal subtractions to (5Se/5[[))Q which must there
fore define I [(5SG/5y)Q] "He.nce we have argu-
ments, independent of the detailed proof of the
action principle, that the equations of motion are
(22) as above. Now this argument" relies heavily
on the minimal nature of the subtractions in di-
mensional regularization (DR} and, in fact, we
can go one stage further. In DR we should perform
our subtractions in momentum space before com-
ing back to coordinate space, whereas above by
parametrizing the functional integral in coordinate
space we have yffectively been working in coordi-
nate space. So suppose we make a change of vari-
ables in our functional integral from (y(x)] to
(j (p}] where

p (p) =.
(2 „(,fd "x e'~ "y(x),

the v-dimensional Fourier transform. Since this
is a linear transformation we preserve the func-
tional measure to within a constant, and we can
consider the transformation equivalent to y —y'
= ]]0+qQ. Without loss of generality, consider
Q = ]p". Then

v -O'=4+(~e") =a+(~v" ') *P.
Therefore

so we get a Jacobian to order q of 1+ntr (ey" ') = 1
+n(ep" ') (0)fdp, which is the Fourier-transformed
analog of 1+n J qy" '(x)dx5(0). Now, however, we
have to interpret fdp in a v dimensional continua-
tion [in terms of Feynman diagrams this is just a
term f(p —m )dp/(p'-m +it) coming from the con-
traction of the single-line loop] which, as usual,
is zero. '" Hence we get the elimination of the
measure-induced term in an analogous fashion to
the elimination of the Feynman diagrams with a
single-line loop in the proof of Collins with re-
spect to equations of motion. Hence, miraculously,
we no longer have to worry about the measure-pre-
serving properties of our transformations y - cp'

or y - cp*, and in both the generic a~d renormal-
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ized theories can proceed in a completely naive
way.

Whenever the measure-induced term vanishes,
we have the relationship

I ~ Q(x) =I ~ I[q(x)]5S~ 6$~
(25)

"I(q]=I ' I[q]=I ~ =0
6p 5y ~ Gap

for each x, which, we now see in the dimensional
scheme, holds for all Q and can, in effect, be taken to
be the content of the equationsof motion, and is a
nontrivial statement. The elimination of the mea-
sure term quite trivially will. have pleasant sim-
plifying effects when we coiisider renormalized
transformations, for then it is by no means ob-
vious that the measure is preserved in ihe trivial
sense, namely 6I[q]/6p=0, even if 6Q/6p=0.
Since we are now free from all restrictions as to
the functions Q we can use, we can choose them
to be the infinitesimal generators of symmetry
(or broken symmetry) transformations of the
generic theory. It is clear that if {Q}generate a
symmetry of the generic theory, then {I[q]}gene-
rate a corresponding symmetry for the renormal-
ized or normalized theory since the infinitesimal
change ln SN is

normal-product formalism. In pa'rticular, we
discuss how the gauge invariance of the renor-
malized S matrix [assumed to exist, if necessary
by spontaneously breaking the gauge symmetry
down to U(l)] is demonstrated, and find consider-
able simplifications while discussing the dt.finition
and properties of gauge-invariant renormalized
operator insertions. We shall not be discussing
the renormalizability of such theories, which we
assume has been done, presumably using func-
tional techniques and dimensional renormalization
along the lines of the work of Zinn-Justin, 4 I,ee, '
and Lee and Joglekar. " We shall assume through-
out that a renoxmalized action S„exists in the
usual sense.

Since to a large. extent we shall be repeating the
analysis of Lee and Zinn-Justin in a normalized

'

theory, we will rely heavily on their methods and
notation, in particular, the summation convention
over all, indices, discrete and continuous. To dis-
tinguish the two we shall throughout use Latin in-
dices {i,j, . . .}to represent discrete, e.g. , inter-
nal-symmetry, labels, Latin labels {a,5, . . .}to
denote pairs of internal and Lorentz indices {(i,p),
(j, v) ~ ~ }, and Greek indices to represent space-
time as well: {o., p, . . .}corresponding to {(i,ii, x),
(j, v, y), . . .}. Thus

if and only if (6S~/6y)q =0, i.e. , {Q}generates a
symmetry of the generic theory.

In the general case we easily derive the Ward
identity

A.B.=- dx g A.(x)B'(x)

dxQ A; (x)B,'(x) . . (27)

d(q]«( I-'.IP'l'jI(q]} ""'""'"=o

(26)

where b. is the change of Z o under q —y' = y+ qq,
and J" is the associated Noether current.

II. APPLICATIONS TO GAUGE THEORIES

A. Introduction and notation

We shall now apply the formalism and results
of the first section to gauge theories. The object
is to show how the analysis of gauge theories in
their renormalized form can be carried out in the

We shall denote the collection of all physical,
i.e., nonghost, fields by {A }which allows for
both gauge and matter fields. Their sources will
be denoted {Z,}. {q }will represent all fields,
including ghosts, with sources {j}, and the col-
lection of all composite fields introduced into the
Lagrangian at various stages will be {B}with
sources {k ]..

B. Generic and renormalized gage symmetries

Following the analysis of Zinn- Justin, 4 we con-
sider the generating functional in a gauge specified
by a function of the fields I

or

Z~~[J;q, q;K, I., B]=- d[A;C, C]exp(i{S~[A;C,C]+J A +q C +r7 C +K,D~C~ ——2I. f „CBC„—R I' })
(28)

Z~~ [j;k] —= d [y] exp (i {S~ [y] +j y + kB})—= d [y] exp (I {SG[y] }),. (29)
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In principle for full generality F can be any
quadratic func tion of dimension two and ghost number
zero of all the fields, including the ghosts C, C.
If this possibility is allowed then, of course, we
lose the usual train of argument leading to the ef-
fective Lagrangian, and instead just impose Slav-
nov invariance (i.e. , the invariance under BRS
transformations") on our effective action S~:

S~ — ~ „xdx,

Ra elf(y) = Ra i~«(A) —2 F + 2o rr ~

(30)

where the Faddeev-Popov term 2 g pp is chosen just
to restore Slavnov invariance. Curci and Fer-
rari"" give a simple example of this, and a dis-
cussion of the connection between Slavnov invari-
ance and the unitarity of the S matrix. The rnoti-
vation for this is that since a quadratic F will mix
under renormalization with CC terms, : there ap-
pears to be no a priori reason for excluding them
from the original Lagrangian. However, we shall
have more to say about this later.

The sources of composite fields are' intr5duced
since the composite operators appear in the BRS"
transformation y —cp'= y+ 6'y:

O'A = D~ Cg6A. ',

above.
Since all of the composite sources except for F

are BRS invariant the WI reduces to the more
usual

5*A = I'[DB C~ ]5k*,
6* ~ =I'[- 2 f~s«g «) ~&*

0+C =I [ F]5X-+,

(34)

5*yq =I'[Bg]5X+,

where, as usual, the I-products are known not only
in principle in terms of the generic fields, by use
of the Wilson expansion, ' but also explicitly since
the products Bz already appear in the I.agrangian.
The I product I'[B&) is, therefore, the renormal-
ized operator for an insertion of B~ into a theory
with arbitrarily many B "s already, via the k B
terms in the Lagrangian. Hence

(
5 5F~ 5

~e gy g g g 0

Following the discussion of the preceding section,
the renormalized version of the BRS transforma-
tions, and hence the symmetry of the renormalized
theory, will be y - y*= y + 6*@,

or

O'C = -Fo 6~',

e'y, =B,e~',

(31)

I'[B )=I; '~[B ]= --S'-'

with S~-'=SG+q B, and so

(36)

where 6A. ' is an infinitesimal anticommuting
pa.rameter. The naive Ward identities (WI, ', s) and
equations of motion (EM) are'

+r, ' „Z,"=0 (GWl),
6Bg

M ~ Bc' 5k

(32)

~ +j +kq ~ Z~"=0 (GEM) .5S~ . 5Bg
Gap

~ 5p

It is clear, by differentiation with respect to k,
that these equations are mutually compatible only
if 6B~/5@~= 0, which is precisely our previous
condition for the preservation of the measure un-
der the BRS transformation. For this generic case
5B,(x)/6'~( y) is clearly zero for F linear, and for
F nonlinear but globally symmetric in any theory
with only totally antisymmetric three-index sym-
bols. However, for other theories this is by no
means clear even in the generic case, let alone
when we come to the renormalized case, and we
are only saved by the inclusion of the zero-valued
Jd "p in dimensional regularization, as explained

In fact, by conservation of ghost number only the
term R' could appear quadratic in the sources,
and hence only I' [F ] can be effected, by a con-
stant linear in R. Thus we get renormalized WI's
and EM:

(37)

When we come to use these WI's it must be
remembered that although they are identities,
which can therefore be arbitrarily differentiated,
it is only when there a,re no summations (i.e. , in-
tegrations) implied by the differential operator that
we can guarantee the finiteness of the individual
terms. In other cases we just derive WI's for
partially renormalized operator insertions into a
renormalized theory.

Now we should reconsider the question of the
form of F, since it is only F of the (BB] which is
not itself invariant under the generic BRS trans-
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formation. We can consider the most general
form for F

F (A; C, C) = F, (A) + Cq F, q(A, C) (38)

and the consequent most general Faddeev-Popov
term

2~r~=C L, (A, C)+C CBL, q(c) . (39)

If we now introduce a BRS transformation defined
by just E, , i.e. , O'C =-F, 6X', and demand in-
variance of ——,

' E '+2 g pp under this transforma-
tion, then it is an easy, but tedious, task to prove
that the only solution for cog pp is just the one which
reduces the terms in the Lagrangian to ——,

' E, '
+C BF, /BX, that is, the terms required if E were
just taken independent of C and C. Therefore, if
we start with only an E, term, the other terms will
not appear upon renormalization. Following gene-
ral arguments we know that we can- renormalize
the Lagrangian respecting the symmetry which
will be expressed by 5*C = I' [E,„]5—A.*, and the
beauty of the normal-product formulation is that
exactly the same algebra as was used to prove the
generic statement above will prove the correspond-
ing renormalized statement that we have no need
for terms of the form N'[CBF, ~(A, C)]. This is
because we can use

6c N" E-'=' E. 6c8 8-
etc. That is, the most general form of the renor-
malized Lagrangian symmetric under the I'(F,]
BRS transformation will just have a gauge-fixing
term: N' [——,F, ']. Moreover,

From. this form we can easily follow the standard
steps' to derive the WI's for the generating func-
tionals, W, of connected and, l, of one-particle
irreducible (1PE) Green's functions where W
=- i ln Z and W+ I'+ jap =0. We have finally

gP F gI'F rF
(41)

6y 5k 8 5C8

It is customary in the generic theory with linear
to define a new functional I"G by I ~=- I'~+ —,'E ',

which has the effect of removing the gauge-fixing
term at the tree level since I'~~=S~~+ 0(h). The re-
sult is that we get

6A 5K 6C 6L " 5C8

If we now go to the zenormalized theory with linear
E the same trick goes through. The natural defi-
nition is-.

f'+—= I"++N'[—E 2] (43)
I

but here, that. F is linear implies that N'[ —,
' F '] is

quadratic in fields and hence trivial; N-products
are defined from I-products and linear I-products
are trivial. ' Hence N'[-,' F']=: —,

' F '. .
In the case of E nonlinear the situation is less

simple, even in the generic case, since the equa-
tions of motion multiplied by E do not take the
usual simple form in the 1PI language. We can,
however, follow the procedure of quinn- Justin4 in
spirit. The renormalized action S„will be the
most general local polynomial of degree four satis-
fying

N'(2 Fo ]=I' Eo
8 8—

iF
A8 g8 ZN 0 (40)

so no CC terms enter in that way. In particular,
the Lagrangian will not contain CCCC terms, and
all the CCA' and CCA terms will be contained
within N'[C, (5E, /5A~)D~C„] which will be the
normalized Faddeev-popov term. That is not to
say, as we shall see later, that E, does not mix
with CC in the sense of I'[F, ] containing a CC
term. Normalization will have destroyed the close
connection of N'[ , F, '] and (I'[F, ])'. —

Hence throughout we shall treat E as the most
general quadratic function of A. fields, and just
indicate the simplification that occurs if we re-
strict to the usual case of E linear in A.

It is clear that now we can use the EM to simplify
our %I since the only I-product that appears in the
WI is I'[(SF'/5y )s ] = I'((6F~/6A )D"C„]
= I' [5S~/5C~]. Hence we have'

where SNF ls now independent of A, and the sub-
script 0 refers to setting g =0 in the normal pro-
ducts. From this we derive

SN 5SN 5SN 5S 0, (46a)

5ID(Ej 5S„M0[Eq] 5S„" 5S~N

6I'(F) ~ M'(F.] =0
6C.

'
6C.

after we have used the equations of motion. From
(46b} we see that I,'[F ], which is I' [F ] modulo
a constant linear in g, can have some C, C depen-
dence, although we have seen that N'[ —,

' E '] is m

(46c}

(44)

We now expand S„in terms of R and subtract the
gauge-fixing term on this level:

S,'= S~ —It.I,'(E.]+N,' [,' E.') + —,
' a.,It.I-t„(45)
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dependent of C and C. The relationship between
the two statements is no longer at all direct, and
there is no contradiction.

For the situation of F linear we can, of course,
follow Lee's method for the generic theory' to de-
rive

F'~ [A] r~„[A]=0,
(47)

r~„,„-[A]= i ~„.„[A],

where we have expa ded rNF as

r'„[p, u] =- I ~„[A]+c.r~,.~ [A]c~

KI',„-[A]C + (48)

We also know that 5r~/5K = —5W~/5K is the gen-
erating functional for Green's renormalized func-
tions with an I' [D8 Cz] insertion, so we can identify
—r» ~[A]C~ as this functional, and similarly
r,„~[A]as the generating functional for renor-
malized Green's functions with exactly one ghost
and one antighost external lines.

in the physical sector is a homogeneous linear
function of the physical sources. ' This is equiva-
lent to the proof of 't Hooft and Veltman" using a
diagrammatically proved WI for a change in F .
We would like to show how this transfers to the
normalized theory.

The proof of Lee in the generic theory with li-
near E proceeds by transforming the obvious
statement

1 5SZE - d [p] ~
]" ieeg][ id+]iild

Z ~f p 5q- p

=
J( d [el] (F,d F, —C D[C )

F
&«i~G r. ~& i~~ (49)

by means of a WI for F ~F derived from the
usual WI involving F, by applying r F [(I/i)(5/5J)]
In a normalized theory we cannot use this and
must proceed from

1 8 z = d[II] l[F d F ]-I c Dec,
I

N
8

)( ~iSgfg I+i Jp~ F
(50)

I

C. Gauge invariance of the renormalized S-matrix

If we consider a change of gauge-fixing term
E-E+ ~E-=E+ q4'F, then we have invariance of
the S matrix if we can prove that the change in Z"

by obtaining a WI involving r[F C F ] This w.ill
be obtained by considering the normalized theory
corresponding to S~=S~+NC DF with N a new,
constant, source. From this we have

0= d' y j —iq R —iNR I &E +N I F F -I C D&C ei N'"'"",
I aA,

(51)

where we have used the ghost EM to simplify the WI term. Taking terms to 0(N) we obtain the usual WI
plus

0=J d[ ]II'e[lF, F]RI' C, ' DeC„.+i ![C,RFe;R ] —'iR, I e,[]R—Fie'R i [C,ReF,e] e' '' '"'",
(52)

which, when we set k =0, becomes the renormalized generalization of 't Hooft and Veltman's WI." Thus
we derive

r
zz= — d[cp]Lj[iI[C &F,;BB]—i@[]R~I[C,&F ] —iR I[SF ] je'~N[R'"",

p

(53)

which in the sector with no external ghost fields
gives

9 Z~=-q J.x.F i i
p

(54)

for some X, which gives the desired result of the
gauge invariance of the renormalized S matrix. '

In fact, by analogy with the treatment of an
Abelian gauge theory by Lowenstein and Schroer"
and Collins, "we can go further than this. In
essence we have replaced the F of the F 4F in-

sertion with a ghost field C, (whose equation of
motion we know readily) along with insertions of
composite operators B' at external sources. In
QED this is useful because the ghost C is essen-
tially free so the use of the ghost equation of mo-
tion greatly simplifies the structure of the Green's
function. The next logical step would be to attempt
to express the 4 F part in terms of a ghost field.
In the Abelian case this is achieved for the Lorentz
gauges in Ref. 20 by using a trick of Slavnov, "
which corresponds to introducing by hand the free
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5C. = (E. f.„c,c,) 5x,
I

or 6y~ = B~ 5X, (55)

which give

5(CC) = C (F —f g Cgc„)5X + 2 f g~ CBC~C 5X

ghost particles. However, for general 4 F and a
non-Abelian theory the situation is more compli-
cated. Firstly, 4F need not be proportional to
F, and secondly, the ghosts are now no longer
free. Hence to proceed we must introduce new
sources for CC and A' (corresponding to mass
terms for the ghost and gauge field) say p'Cc and
—,
' m'A'. Now we use the result of Curci and Fer-
rari" that the Slavnov-invariant piece of the action
is also invariant under the transformations

6A =D Cg5X,

6 (—,'A'} =A'"D~ C~6A.

=A"e.C.eX

= -(sA) C5X. (57)

5(XCC+ p —', A') ='(C ~ &F——', Xc ~ Cr C)5X. (58)

i

The terms which can appear in F, and hence 4F,
are precisely 8 A and —,'d gyABAy if we restrict to
globally symmetric E' terms (which we will do
henceforth}. Hence modulo the C ~ C&C terms any
admissible C AF can be expressed as a linear
combination of 6(CC} and 5(-,'A'}. So we use a
source m(XCC+ i],—,'A'):

= (c.E.—-', f.„c.c,c„)5X

= (C F ——,
' C C&C)5X, (56) This will produce a WI:

0= d[p] I'[CAF] ——,
' AI'[C ~ C~C]+k„I' A.CC+ —,

' PA;—

+ j I'[3CC+-', pA';B]iq~B~, 1'[XCC+, l!A']Ie' (59)

from which we can derive expressions for I' [CA F; Bo] and I[Ca E] as required above. The result is

Z = — d[ro] j„—I XCC+ p. —A; —. : + —X1[C C& BC] jsl[XCC+ pA—'; B B]}S2 ~6 p

-iq&R&( ,' XI [C .C &C] -I I [A—CC+—,
'

P A2;B,])—i A I [i[ F ]~e'~is'"'"". (60)

The term I[XCC+-,' pA', 5(B )/5X] might appear surprising especially since it is nonzero in the Abelian
and linear F limit. As is clear from the derivation above it is present only because of the appearance of
I[Cd, F;B ], which necessitates keeping the k„ terms. Its effect is to cancel precisely those diagrams of

[IXC CB „;B.] in which C'C' and B'„B',are contracted as shown. : This, and the most important struc-
ture of the above equation, is best seen by specializing to the Abelian case with F= fs A and aE=(sf)s A.
Then we can set p. =0=A, and look at only the sector with physical external fields, i.e. , with no ghost
sources. Then

Z~= — d[q] J„, I(&f)cc; -" -—J „I[(&f)CC;B, ;B „] e"]["P]"".
8$

(6&)

Let us now denote the gauge field alone by A with source J, and differentiate the matter fields as T]j, i[] with
sources g, g. Then:

Z~ =
J

d [p](J~I [(b f)CC; 8 F]+ rI [(6f)CC; T]I CC+ ]t]E]+ &I[(6f)CC; —Ccg+ E$]
()

+J„.J .,I[(+f}CC;B „;B.]]e'~]j['"'"". (62)

If we specialize to a Green s function with N external fermion and antifermion lines and arbitrary exter-
nal gauge-field lines, then we will derive
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(TY(l((]) = ~(Ty(](I))
9$

=(n.f)Q(TI[CC; (]„,C; s„..C] Y(")IA, ,SAI„,)

N

+ (n f) p IL(TI[CC; pC; g~C] Y(")KT])k]f))+(TI[CC;(t)C.; T(I C] Y(")5 (1)ST]l )
i, j=l

+ (TI [CC; 7(,C; (JC ] Y'N)4 T(),'(p,.)+ (TI [CC; ]1),C; g,C]Y("'(g;h g,))-

+(af)g((TI[CC , il,.CC+il",T]I" '(I,.]+(TI[CC;—CCI,. +Ttl',.]I'"'(I;])]. (63)

~means the expression for Ywith the fieMA omit-
ted. As before we canusetheWardidentityof the BRS
transformation to express I in the presence of
other insertions, giving (essentially) the replace-
ment of I by C and the insertion of a B on a j
external line. In this manner the first two terms com-
bine to give just the contributions with connected
ghost lines, i.e. , from diagrams of the form)in
Fig. 1. In a similar, but necessarily more com-
plicated, way the last six terms conspire to elimi-
nate the vacuum ghost loops and also to cancel
the terms which appear with Y'")'T,.(]A),(, etc. to
leave only the contributions in Fig. 2 (compare Ref.
21).

We have, of course, used that the ghost is free
(i.eI. T the ghost equation of motion) and the dia-
grams should be understood as the generic ver-
sions of inserted diagrams. It is clear that the
only divergences which need subtracting to define
the renormalized operator are those from the first
two sets of diagrams, and we proceed to produce
the usual formula of Ref. 21 for n. (TY'"').

In general, of course, with interacting ghosts
the situation is much less simple, although an in-
teresting case to treat would be an Abelian theory
in a nonstandard gauge which gives interacting
ghosts but no extra terms.

D. Renormalized gauge-invariant operators

We now turn to a study of "gauge-invariant oper-
ators. " The literature on this subject is plagued
by two problems. Firstly, that formally gauge-
invariant operators (namely operators which are
functions of A invariant under the generic BRS

transformation) mix under renormalization with
non-gauge-invariant operators. In other words,
the Wilson expansion for the insertion of a gen-
erically gauge-invariant operator can contain the
renormalized insertion products of generically
noninvariant operators. Secondly, the study of
the gauge properties of the renormalized Green's
functions with operator insertions looks highly
complicated in the BPHZ approach, and led Lowen-
stein and Schroer" to define two criteria of gauge
invariance of those renormalized insertions. In
the case of massive vector-meson theory Collins"
has shown that in a DR normal-product formalism
the second criterion is redundant. We would like
to show that they are in general both redundant,
that is,-- that a generically gauge-invariant opera-
tor gives a renormalized insertion product whose
Green's functions obey WI's strictly analogous
to those for the uninserted Green's functions, and
whose S-matrix elements are invariant under a
change of gauge. In general, we will adopt the
label renormalized gauge-invariant operator in-
sertion (RGIOI) for an operator with finite Green's
functions whose S-'matrix elements are invariant
under a change of gauge, and our statement is just
that the I-produ'ct of a generically gauge-invariant
operator is an RGIOI.

Firstly, let us investigate the renormalized WI
satisfied by Green's functions with a single opera-
tor insertion 4. To do this we define

S' =—S'+ jp 4,

FIG. 1. Diagrams with connected ghost lines corre-
sponding to the first two terms of Eq. (63).

FIG. 2. Diagrams corresponding to the last six terms
of Eq. (63).
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consider
gF — d y el sg[lP]+t j (P (65)

since S~ is assumed invariant under the generic
BRS transformation. Now taking 8/8 p, we get

and thorn consider a renormalized BRS transfor-
mation on this. This will be defined using I[B ]'s
which are defined using S„, and therefore involve

So we get as usual

- OB. ~ - 640= d y j I B;4'+0 I B&'4 +I
6@g 5p

0= d [P] j I [B ]+ N I(B ]~ e'~]]""
N &R 6p n

j

d p]]]i l[B ]+1 B ] e'
l

d y j IB +II B&'n g~ g

-7 gC
+ p I B e'~&"'"

6y
(66)

~ @ i e l s N'+ f J (P

-- 64
5y

(67)

It is clear thai if we had introduced many 4's we
could go on differentiating ad infinitum to consider
the WI for many operator insertions. However,
considering just one and setting p, = 0 we arrive at

(68)

(69)

(70)

which gives

M, 54
0=

J
d[p] j I'[B;C']+0 I' B~; 4' +I' B e'~]]t"",

which is strictly analogous to the WI without @ insertion if and only if (54/5y )B =0, i.e. , 4 is invariant
under the generic BRS transformation. Similarly if |]4/5C =0 then the ghost EM with a 4 insertion will

also be analogous.
Now it is obvious that w'e can proceed to consider a change of gauge-fixing term in the usual way:

I

Z = d[y] I'[F &F; 4] I' C -D"BC; C e'~&"'",1 9 1 8 - ], , — 56F

and we require a Wl for I'[F 4 F, ; C ] obtained starting from

S~=S~+NC &E

0= d y I' E &F;@' —I' C D&C; 4 + I' C ~F; B& + j&I' C AF ', B&, 4 e' &+"".

(71)

or

5I[4] 54 ~

5X* 5x',

(72)

We would also ask about the analogous statements
for X-products. We know that

So again with (5O/6 p8)B8 = 0 we get invariance of
the S matrix by the old argument. Notice, how-
ever, that the two statements relating to WI and
variations of gauge are logically independent, each
requiring an application of the generic condition
on 4. But we have, in fact, shown that the generic
condition is sufficient to make I'(4) on RGIOI, and
thus the, two criteria of Lowenstein and Schroer
are redundant in this formulation.

What we have effectively shown is that

"I[B.]=I B. ,
54

Q gy Q

and with each gauge-invariant piece of S~ we couM
associate a different scale without fear of losing
this property. Therefore we must have

6iv[@] 6w [e] - 6c
5X* Gap 5y

(73)

for- 4 generically gauge invariant.
It should be noticed, however, that we have made

no statement about 5I[O]/6A', i.e. , the change of
the renormalized insertion product under the un-
renormalized transformation. If 4 were part of a
set closed under renormalization and containing

,only generically gauge-invariant operators, then
using the Wilson expansion we could derive that
5I [4]/5A'=0 However, in ge.neral (see the work
of Lee and Joglekar") this will not be true.
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