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Interacting Rarita-Schwinger field on the light front
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The coupled spin-3/2 Rarita-Schwinger field is investigated in light-front coordinates. The class of
interactions considered includes both minimal and anomalous magnetic-moment couplings to the

electromagnetic field, coupling to a scalar field, and coupling to a Dirac and a scalar field. It is shown that
the interacting theory suffers from a loss of constraints except when the external field satisfies certain
noncovariant conditions. The anticommutators are obtained and are shown not to be positive-definite in the
case that no constraints are lost. In the case of fewer constraints they are inconsistent with each other as
well as singular in the free-field limit.

I. INTRODUCTION

Recently there has been considerable interest in
field theories on the "1,ight front. " This approach
was motivated by the hope that one could find a
more convenient treatment of the infinite-mo-
mentum limit of the usual space-time formulation.
Two questions arise in this connection: Can fieM
theories be consistently formulated on the light
front~ And, is the formalism equivalent to the
usual one& Earlier works' involving electro-
dynamics of the Dirac field as well as some other
interactions of fields with spins —1 appeared to
answer both questions in the affirmative. How-
ever, recent work' involving two-dimensional
models and their generalizations has shown that
such conclusions are not tenable. In particular it
has been shown that a consistent theory is not
generally possible on the light front, and even
in the rare case when consistent, it may not be
equivalent to the same theory in ordinary space-
time.

In this connection it is of interest to consider in-
teracting higher-spin fields on the light front. As
is well known, not only are higher-spin fields more
complex, but they are also plagued with curious
inconsistencies such as indefinite metric and non-
causal propagation' once interactions are intro-
duced.

In this paper an interacting Rarita-Schwinger
(spin- '-) field is considered. Whereas the free-
field case exhibits four degrees of freedom (half
the number encountered in the usual approach) and
leads to consistent anticommutation relations, the
introduction of interactions leads to serious in-
consistencies as a result of a loss of constraints.

In Sec. II the free-field equations are considered,
with various interactions being introduced in Sec.
III. One finds that constraints are lost in the in-

teracting case except when the external fields sat-
isfy certain noncovariant conditions. Thus, for
example the minimally coupled field has six de-
grees of freedom unless the electromagnetic
field F„„satisfies F«=F„, i =1,2. In Sec. IV
the anticommutators for the minimally coupled
fieM are obtained using the action principle. ' For
values of the electromagnetic field leading to four
degrees of freedom, the anticommutators are
non-positive-definite even though their free-field
limit is entirely consistent. On the the other hand. ,
an attempt to quantize the minimally coupled fieM
in the general case results in anticommutators
that are singular in the free-field limit and are in-
consistent among themselves. Section V concludes
by summarizing the situation with some remarks
concerning the light- front approach.

II. THE FREE FIELD

Before proceeding to the discussion of the field
equations a summary of notation is in order.
The light-front coordinates are defined by x"
=-(x', x', x,x') with x'—= (1/v 2 }(x'+x'). One studies
the evolution of the field along the ~ direction
which plays a role analogous to the time. With
the usual space-time metric taken to be g„„
=diag(1, 1, 1,-1}, the metric on the light front is
seen to be g„=g„=-g = -g, = 1 with all other
components vanishing. The contravariant and co-
variant components of a vector are thus related
by

a, =a, a, =-a',
with the scalar product of two vectors given by'

a ~ b=-a„b"=a, b, —a b, —a,b

The Dirac matrices y" are taken in a Majorana
representation such that
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{r",r") =

Thus one has the useful formulas

p. &h" + (p»+ k r( rjp;)W"
+fr [(r(p(+m)»»& '-r»p&»j~'] =o (7)

and

(r')'=(r )'=0 The remaining eight field equations (the ((=i equa-
tions contracted with y, and the ((=- equations)
are all equations of motion. Separated into upper
and lower components they read

Separating the upper and lower components, one
gets

(r»p»+m)»1'"'+p t'"=o
and

(4)

(r»p, +m)lC'-&+p l' &-&

+ r' [(k r» p» —m) t'"'+ p( 0('] = o (5)

The upper component of the traceless part of the
p, =i equations is another constraint,

where A"' are orthogonal l&rojectors such that
A"+ A' '=1. The latter observation allows one
to write

y'= &2PA&"=W2 A&"P,

where P = y, and to define "upper" and "lower"
components for a given spinor |I). These are written
g") and P' ', respectively, and are given by

ii&s& = A&» &i{,

The Rarita-Schwinger field is described by the
16-coml&onent (Hermitian)vector-sl&inor |(„. The
free-field I agrangian is given by

'0 "p(g„-.r 6„r.——6.r„r,r'-r. ) p 0"+H c.

'mF-P-(g„. +r „y.)4", (1)

where P„=--ie„, and leads to the field equations

(y p+m)4" p"(r 0) -y" (p 0)-
r"(y p-m-)(r 0)=0. (2)

The equations with p. =+ are constraints, free of
derivatives with respect to x'

(A ' —A )[(y p, +m)p'+p l']

+ r'[(m ——,
'
y, p, ) g —p, &I » ] = 0,

where the transverse components g, have been de-
composed into a traceless part g, and a trace part
f according to

p y+&+& p»)» &+& (
my&+&

+ 2y [P P' '+(y, P, +2m)g' ']=0, (8)

p. (f'" r0'-')+(y p +2m)W"

+y {p rp& ' —-' mf& ') =0, (9)

p. f' '+(r»p»+m)4 ' '=0,
and

p, t'"+(y, p, + m)y &'&

+ r [p»»» + (k y» p» —m) g
' ' ] = 0. (11)

By eliminating p, l'&'& from Eq. (9) with the help
of Eq. (11) one obtains

P, P +P( &7I —P»I& + g (y»P( ™)g
--,' my'g "=0. (12)

Thus 10 of the 16 field components, namely g,",
((»'"&, and l "& are dynamical components, ' i.e. ,
they satisfy equations of motion [Eqs. (7), (8),
and (10)-(12)]. Not all of these dynamical com-
ponents are independent as they are related by
the constraints (4) and (5). Equation (6) deter-
mines &)(&

' while»cr"& are undetermined at this
point.

In order to get the secondary constraints, ' one
operates on the primary constraints involving the
dynamical variables only, namely Eqs. (4) snd (5),
with p, and eliminates the "time derivatives" using
the equations of motion. Thus the x' derivative of
Eq. (5}with Eqs. (7) and (10)-(12) yields

g
(-) ++ y-(4) 0

thereby determining g ' '. Similarly the x' de-
rivative of Eq. (4), upon using Eqs. (8) and (11),
leads to

2y p p(&)(& '-my p p&-&-m(y»p»+m)p&'&

+y (m —y(P )(2m+y(P()g" =0.
Upon eliminating the q,

' ' terms with the help of
Eq. (6) and subsequently simplifying the result
using Eq. (5), this finally reduces to

p r((& &+(p»+br»r, p,)4' ' r- y+&-& 0 (14)

+ ,'y'[(y, p, +m)-»»&'& y, p, »(&'&]=O, (6)

while the lower component is an equation of mo-
tion,

which again involves only the dynamical variables.
As a result of Eqs. (4}, (5), and (14), precisely
four of the ten dynamical variables remain in-
dependent, in agreement with the fact that the num-
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ber of degrees of freedom on the l.ight-front must
be half that of the space-time approach.

Equation (14), in conjunction with Eqs. (11),
(12), and (13), further leads to the tertiary con-
straint

P (I(.(-& —.
'

(z(P( - m) l. (-' = 0, (15)

III. THE INTERACTING FIELD

ln the presence of interactions one has the same
ten dynamical variables as in the free-field case.
These satisfy equations of motion corresponding
to Eqs. (7), (8), (10), (11), and (12), while the
field equations corresponding to Eqs. (4)-(6) con-
tinue in their role as primary constraints. This
indicates that three more (two-component) con-
straints are needed if one is to obtain the de-
sired four degrees of freedom appropriate to a
spin- & field. For the free field the derivation of
these is made possible by two things. First, two
of the primary con.straints involve the dynamical
variables only [the third, namely Eqs. (6), de-
termines (}(( '] thereby leading to two secondary
constraints, and secondly, whereas one of the
secondary constraints determines g ", the other
again involves the dynamical variables alone and

which determines the remaining components g ' '.
This completes the proof that the free Rarita-
Schwinger fiela on the light front has four degrees
of freedom.

Before proceeding to the interacting case it is
worthwhile to note that the secondary constraints
[Eqs. (13}and (14)] are nothing but the lower and

upper components of the equation y"$„=0, which
is most conveniently derived by the covariant pro-
cedure of contracting the field equation with y„and
p„, respectively, and subsequently eliminating the
derivative terms between the resulting equations.
This is the procedure to be used in obtaining the
secondary constraints in the interacting case.

leads to the tertiary constraint. Inasmuch as the
primary constraint corresponding to (6) still con-
tains q,' ', it is essential that the nature of the re-
maining constraints be left unchanged by the in-
teraction, However, it will be seen below that
even when the primary constraints remain es-
sentially intact, the secondary constraints in gen-
eral involve tt

' ' in addition to P "'. As a result
the equation corresponding to (14} serves to de-
termine g ' ', thereby precluding the existence
of the tertiary constraint. One is thus left with
six degrees of freedom rather than the required
four.

in the field equations, where q is the matrix (', ,')
in the two-dimensional charge space. On. ce again
Eq. (6a) [Eq. (6) with minimal coupling'] deter-
mines (}(( ', whereas Eqs. (4a) and (5a) are con-
straints involving the dynamical variables only,
and lead to secondary constraints. In order to
obtain the latter, one first contracts Eq. (2a) with

y, thereby obtaining

(y v}(y 0)+(v 0) —'~(r -0)=o,

while contraction of Eq. (2a) with ((„yields

(16)

m[(~ v)(~ (I)+(v 0)] -icqr"F
—g ieq(y"y "F„„)(y.(}')=0, (1V)

where I'„„=~„A„-~„A„. The elimination of the
derivative terms from Eqs. (16) and (1V) results in
the usual secondary constraint

(3m' —iy "y"F„„)(y'g)—2ieqy "F„„g"=0.
Separating the upper and lower components one
obtains

A. Electromagnetic interactions

%e begin with the minimal electromagnetic cou-
pling achieved by the usual replacement

(1+QF )C"—(1 Qy'y'F„)y-(I(' ' Q(y F (ri(' '+-y'F ((t(' +k r y'F (1' -w'F. ((1( ) =o, (18)

(1+QF. )1"' (1 Q~'y'F-)~'-0-"' Q(y'F n"-'+ '~'r'F 1"'-+~(F 0' ' ~(F C '-')=o (19)

where Q=- 3 jeqm '.
Equations (18) and (19) correspond to Eqs. (14)

and (13), respectively, in the free-field case, the
latter being recovered in the limit e-0. How-
ever, they differ drastically from the free equa-
tions in that (18) no longer involves the dynamical
variables alone, but contains a term involving tp".
The latter cannot be eliminated, as Eq. (19), which
in the free case determines g ", now contains the

f

hitherto undetermined components g"' '. Thus the
only constraints among the ten dynamical vari-
ables are Eqs. (4a) and (5a), leading to the result
that in general the minimally coupled theory has
six degrees of freedom rather than four.

However, consistency is possible if I', =0, for
which case Eq. (19) becomes independent of g

' '

and a definition of (I(
"results. Equation (18) then

involves the dynamical variables alone thereby
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agP -&q P

where &„„~is the Levi-Civita tensor with &' "
=-1. The requirement that the primary con-
straints retain their proper form, i.e. , that the
equations corresponding to (4) and (5) involve only
the dynamical variables, results in the condition'

a=a' e =0.
The secondary constraints now involve the de-
rivatives of the electromagnetic field. Since the
manipulation becomes extremely tedious, it will
not be reproduced here. It is sufficient to note that
the inconsistency persists even if the term involv-
ing the derivatives of the electromagnetic fieM
are dropped, as their inclusion only makes the
constraint problem more difficult.

B. Other interactions

There exist two other interactions of the Rarita-
Schwinger field which have received some atten-
tion in the literature. These involve the coupling
to a scalar field (j&(x) through the substitution"

m - M(x) -=m+ g4 (x) (20)

in the free Lagrangian, and an interaction with a

leading to the desired four degrees of freedom.
Finally, the use of Eq. (18) in conjunction with the
equations of motion results in the tertiary con-
straint, corresponding to (15), which defines &(&

' '.
The condition E,=0, required for a consistent

theory, can of course be satisfied only locally, and
in a limited set of Lorentz frames. Thus one con-
cludes that the minimally coupled theory is in-
consistent on the light front even at the classical
level.

It can also be shown that the introduction of an-
omalous moment terms does not improve the situ-
ation. In general, this involves an addition of

8' = ~ e&I&"Pq[iaF„„+a'y 7„„+bg„„a E

+ c(F„&» „+E„a'")]tP
to the minimally coupled f.agrangian. Here a,
a', b, c are arbitrary real constants, and

y, =~y'y'y'e= y'y'('A"' A' '—),
a„.= 2»[y„,y.],

and

scalar field 4&(x) and a Dirac field &)(x) according
to the interaction Lagrangian"

7'=- —
~g[ )&»'P(g„„+y„y„)(&(&" t&&+H. c. ] . (21)

In the case where the scalar field is taken to be
external, the discussion follows along the same
lines as in the case of electromagnetic coupling.
%e briefly present the results of the calculation.

For the interaction given by (20), two of the
primary constraints, obtained by ths substitution
m-M in Eqs. (4) and (5), connect the dynamical
variables. A third constraint, corresponding to
Eq. (6), determines &)(» '. The secondary con-
straints are easily found to be

(22)(1+y"a.)(y 4)+.(a &)')=0,

where a„=--3iM '8„M. The upper and lower corn-
ponents of Eq. (22) are

(1+5 y»a»)&" y(1--y»a»)&(" '+a»&)»'

+y a t( + a(I'"&' ai(&
& -' =0 (23)

and

(y P+m)4„P„(y 4) y. (-P 0)-
y.(y P m)-(y 0)+g-(g..+y„y.)A "0=o,

(25)

where A„=8„@. The upper and lower components
of Eq. (25) are

(1+ & Yiai)~ —y (1 yi ai)4

+ a &)(-&+ y+ a g
(+& a y+&-& a y-&-& 0

(24)

Once again both g "and tP' ' appear in the sec-
ondary constraints unless a = 0. In the latter
case Eq. (23) involves the dynamical variables
alone, leading to four degrees of freedom. The
tertiary constraint following from Eq. (23) and the
equations of motion lead in the usual way to a
determination of ((&

' '.
Next, consider the interaction given by Eq. (21).

Since the coupling is linear in &j&„ the inconsistency
appears only when the equations for the Dirac
field are also included in the analysis. The Lag-
range equations for the fermion fields are

(y P+ M) r/&+~ gA" (g„„+y»» y„)t/ = 0

P 4' '+ky (y»P»+ M)4& &+g& (t' '- ay'0"')+kgy'[(y»&»)(k f"-y ((' ')+ &»i&»('&+A. 0'(']=0. (27)

and

P.&I&"+ 'y (y P +M)4" '+g&.-(&" 'y 0" ')+ 'gy -[(y &—)(-'t-' '-y'0 "'+& &)' '+& 0' '] =0. (23)
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Equation (27) determines g( ' while Eq. (28) is an
equation of motion for g". As expected there are
two degrees of freedom associated with the Dirac
field.

The upper and lower components of Eq. (28) for
p. =+ yield, respectively,

(y(P, + m) (i(""+ f( &
'"- gA. |{"= 0

and

(y 0 +m)k' '+i &('-g~ 0('

(29)

-y'[(m — y(P() &"—0;()('+gy;~({{"]=o.

(30)

Upon elimination of P( ' from Eq. (30) using Eq.
(27) there results a constraint containing (I( ".
Equation (29) is then the only relation among the
dynamical variables. As the secondary constraint
resulting from the x' derivative of Eq. (29) con-
tains tI)

' ' due to the term P, P", no tertiary con-
straint can be obtained. Thus one is left with only
3 two-component constraints [namely Eqs. (29),
(30), and the secondary constraint resulting from
(29)] for the Rarita-Schwinger field, implying ten
degrees of freedom. It can easily be verified that

the situation is remedied if and only if one im-
poses the noncovariant condition A = 0.

IV. THE ANTICOMMUTATION RELATIONS

i[G, g(x)] = —,
'

6y(x) (31)

for any field variable g, where the generator for
the infinitesimal field variations is given by the
surface terms in the corresponding variation of
the action integral

6S = G(o,) —G(((,) .

The generator on the surface x'= constant is
readily determined from the Lagrangian (1) to be

It is of considerable interest to determine
whether the interacting field can be consistently
quantized on the light front, at least in the case
for which the required number of constraints ex-
ists. Using the minimally coupled fieM as an ex-
ample, we present here the results of such cal-
culations.

The anticommutators follow in the usual way
from the action principle. ' Thus one has

&(*) — d'" +& n'5n" ("M" ("(V" ("'I!5(' ' ~ ('' '(5("—("P~u')''1
2 v2

where cPx=Cx,dx,dx . The variations of various field components must, of couse, be compatible with the
constraints (4a), (5a), and (18), namely,

and

(y, w, +m)y & &+w &'&=0,

(y(w(+m)(i'( '+w g( '+ ~ y'(y(w; —2m)t'" +y'w((7I'=0,

(1+QF )g"—(1 —Qy'y'F»)y g' '+ Qy'F, (P"' = 0.

(4a)

(5a)

Note that F, has been set equal to zero in order to obtain the correct form of (18).
The constraints are most conveniently handled by the method of f agrange multipliers. Thus Eq. (31) is

written as

d'x' 6y x' 5"' x' —x — 2 g,
"x', g x 6g, '' x' — -- f"x', y x 5g" x' — g' ' x', y x P5f" x'

W2

+ {1"(x'), ){(x))p6{{''(x')+(()"'(x') X(x)] p6d '(x') —il( '(x'), X(x)] P64"'(x')

+ [(m —y, w')Z"'(x' x)]6tp"( x) ['w"Z'( '-x, )x]6$"(x')—[w'Z' '(x', x)]6/( '(xI)

+ [{m—y(w(')Z(~'(x', x)]6g' '(x') + [(w(+ ~ y(y(w()y Z(2'(x', x)] 67'("{x')+2 [(y(w,'+ 2m)y Z"'{x',x) ] 6&"{x')

+ [(1—QF, )Z(~((x', x)] f6' ((()x[+Qy F(, Z( ((x', x)] 6/'('({x')+ [(1—Qy(y F»)y'Z(~({x', x)] 6g'( ((x') = 0,
(32)

where all variations are now treated as independent. Here 6"'(x —x') = 6(x, —x,')6(x, —x,')6(x —x' ), and
Z"'(x', x), i=1,2, 3, are undetermined multipliers, to be evaluated from the requirement that the re-
sulting anticommutators be compatible with the constraints (4a), (5a), and (18).

For g=- (7z', Eq. (32) yields
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{&)"(x') &)'+'(x)j= A"P S"'(x-x')+ P(, w,'y Z"',
2

{1"(x)~ (x)}=P(m y w )Z "+W2(1 Qy y'F„)Z

{|&''(x'), n,"(x)j= pw'Z"' - mZ"'+ pq(F. —y'y'F„)Z'*',1

2

{y & &(x ), q& &(x)} = pw Z&»,
(33)

{p' (x'), &)~' (x)j= p(y w' —m)Z ' —pqy'F&, Z'~',

where
1

P~~= ~~J+» ~y~

a
w' = -&,„—eqA„(x') .

On substituting thee in Eqs. (4a) and (Sa), one gets

Z(3) =0

and

Z&2& — p(1 Qyl+F ) &we P A&+)S&3&(x x))
W2

3m2

whereas Eq. (18) leads to the rather involved relation

&(2 (1 —Qy'y F,2)w' Z&'&= p[(1+QF, )(m- y&wf)+Qy'F,
&
w'+m(1 —Qy'y F„)]Z

These determine the Z"'.
Following this procedure all the anticommutators can be obtained. The simpler ones are listed below.

(1))"(x'),n,"(x))= P„+(), w', [( (&y'y'F„(*')] 'w',

I
PUA"6"'(* —x'),

{f"(x'),1 "(x)j=, (m+y, w', )[1—Qy'y F,2(x')] '(y& w', —m)A"5"'(x —x'),W2

3m2

{tP"'(x'),&()"(x)j=, w' [1-qy'y'F„(x') j 'w' A"5"'(x-x'),v2

{f"(x() &("'(x)j = — (m+y, wi)[1 Qy'y'F„(xl)]-'w(A'&S&"(x x )
W2

3m'

{p'+'(x') &) '+'(x)j = — w'[1 —Qy&y E (x')) w'P A'+ 5 ' (x —x')

{g"(x'), &)q' (x)j=, (m+y, w,')[1—Qy'y F,2(x')] w& P& A 'S' '(x- x').vY
3m' 12 k fj

One notices that the free-limit (e-0) leads to commutation relations which are quite consistent, and in-
deed one hardly expects any trouble (at this level anyway) for free fields.

In the interacting case, one can easily see from the first three anticommutators that an indefinite metric
is required whenever ~qy'y'F»~ &1, i.e. , when 2e (F» )&3m'.

One may equally well try to quantize the interacting field for the case F, &&0, for which Eqs. (4a) and (Sa)
are the only constraints among the dynamical variables. Some of the resulting anticommutators are

{n"(x') n"(x)j = P A"S"'(x-x')1
f ~2 &i 7

4"( '), f"( )}=0=4""('), 0"( )j ={&"'('), q"( )j ={0"'('), k"( )j={d'( '), n,"()j,
{1"&(x'), t&-&(x)j = p(m y, w, ) . -' ~ (m y, w, )A& &-S"&(x x -)y F

ieqF ~F ~

(34)
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The last of Eq. (34) clearly displays the singular
nature of the theory in the e -0 limit, while its
incompatibility with the second anticommutator
follows from the observation that the latter im-
plies g"=0.

V. CONCLUDING REMARKS

In view of the results presented here it does not
appear possible that the light-front approach can.
offer a convenient framework for the treatment of
higher-spin fields. As evidenced by the free-field
equations, the convenience of dealing with half as
many degrees of freedom is amply compensated by the
added complexity of the constraint structure. The in-
teracting cases, on the other hand, are inconsistent
at a much more primitive level, namely the loss of
constraints.

As is mell known, the coupled spin- & field in the
space-time approach is plagued with problems such
as noncausal propagation at the classical level,

and the appearan. ce of indefinite metric in the quan-
tized theory. The question naturally arises as to
whether the problems found in the light-front ap-
proach might not be related to these. It has in-
deed been verified that all known models suffering
from noncausal modes of propagation also suffer
from a loss of constraints on the light front. " If
the converse can be established, counting the con-
straints on the light front may offer a convenient
check on the consistency of the space-time version
and at the same time allow one to avoid the tedious
calculations required in the Velo- Zwanziger ap-
proach to noncausality.
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