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Super-Higgs effect in a new class of scalar models and a model of super QED
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We present results on the scalar supermultiplet coupled to supergravity: A locally supersymrnetric theory
:with generalized kinetic and nonderivative interaction terms is found. We discuss a number of examples.
Symmetry breakdown and the "super-Higgs" effect are studied, as is a consistent truncation of the SO(4)
extended theory. Finally, we find the local extension of supersymmetric massless QED and discuss symmetry
breakdown in this system.

I. INTRODUCTION

Supergravity' is the gauge theory of local super-
.symmetry transformations. ' It has as gauge fields
a spin-2 graviton and one (or more in 'extended
theories") spin- —, fields; recently it has been
shown that supergravity is the theory of "spinning
space, " ' and as such it is as fundamental as gen-
eral relativity itself. Pure supergravity can be
coupled to various global supermultiplets in order
to promote the global supersymmetry to a local
one. ' The resulting theories have many higher-
order contact terms in. the Lagrangian; gauge in-
variance of the S matrix and dimensional argu. -
ments restrict the contact terms to be at most
quartic in the Fermi fields of the theory and allow
only linear couplings of F„„, the vector field, to
the Fermi fields. The couplings of the scalar
fields, however, are under no such rest'riction,
as they are not gauge fields and x (the'Planck
length) times a scalar field is dimensfonless.
Thus, in general, supersymmetric theories with
scalar fields can show nonpolynomial structure.
The massive scalar multiplet' does indeed have
nonpolynomial terms, and there are strong indi-

cations that the SO(4)-symmetric extended theory
does as well. '

In Sec. II we consider a very general locally
supersymmetric theory of one scalar multiplet
which contains as a special case the original sca-
lar multiplet. ' This theory contains one graviton
V, „, one massless spin- —, field lit„one Majorana
spinor y, one scalar A, and one pseudoscalar B
(before symmetry breakdown). Further, we find
a very general form of the scalar self-int'eraction
term, which contains as a special case the theory
of Ref. 7.

In Sec. III we present some details'of the con-
struction. In Sec. IV we consider a number of
new special cases, including theories with spon-
taneous symmetry breakdown, and a restriction
of the SO(4) extended theory to the gravitational
and scalar multiplets only. ' In Sec. V we present
results on the global theory of a vector super-
multiplet interacting with two massless scalar
multiplets (super-QED), "and discuss symmetry
breakdown, and finally, in Sec. VI, we present
the locally supersymmetric version of this
theory

II. GENERAL SCALAR THEORY

(2.1)

(2.2)

J'

I

Using the functional method of Ref. V' "we have found the following locally supersymmetric Lagrangian":

2=2+2, 2 =2 +2
I'

I

&«= —4, V& —-'~'""'4&r,r.D, P, &'6" [(Tt "r"0')—(Tir„4,+ 24„rent, ) 4(0 r4')—']

Zxl ——X@X+—[(B„A) + (8 B) ]8(u) — [g~&„(A+iy5B)y "y "X][e(u)]' + e .
"' (gzy„|jt„)(AS+)Q'(u)

2

+
&

(V.r,r'0")(Xr,r'X)
&6

+~" '(4&r.t.)(Xr,r,X)- 4 (Xr,r'X)(AS. B) 2O(„) —"'(u)

g'V, 2 uO'(u)
+ 22 (xr,r'x)(xr, r,x) o(„) o(„) (2.3)
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where
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u—= r'(A'+B). , tt(u) = u(te purer); ut are arbitrary real dimension)eau constants,

I

O(u) = [uQ'(u)]'= 1+ Q (d/(j+ I)'u/; (2.4)

= ——XM(zu)Xe " [A(z)A(zu) —3)( 4)(z)4)(z*)]e " — tel yA(zu)Xe " IPV) 0'u"4)(z)g e
V— V iKV—

I 2 v2 V

where

(2.6)

z —=A+iy, B, z*=—A —iy, B, 4(z) —= g (()/z', (()/ are arbitrary real constants of dimension (('
0

1
A(z) -=,/, [4 '(z) + z'z*Q'(u) 4(z)],

M(z*)=,/, A'(z*)+ z'zA(z*) Q'(u)
1 8'(u)

(2.6)

[Note: Q'(u) —= BQ(u)/su, 4"(z) —= 84)(z)/()z, Ay(z*) = BA(z*)/sz*, etc. ] 2«+ 2„/ is invariant under the follow-
ing local supersymmetry transformations:

1 «(x)X i «(x)y, X

w [o-(.)]"" w [o-(.)]""

&zIX= «(x)(A+ir, B)&[8(u)]"'-
2 [(P,X)«(x)r'+ (T,r,X)«(x)r'r, ]

2
— '

et(u)
— 1

[«(X)y5(A+iy5B)y] 2
( )

—Q'(u)
[ )](/z Xys, (2.7)

6„/T()i= )( '«(x)D~+ —(27)))y„())„+g„y,p„)«(x)a'" —«(x)y, (AB~B)Q'(u)+ —( yx,
'

y) x(«)xoy, ~

K2 Q'(u)
-2~2 [«(x)r, (A+ ir, B)X]T)'ir, [O(„)],/.

I

Z = Zso+ 2~1+ ZI is invariant under the above transformations with the following additional terms:

/i(z)e()(u)/2 6 p «(x)4)(z) eo(u)/2«(x)
' i)(

v2
I X (2.8)

We observe that Q(u) =u and 4(z) = 0 yields the original scalar multiplet of Ref. 8, while Q(u) =u and
4 (z) = zmz'+ —,'gz' yields the massive self-interacting theory of Ref. 7,

If we require the coefficient function 8(u) to have leading term 1, we insure that theories with different
9's cannot be made equivalent by a redefinition of A and B in terms of each other, as any such transforma-
tion that preserves the form of the scalar kinetic term [(()„A)'+ (8 B)']f(u) can only multiply the term by
a power of u = z (A +B ).

In the global limit V,„-)I,„«(x)-«, p -0, )(-0, we find Z-Z, (,~, .

X/X+ z [(S„A) + (()u B) ]—z XUu(A —iy5 B)y —z Vy(A+ iB)V'(A —iB), (2.9)

where V(A+ iy, B) —= 4 (z) above. This Lagrangian is invariant under the following global transformations
(« is a constant spinor):

1 i i
6A,»), = «X, 5B,»), = «y, X, 5X,»„,= «(A+iy, B)/+ V'(A+ iy, B) . (2.10)

This globally supersymmetric theory was first presented by Salam and Strathdee" where the Lagrangian
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is also written in superfield notation:

'(D-D)'(e, e ) 'D—D-(V(e,)+ V(e )), (2.11)

We can also take the global limit by introducing dimensional constants 2~= ~& z'~, so that, although Q(u)
-0, 8( u)-Q(A'+B') and K'8'(u)-Q'(A'+B') as z-0. Then Zrz-Irido™,

XI X+ [(s A) + (s B) ]'Q(A + B ) 2 (Xr,r'X) (AB, B)1, (A'+ B')Q'(A'+ B')
+ 18 (xy 'y x)(x'y x)

Q(A B )

is invariant under

1
Q(A'+ B') ' (2.12)

gg gl obal 1 ~~gl oba1
El ~ [Q(A2+ B )2]ll '2 El ~2 [Q(A2+ B2)]ll2 &

Z
' A2+ J32

&(A+iy5B)P'[Q(A'+B')]' ' F'y5(A+iysB)x]xy5 ~ A2 a p/2v'2

(2.13)

This theory appears not to have been considered before. If we redefine X(x)- [Q(A'+B')]'~'X(x), we can
write the Lagrangian in the superfield notation of Ref. 13. Let Q(y) =—Z~, q~j'y~ ', then

~"'""=- g ~,(DD)'(4 )'(0 )'.1
(2.14)

If the self-interaction terms are kept, then this second global limit is taken and we find a trivial modifica-
tion of (1.9):

1——,
' V'(A + iB)V'(A —iB) (2.15)

III. CONSTRUCTION

We were motivated to search for a more general locally supersymmetric theory of the scalar multiplet
than that of Ref. 8 by the observation that a consistent truncation of the O(K') results of the SO(4) extended
theory yielded a new theory, locally supersymmetric to O(z ), with precisely the same particle content as
in Ref. 8. We used the functional technique (the rest of this section is for the technically minded).

Our ansatz was suggested by the results of Ref. 4:

2, = Z~o+ Zx~, Zan as in (1.2), (3.1)

(3.2)

Our ansatz for the transformation laws was

5V„= in'(x)y, t—/i„, 5A = F,(u), 5B= ' F,(u),e(x)x i~(x)y. x

iK'
Zxl= —VXPXE, (u)+—[(&„A)'+ (&„B)']F,(u) — g.„&„(A+iy,B)y"y'XE, (u)+

4
e"""'(g„y„g„)(A&,B)F,(u)

K ZK
+—V(V.r,r'0 ') (Xy,y'X)F, (u)+ ' &'""'(4&r„4,) (Xr,r,X)E.(u) +- &'V(Xr, r'X) (AS.B)E,(u)

+
32

~'V(Xr, y'X) (Xr,r.X)E,(u)

Pl K
5X= 7(x)(A+iy5B)p'F~o(u) ——[(/~X)&(x)y F,~(u)+ (g~y5X)e(x)y, y E~2(u)] — [e(x)y5(A+iy, B)X]Xy~F~~(u),

2 2 ' " '' ' " 22
5g~ = v '&(x)D~+—(2g„y„p„+Q„y~t/r„)e(x)o ""+—7(x)y, (AB„B)E,~(u)v

K
+—(Xy r~X)e(x)y, v,~F„(u)— [&(x)y,(A+iy, B)y] p~y, FM(u) .

2 2
(3.3)
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The E,(u) are unknown functions; our result is
unaltered by introducing further arbitrary func-
tions of u= v2(A2+B'). The parametern is any real
number.

Using this ansatz, we found nine kinds of varia-
tions: (I) &' (2) X'&' (3) PX', (4) &; (5) X; (8) X',
(7) X p; (8) pX; (9) gX'. In principle, there are
also g' terms, but these vanish automatically be-
cause X is a Majorana spinor. We present the fate
of each type of variation in tabular form in Table

Only 15 of these relations are independent:

the following generalization:

VyjX(A —iy, B)' 'XP, (u)

—(y~)'(A'+ B')' 'P, (u)

VV 7/r ~ y(A —iy B) XP (u)
2

&'Vy P„o'"(A+ iy, B)JP„P,(u) (3.5)

E~=E,4, E, = (E~), , E,3=E7E9,

F„=F,F9, F,F, = &, F, = (uF,)',
(3.4)

~ e(x)(A+ iy, B)j 'P, (u),

6~7/~ = —y ~a (x) (A + iy, B)~y, P,(u) .

i (3.6)

E,E&= (uE,)', (F,+nF,)F, =4F3.

These are related to 8(u) and Q(u) in Sec. I by
0(u)=F, (u), 0'(u) =E,(u), etc.

The nonderivative self- interaction term Zi was
found by rioting that the results of Ref. 7 suggested

Term for term we followed the procedure of Ref.
7 and found relations that uniquely specified the

p, 's in terms of j and the F, 's. We then considered
2&„=2&+ 2, —VQ&P, Q(A, B), and found a unique ez
pression for Q in terms of j, /, E;, and P, Fi-
nally, we observed that the solutions could be
summed over j to yield arbitrary functions, e.g. ,

TABLE I. Variations of the Lagrangian and the functional relations. Some results appear-
ing later in the table have been simplified by substitution of earlier results.

Variation Result Comment

(j.)

(2) x'0'

F4= F~4

F15 F5 11

This variation is proportional to a
variation in Bef. 8 known to vanish

This variation is proportional to a
variation in Bef. 8 known to vanish

(3) 0'x'

(4)

(5) x

F5 =F6= 1

(z F,)'=F,F„
F,=F,F„

After integrating by parts to remove
all derivatives on c(x), this can be
subdivided into variations with or
without D(„

As above with X instead of |t)~

(6) x'

(8)

x4e

tI' x

(9) 4x'

2F,'F, = F,F,4+ n F,F„
F2F~'+ Fg'F(0 —2F3'

Fg ——1

F~F~3=F~F9

Fe(Fv)' = F8F~O

F(6 ——FgF

F3 = Fg(uF4)'

'gfe use F5 ——F6, F&&
—

F&2 —-1

This is not independent of earlier
results; much time can be saved
by noting which terms are
identical. to variations in Ref. 8

These are very tedious and are
equivalent to earlier relations
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4 (A+iy, B) =Q&, Q&(A+i y, B)~. This completes the
derivation of the results of Sec. II.

IV. EXAMPLES AND SYMMETRY BREAKDOWN

We now consider several special cases of inter-
est. For the original scalar supermultiplet, ' as
observed above, Q(u) =u; we can add any number
of interaction terms. In particular,

4 (z) = W+ —,'mz'+ —,'gz' (4.1)

gives the local version of the original Wess and
Zumino Lagrangian with a XE term. " In the global.
case, the A. term could be el.iminated by a shift in
the fieMs, but due to the presence of nonpolyno-
mial interactions in the local theory, this is no

longer the case. This theory shows symmetry
breakdown similar to that in Ref. 7, but the more
complicated potential is rich in false vacuums
which for some values of the parameters have a
zero cosmological constant. The true vacuum al-
ways has a nonzero cosmological constant, and,
for m not too large, a term quadratic in the spin-
2 field which can be absorbed into de Sitter covar-
iant derivatives. " The m =g= 0, X+0 case is, simi-
lar to the axial gauge theory" in that there is a
cosmological term but no term quadratic in. the
spin--,' field.

For C (z) = p, , we find the analog of Ref. 14 for
the scalar field:

an affirmative answer, but until. now there has not
been a complete theory with a "super-Higgs"
mechanism and no cosmological constant. We
present tmo such theories, neither entirely satis-
factory. For

4(z) = K exp(WSKz —K z /2)

we have a potential

2~ 'B' exp(2&3~A+ Sz'B')

(4.3)

(4 4)

which has a minimum, at (B)= 0 for any (A); thus

m&
——v ' exp(KV 3(A) —2tH(A)'),

me'= 4z ' exp(2K&3(A)), m„'= 0.
(4.5)

Global supersymmetries of both gravitational and
scalar multiplets are broken. Since the vacuum is
flat, interpretation and quantization of the theory
is not a problem. The spin ——, field is massive and
the unphysical Goldstone spinor X still remains in
the theory. But our theory still possesses a gauge
symmetry and we are free to choose a gauge. In
fact, we can choose a gauge in which the g field
disappears from the theory, "namely, the analog
of the Higgs gauge y=O. This restores our de-
grees of freedom, and the spin-2 propagator is the
usual propagator for a massive spin-& field, viz. ,

2 2

Zz= —p,—VX(A+fy, B)'ye"~'+, V(3 —u)e"
2

2 J „P„ (4 8)

pVg ~ y(A+ iy, B))fe"~'
2

—p V7|,o""'P„e"~'. (4.2)

If we let 4'(z) = p, + Az, we can cancel the cosmo-
logical term, but symmetry breakdown restores it.

The question arises whether the cosmological
constant can ever be canceled in a theory with

m& WO; there exist partial results" that indicate

The only unsatisfactory feature of this model,
aside from its probable nonrenormalizability, is
the strange. dependence of the potential on A: For
any (B)o0, away from the vacuum, the minimum
of the potential occurs at (A)—

If we let
I

@( ) z e ~rgb/2vS
2K

(4.7)

me find a model free of this flam. The potential is

—,
'
[(A+ v 3/2~)'+ B']'(~'B'(-,'+ ~'B'+ 2~'A') + (M ——,'&3)'[3+ (W+ —,

'
v 3)']}exp[- ~WSA+ ~'(A'+ B')] . (4.8)

This has two minima. Both occur at (B)= 0, one
at (A)=+& 3/2K, the other at (A)= —VS/2z. The
former gives

m =tc '3&3e ' m '=m '=54m 'e ' '
A B (4.9)

and hence corresponds to a vacuum where the
global supersymmetry of the gravitational multi-
plet is broken, while the latter gives m„=mA'
=m~'=0, and hence corresponds to no symmetry
breaking. For the first case, we can once again

apply the analysis of Freedman and Dasxa, xg and
find that we have evidence for a Higgs mechanism;
again there is a constant part in the y transforma-
tion law. For the second case there is no constant
in the y transformation, and y is clearly dynam-
ical. Normally, we would expect the degeneracy
of the vacuums to be broken by quantum correc-
tions, but since the theory is unlikely to be re-
normalizable, we can only make sense of the the-
ory at the tree level.
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The last particular case we consider is the
SO(4) scalar reduction. In a theory with only one
spin-& field g, any y' terms vanish. Since the full
SO(4) theory has four )f,. 's and nonvanishing )f5

terms in the variation of 2, we expect further re-
strictions on the Lagrangian when we require
these terms to vanish. Comparison of our Lagran-
gian and the Lagr angian of Ref. 4 imposes the con-
dition that

1
5/y= pZ(x)(A —iy, B)

( )„,,

(4. 13)

gian that diverges for some finite field strength.
Note that for u ~1 the theory has severe problems
of interpretation, as the energy is not bounded be-
low and the Lagrangian is not even Hermitian.
The additional terms in the transformation laws
are

2 u8'(u)
8(u) 8(u)

(4.10)
ZK 1

5,V& =-—V&(x)ri
2 (1 —u)'

which leads to

0(u)= ~, , rr(ul=ln
~ ).1 1

(4.11)

Finally, we observe that when the SO(4) internal
symmetry is gauged, we expect in analogy with
SO(3) and SO(2)" to find a cosmological term.
Letting 4 (e) = i/. = ex ', we find

2/=2, V — pVg ~ y(A+ iy, B)y
3 u

1
&

(1 )I/2 ' (4.12)

In particular, the scalar kinetic term becomes
~ V[(&„A)'+ (S„B)']/(1—u)', which bears a resem-
blance to the 0-model Lagrangian; we do not un-
derstand the physical consequences of a Lagran-

Since the full SO(4) theory is expected to have
one-loop finite physical amplitudes, "one shouM
be able to calculate the effective potential for A
and I3; it will be interesting to see if the cosmo-
logical term above is completely or partially can-
celed.

V. GLOBAL MASSLESS SUPER-QED

In this section we study the Fayet-Iliopoulos
model" in a particular limit, namely, we consider
a vector multiplet interacting with a complex sca-
lar multiplet where all the fields have zero mass.
The Lagrangian contains the fields (A„, X, y', A', B')
and does not conserve parity. All boson fields are
Hermitian and all spinors are Majorana fields. .

When the auxiliary fields are eliminated-the La-
grangian has the form

gF„„E""+-~iAQA+ ~iy'$g'+2[(s A)2+ (8 B) j —eA„&'/(A'8"A'+B'8 "B'— ig~'y"g/)

e~~'&A'B-' —ee")i'(A/+iy, B/) X+,e'A„(A" + B") ~e'(E' A'B )—' (5.1)

where I'„„=8,A„—8„A„, e is the electromagnetic
coupling, and g is the parity violating parameter.

This Lagrangian is invariant under the following
supersymmetry transformation:

o"E p„X+ s.(/4'+ir, B')r"r„X'

+ ($+ ee'~A'B~)y, y„A
2

5A' = ~y.', &B' = &r,X',
2 V2

+ ~*'(A'+ iy, B')4y„q'.
2

(5.3)

5y' = e(A'+iy, B')$+ a'%(A'+iy, B')A,

(5.2)

5%= — Zo ~E„„+ ((+ec"A'B )Zy, ,

The theory is also invariant under the following
local gauge transformations:

5A „=—8 „o.'(x),1

5k=0,

z—
5A. „= &y„x .

v'2

E is a constant spinor parameter and the con-
served Noether current is

5X * = —~'~(x) X',
r

5A' = —e'/n(x)A/,

5B' = g'/cy(x)B'.

(5.4)
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We now diagonalize the scalar mass matrix. Let
us define

A, = (A, + 8,), A, = (A, + 8,),

This potential has a minimum at

A =B,=-O,

2$A 2+B 2= —.
2 2 e

(5.7)

(5.5)

8, = (8, —A ), 8, = (B,-A ).

Then the scalar mass matrix and the four-point
interaction terms become

However, we can choose our orientation in the A, -.
B, plane such that

(AQ=(—) =v,

V(A', 8') =—(A~'+ 8,' -A, ' —8,')

(5.6)
(5.9)

then the interaction Lagrangian becomes

represents the minimum. If we now shift fields,
l.e. )

A, A, +v,

Z'=eA" A, 8 B, A,B„B,+-& 'X y„x -e A, '+ A, A, '+B,'-A, ' B,' —A, '+3,' A,' 8,' '

2

+ e(A„'t —A„'(A +8,'+A, '+8,') ——(X' -iX'r, )& —= (X' -iX'y, )(A, +iy,B,)~

—~ (X'+iX'y, )y, (A, +iy,B,)&.
V.Q

(5.10)

t

Since there is mixing between different spinors, the spinor mass matrix needs diagonalization. Let us de- .

fine a new basis bg

q, =-,'(X' iy X'+v 2X), q, =- [y,()('-iy,X')+~2y,~], l= (X'+iy, X') (5.11)

I

Then the interaction Lagrangian becomes

m' ypl' pl

+ —A„(7],y,y"q, +7]iy,y"q 2&y,y"g)+ (A,2+8,'-A, ' 82') —(A-, '+8, '—-A, ' —8,')'

——7],( A, +iy,B,)q, ——q,( A, i+yB,) ,7)-- q, (A, +iy,B,)q, — 7),(A, +iy,B,)g

2

+ q, (A, +iy, 8)(+—A, '(A, '+8, '+A, '+8,'),
2

(5,.l.2)

where m'=2eg.
Thus we see that because of the symmetry breaking the vector field becomes massive and the Goldstone

boson B, can be eliminated by the Higgs mechanism. However, it also looks like the ma'sses of particles
within the multiplets are split badly. Thus one expects that supersymmetry is spontaneously broken. How-

ever, when one looks at the Spinor transformations one does. not find a constant anywhere suggesting that
supersymmetry is still maintained.

To see more closely what exactly is happening, let us choose the gauge condition

8,= 0, A B„=A —(1/e) 9„8~. (5.1.5)

Then the Lagrangian becomes (omitting tildes)
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l2
—,'G, „G"'-

2
8, '+2 (n, &), +n,A, ) —

2 (n, n, +n,n.)+2 &&&+''(,A)'-
2

A'+2[(s,A, )'+(s,B,)']
0 2

+eA (A, "8,+ —g,y'q, )+ A—,(q,y,y'll, +r),y,y",q, 2(y,y~g)+ A(A, '+8, ' A')

2

——(A, '+ 8,' -A')' —A—(n, n, + n, n, ) — —n, (A, +iy,B,)y, &

2

+—Tt, ( A., +iy, B,) K+ —A.„'(A,'+ 8,' -A'), (5.14)

where we have used

G„„=8„B„BB„and A A . (5.15)

It is now clear that, as a consequence of the breaking of gauge invariance and the Higgs mechanism, the
theory has rearranged itself into a supersymmetric theory of a massive vector multiplet" (8, r)', A) inter-
acting with a. scalar multiplet (K,A„B,). The degrees of freedom are maintained and no constant term and,

hence, no zero-point energy are generated.

Vl. COUPLING TO SUPERGRAVITY

In order to couple the massless super-QED to supergravity, we follow the usual procedure of order-by-
order coupling. ' That is, we start with the Lagrangian for supergravity and the covariantized Lagrangian
for the rnatter fields and add to it the Noether current terms. Then at each order in ~ we add new terms
to the Lagrangian and to transformation laws to,maintain supersymmetry. The complete Lagrangian de-
rived this way can be written as

(6.1)

xe

~O=~BG--4-I"..+"+ 2»~+2 I('.A') +('.8')']+
2

X'&X' — 0 o"'+.,y'~ 4,-6—,(A'+iy, B')y"y"X'V . iV- V i. i. iV, , i~V — „„,KV—

@2V 2V
(4,o'"y'~)(4„yP) —

16
e""'"((„y„g,)(4, ,y,&)+

6 (4„y,y'0")(X.*y,y.X*)

2

+16 &'""(&„y („)(x'y,y,X')+
4

& ""(g„y,g, )(A' s,B')+
4

(x'y, y'x;)(A'8, 8;)

(».,y p)(A'&. 8') —
32

(X'y„-y'X;)(X'y,„y.X,) —
32 (» y"&)' —

1
- (X'y,y'X;)(~y,y,&),

e 2

VeA g'& A's'A'pB'&'8& —X'y'y') Ve(& "A'B~ Ve&'y'(A'+ iy,B')x —— A [(A')'+ (8')']
2 5

Ve2
——(e*'A'8')' ——(' — (j+ «*'A*B')q.y,y'~ ~*'q. (A'+ iy.B')&y'X'

2 2

Pvpo'. i i—
2

«'"'"($+ ec "A~B')g~y, g, A„——((+ee"A'8')Xy, @X+ ($+ ee "A~B')X~y,+X~.
w'V v'V

/

This Lagrangian is invariant under the following supersymmetry transformations:

(6.2)

(6.3)

6A'= —e(x)y*, 58'= -= e(x)y,y'; 6V„=—i~c( ) x4y, , 6A„= &(x)y,Z,

K2
6X= ~ e(x)o "E„+~

—($+ ec "A'8')&(x)y, + i~(4', y„X)Z(x)o'" — ~ e(x)y, (A'+ iy, ')y'Xy„

5X*==~(x)(A*+iy,B')P'+—«"Z(x)(A'+ iy,B')4 ——(y'4„)e(x)y' ——(y' 4y, )e(x) yy'

(6.4)

2
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2 2

4 a

&q. = ~ '~(x)D. +
4 (2&.y.l, + 4.y„q;)e(x)o' +

4
(X'y,y'X*)Z(x)y, o..—

2
(A' .8')e(x)y,

2

+
6

(~y,-y'~)~(x)y, (y.y, +g.,) -i~($+ «" A' 8') (e)x,yA. —
2 2

e(x)y, (A'+iiy, B')X'4„y,
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Here e(x) is a local spinorial parameter. The
Lagrangian has two global invariances: It is un-
changed under a rotation

5X'= -E' nX ~ 5A'= —q'~o. A.~

(6.5)

where Q is a constant parameter. It is also in-
variant under the global chiral rotation

5y„= icy, g„5m= i&y, X,

&X' = -&~&5X''
(6.6)

In addition to these. global invariances the theory
also has an Abelian gauge symmetry: & is invari-
ant under

5 A' = -ee"a (x)A',
5B'= ee'~ a(x)—B&,

5W„= S,a(x),
5~= i~~'a(x)y, ~,
5P„=-i fK'a(x)y, P „,
5X'= ee"a-(x)x'+i)~'a(x)y, g',

6V.„=0.

(6. f)

'The transformation looks very unusual in the
sense that it mixes the usual vector-type transfor-
mations and the axial transformations of Ref. 17.
This is simply a reflection of the fact that our
starting theory does not conserve parity.

If we look at the interaction potential and diagon-

alize the mass matrix following Sec. V, then we
observe that all the analysis of Sec. V goes
through. In particular, the cosmological term
disappears, and hence interpretation of the theory
is easy. There is no spin-&-spin-& mixing. Thus
the spin-& field still remains massless. In other
words, although we coupled massless super-QED
to supergravity, because of the gauge symmetry
breaking we have obtained a supersymmetric
theory of an interacting massive vector multiplet
and a massless scalar multiplet coupled to super-
gravity. It is worth pointing out here that although
the starting theory does not conserve parity, after
the shift we can assign a set of parities to the new

fields such that the Lagrangian is parity invariant.
In such a scheme the spin-1 boson has an axial
parity and if one expresses the transformation
(6.V) in terms of the new fields, one finds it is
a pure axial transformation. We have also tried
to couple the massive super-QED to supergravity,
and we have found no inconsistency up to order ~'.
However, beyond this order construction becomes
extremely complicated.
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