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The relationship between relativistic quantum current conservation laws in a curved-space background and
the corresponding "good quantum numbers, " i.e., operators that commute with the fundamental wave

operator in a first-quantized field theory, is considered. It is shown that under favorable circumstances (such
as vanishing Ricci curvature) the existence of such an operator for scalar fields is automatically implied by
the existence of the corresponding constant for particle trajectories in the classical limit, that is to say, by
the existence of a Killing vector or a "Killing tensor" in the first- and second-order cases, respectively.
Thus the fourth constant of the. motion for a scalar quantum field in the Kerr metric background arises
automatically from the Killing tensor defining the fourth constant of the classical motion. Another
application is to the Runge-Lenz constants in the nonrelativistic hydrogen atom problem. The "SchiA'

conjecture" concerning the relationship between classical mechanics and first-quantized field theory in

connection with the equivalence principle is discussed in passing.

I. INTRODUCTION

A key part in the early development of quantum-
mechanical theories in general, and of the original
nonrelativistic Schrodinger theory in particular,
was played by the "hydrogen atom pxoblem" by
consequence of its having a well-defined and simple
analytic solution. In relativistic gravitation theory
an analogously important role is played by the
black-hole pxoblem which bas been effectively
solved in the particular case of the vacuum Ein-
stein theory by the work of Israel, ', Carter, "and
Robinson4 which has established that the only top-
ologically spherical axially symmetric black-bole
equilibrium states belong to the family of solutions
of Einstein's equations discovered by Kerr in
1963,' (the work by Hawking"' having, virtually
excluded the possibility that there can.exist
other —e.g. toroidal or nonaxisymmetrie —kinds of
equilibrium state). The problem haS' al'so been
solved in the more general framework' of the
source-free Einstein-Mmmell equations, since
further work by Israel, ' Carter, ' and Robinson'
has also virtually established that the only well-
behaved topologicaQy spherical axisymmetric
black-hole equilibrium solutions of these equations
belong to the generalized Kerr family discovered
by Newman et al."

Owing to the special significance that is thus
conferred on them, the Kerr and Kerr-Newman
solutions have been the subject of intense study
and det'ailed investigations including notably the
stability analyses of Teukolsky and Press~' and
Stewart. " Much of this work would not have been
feasible in practice had it, not been for the remark-
able and surprising fact that all the relevant wave
equations have turned out to be soluble in the Kerr
and Kerr-Newman background by separati. on-of-
variables methods. The first and simplest example
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to come to light was that of the Hamilton-Jacobi
equation for the classical geodesics and charged-
particle orbits. " In addition to the three obvious
constants of the motion (interpretable as conserva-
tion of axial angular momentum, energy, and prop-
er mass), the classical orbits turned out to admit
a more mysteri;ous fourth separation constant,
which reduces to the square of tbe total angular
momentum in the spherical (Schwarzschild-Reis-
sner-Nordstr'om) limit, but which is not related to
any manifest symmetry in the more general rotat-
ing solutions. The next development was the dis-
covery'4 that this fourth separation constant bad
a quantum analog, in so much as the D'alembert
equation —and more generally the charged Klein-
Gordon equation —for a scalar field can be separ-
ated straightforwardly into four ordinary differen-
tial equations involving four corresponding separa-
tion constants. After some unsuccessful attempts
by several workers, the next breakthrough was
made by Teukolsky, "'"who discovered that the
separation procedure can be extended to wave
equations for massless neutral particles with non-
zero spin (neutrino, photon, graviton). A further
breakthrough was made by Chandrasekhar, "who
showed how the procedure can be adapted to deal
with spinning particles with nonzero mass, and
most recently this line of generalization has been
completed by Toop" and Page, "who have shown
(independently) that Chandrasekhar's procedure
can cope with the full Dirac equation for a realistic
(i.e., charged as well as massive) electron field.

While many practical-minded w.orkers have
been content to know that these miraculously con-
venient properties of the Kerr and Kerr-Newman
solutions exist, others have wondered whether
their occurrence might be in some sense explained
as straightforward consequences of something
more fuMamentai. An analogous situation arises
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in the nonrelativistic hydrogen atom problem
where, in addition to the constants of the motion
arising from the obvious SO(3) rotation group sym-
metry, there are also the Runge-Lenz constants
whose existence gives. rise to the degeneracy of
energy levels (Pauli" ). These constants may be
regarded as arising from a hidden SO(4) invariance
acting on the bound energy eigenstates (Malkin and
Mal'ko"). The constants in the Kerr-Newman so-
lutions could likewise be described in terms of a
hidden three-parameter A.belian invariance group
acting on the relevant Hilbert space and containing
as a subgroup the two-parameter invariance group
arising from the manifest stationarity and axis-
symmetry. However, the unearthing of a hidden
invariance group can hardly be claimed to provide
a satisfactory e'xplanation in itself: It merely
amounts to replacing one mystery by another.

The same thing could be said about the quite dif-
ferent approach to the question that was initiated
by Penrose and Walker'2 and followed up by Hugh-
ston eI; al."' ~ These workers have sought to der-
ive the existence of the fourth constant of motion
from another special property of the Kerr-Newman
solutions, namely the fact that their Weyl conform-
al tensor is algebraically degenerate —type D.
However, even if such a demonstration could be
made complete, there mould. still remain the mys-
tery of why the black-hole equilibrium states
should have this degeneracy property. Indeed it
would seem no less logical to use a directly op-
posite approach and seek to explain the type-D
property as being a consequence of the existence
of the constants of motion. The deduction that for
vacuum Einstein or source-free Einstein-Maxwell
solutions the type-D property is indeed a direct
consequence of the separability properties of the
wave equation has been carried out completely
by Carter. '~ There remains, however, the ques-
tion of whether the separability properties can
thesmselves be derived merely from the existence
of the corresponding constants of the motion. In
so far as the classical orbits governed by the
Hamilton-Jacobi equation are concerned, it is
well known (see Eisenhart") that any second-
order constant of motion of the kind under con-
sideration is associated with a second-rank sym-
metric tensor field satisfying an equation analog-
ous to the familiar Killing equation for an iso-
metry-generating vector field (see Sec. VI).

The derivation of the corresponding Hamilton-
Jacobi separability properties under suitable con-
ditions from such a tensor field has been carried
out by Woodhouse, "thereby providing the missing
link needed to complete the derivation of the type-
D property from the existence of the fourth con-
stant of motion. The objective of the converse

(Penrose-Walker) program, i.e., the derivation
of the existence of the "Killing tensor" field from
the type-D property, has not yet been fully at-
tained, but it has at least been possible to derive
the existence of a "Killing spinor" which auto-
matically gives rise to a constant of motion in
the special case of null geodesics. (A related anti-
symmetric tensor, or'iginally brought to light by
Floyd, has been described by Penrose. ")

Even if one could satisfactorily explain the con-
stants of classical motion and the separability
properties of the Hamilton-Jacobi equation, there
would remain the problem of accounting for the
corresponding propertie'8 of the quantum wave
equations. The present work is intended as a first
step in a program aimed at deriving the quantum
constants and separability properties as conse-
quences of the corresponding classical results. A
principal result will be the demonstration (Sec. VI)
that the existence of a second-order constant of
motion for the scalar (charged Klein-Gordon) wave
equation is an automatic consequence of the exis-
tence of a corresponding classical constant pro-
vided that the background space satisfies the vacu-
um Einstein or source-free Einstein-Maxwell
equations —though not in general otherwise. (An
alternative demonstration of this result in the pure
vacuum case has been given by Bonanos" using a
more specialized method). The converse must of
course hold automatically, regardless of any back-
ground field equations, by Bohr's correspondence
principle.

Sections II and III of this work discuss the rela-
tionship between the existence of a quantum con-
stant of motion, as defined in terms of an operator
that commutes with the fundamental wave operator
(so that an eigenstate may also be a solution), and
the existence of a corresponding conserved t;ur-
rent. Although it is a slight digression from the
original program, another topic that arises nat-
urally apropos of the relationship between the

. first-quantized field theory and the classical limit
in curved space is the "Schiff conjecture" 'concern-
ing the interdependence of the strong and weak
versions of the equivalence principle, which is
discussed in Sec. IV.

We shall use the following notation conventions.
The composite of two nonassociative operators
will be denoted by a small circle, so that e.g. for
the operator

of partial differentiation with respect to- local co-
ordinates x', we may express the Leibnitz rule as

8.- @=8.V+ VB
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treating the scalar field as a multiplicative oper-
ator acting (associatively) on other scalar fields.
The commutatox of two operators is the difference
between their composites (as distinct from their
products, except in the associative case wherein
the product and the composite are the same) in
the direct and the reversed orders. We shall de-
note the commutator by square brackets and a
comma as usual, which enables us to express the
Leibnitz rule by

[sg~ p7= s, '0 —{I{''sg= s,l'

where X maps the space of fields C onto its dual
or rather —when the field is complex —onto the
comp/ex conjugate of its dual.

Thus —using a dot as usual to distinguish com-
plex-conjugate component indices —the field (Xe)
will have components (XC)„=—(X„.eee) . In the
complex case there will in general be a partic-
ularly fundamental current 8 with space-time com-
ponents 8' (a= 1, . . . , n, with n=4 in conventional
theories) that is interpretable as a Probability
flux density of chaxge. This flux will have the
form

g)aP 8=8(e, e) (2.2)
where we have introduced the use of a comma sub-
script as an abbreviation to denote a partial der-,
ivative component.

When working with a vector operator V' of co-
variant differentiation with respect to some given
connection we shall use a semicolon subscript to
indicate the resulting components; e.g. for a con-
travariant vector v we shall set

(V@v),»—= (V,v») =V,v =-v». ,
.We shall use parentheses and square brackets
respectively for symmetrization and antisymmet-
rization of indices. Our convention for the Rie-
mann tensor may be specified by

[v„v,7 =6t„
in so far as actions on a vector field v are con-
cerned, where S„is a matrix operator with com-
ponents 8„'~,so that in more explicit form

2g' {» ai = (Sa»v)' -=R,»',v .
Our sign convention for the Ricci tensor is given
by

6(axe)
54 ( 2.4)

The relation (2.3) is not sufficient to determine
8(e, T)') uniquely, since one could always add to it
any identically conserved bilinear partial differen-
tial function of 4 and 4. Nevertheless there is a
particularly natural construction whereby a cur-
rent with the required property is given by an ex-
pre. ssion of the form

using a bar to denote complex conjugation, where
8(e, %) is a bilinear partial differential function,
defined in terms of X in such a way as to satisfy
the identity

(axe ex%) -=is.8'(e, e) (2.3)

for arbitrary fields e and e, where X~ (with com-
ponents K„.~ is the operator adjoint to X. The re-
lation (2.3) is in fact the standard defining equation
for the adjoint operator, which is thereby spec-
ified uniquely. The adjoint may be given more explic-
itly in terms of an Euler differentiation operationby
the useful formula

ab ca 0'
—

)
Z{5RT)— X{Rcl)

) (2.5)

The operator of Lie differentiation with respect
to v will be denoted by v; it satisfies

[uZ, vZ7=(uZv)Z.

(xe) =o, (2.1)

II. GENERAL THEORY OF A PASSIVE FIELD IN A GIVEN

BACKGROUND

In the passive-test-particle limit (wherein self-
interactions, radiation reaction, etc. are ignored)
the motions of isolated particles (or compound
bodies) in a given background field are considered
as being described in terms of currents (which
are vector densities on the space-time manifold)
that are homogeneous bilinem' partial differential
functions of fields e with components C" (A =
1, . .. , S, say) that satisfy homogeneous linear par-
tial differential equations of motion of the form

5P BF 5F

5% &5 55
&,a, a

(2.6)

In the two preceding equations, we have used the
standard notation 6/6e for the Euler derivative,
and we have introduced the notation h/ne for what
may appropriately be called the Noethex dexina-
tine. For an arbitrary partial differential function
7 these derivatives are defined as follows.

A sequence of quasi-Euler derivatives (with re-
spect to the partial derivative compounds e",etc.)
is first introduced inductively (working dou)n from
the highest-order partial derivative of 4 on which
F depends) by
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This sequence is terminated by the definition of
the true Euler derivative

X(CXV) Z(eXC ) (2.12)

BF 5F
54 &4 ' 54 (2 7)

The Noether derivative ZF/M may now be intro-
duced as the partial differential opexato~ with
space components given by

5$5$' 5F
b gC, b c (2.8)

(2.9)

where the summation is taken over the various
fields involved (as well as over the component
indices).

Using the general differential identity (2.9) it
is easy to verify that formulas (2.4) and (2.5) do
indeed lead to the divergence identity (2.3). To
start with we note that if F has a homogeneous
linear dependence on some particular field C then
one can immediately deduce from (2.9) (by sub-
stituting d4 = C dX, where X is a variable scale
factor) that the relation

(2.10)

(where the field component index, A say, is left
implicit). This notation is motivated by the fact
that it allows one to express the differential change
dF in F, due to differential changes dC in the var-
iou's fields on which it may depend, by a concise
but explicit expression of the form

which is satisfied by the adjoint of any homogen-
eous linear partial differential operator K regard-
less of its differential order or of the number of
components involved. The proof of the integrated
form (2:.12) of this very useful identity will be left
as an exercise for the reader —for the usual rea-
son, namely that the author is (at present) unable
to provide an elegant demonstration. (I found my-
self obliged to have recourse to a rather unwieldy
double induction procedure;)

We shall obtai. n a. genuine nontrivial conservation
law from our original divergence identity (2.3)
provided C lies in the null space of X [i.e., pro-
vided the basic field equation (2.1) is satisfied
and provided also that 4 lies in the null space of
the adjoint operator X~]. In order for the latter
condition to be satisfied automatically when 4 is
set equal to C, as in expression (2.2), we are thus
led to restrict ourselves to operators that are self-
adjoint (or can be made so by an appropriate pre-
multiplication), i.e., for which

(2.13)

When this additional axiom is satisfied, the fund-
amental current (2.2), which [with the aid of (2.12)]
may be expressed compactly by

(2.14)

will automatically be sea/, i.e., we shall have

8'(O' C) —= 8'(C C) (2.15)
will also hold as an identity. [In this last equation
there is still an implicit summation over the com-
ponents'of the particular field 4 under considera-
tion, but no longer over the other fields on which
5 may depend as in (2.9).] To see that (2.4) is in-
deed a a valid expression for the adjoint of.X it
now suffices to substitute (4XC) in place of 5' in
(2.10). If we now take the difference between the
results of substituting (CXV) and (CXC) in place
of 7 in (2.10) we obtain the required divergence
identity (2.3). It is to be noted that if instead of
taking the difference we had taken the sum, we
would have obtained the even simpler divergence
identity

re(eXC) ~'(CX%)
a gC,

+ (2.11)

which might at first sight appear to provide us with
a generally valid conservation law holding indepen-
dent of the field equation. However, on closer
examination it transpires that the identity (2.4) is
merely a trivial consequence of the more funda-
mental identity (HC} =0 (2.17)

as may be seen by substituting (2.13) in the origin-
al expression (2.4). By substituting (2.13) in (2.3)
we verify at once that the conservation law

s e'(C C)=0 (2.16)
I

will hold whenever the field equations (2.1}are
satisfied.

Now it is to be noticed that on the assumption
that the components 4 ~ transform as scalars or
as tensorial components under changes of the
space coordinate system x' the components (XgsC s)
of (XC }must transform as scalar densities or ten-
sor density components, since if X is to be self-
adjoint the quantity (RCC) must necessarily be a
scala~ density. However, it is usually convenient
to work as far as possible with strictly scalar or
tensorial operators mapping the space of fields
C onto itself rather than onto the complex conju-
gate of the dual space, and thus in particular it
is desirable to express the field equations in the
form
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H~a —PH=O. (2.20)

The bilinear scalar density that plays such an im-
portant role in the foregoing discussion may be
expressed directly in terms of 8 by

for some such strictly scalar or tensorial endo-
morphism operator with components H"~. In typ-
ical theories there is a fundamental self-adjoint
operator P, whose coinponents transform as ten-
sorial or scalar densities, that is used for trans-
forming between the two kinds of representation,
and more generally for lowering of field compon-
ent indices. (It may also be used globally to de-
termine a Hilbert structure on the space of fields. }
In the simplest cases the operator P is nondifferen-
tial, which means that the self-adjointness condi-
tion

(2.18)

is simply equivalent to the statement that the com-
ponent matrix Pg~ is Hermitian.

The fundamental operator 3C is thus given by

(2.19)

(or in terms of components 3'~ = Pge H '~), and in
terms of 0 the self-adjointness condition takes
the form

familiar rule y'y'+y'y'=g "I, where I (with com-
ponents I"s= 5~) is the unit matrix. In view of the
fact that a local reference frame may be chosen
for which the time-direction y matrix, y' say, has
the same components as the P matrix, many stan-
dard textbooks use the symbol y in place of P to

-denote the latter —thus regrettably obscuring the
fact that they have entirely different transforma-
tion properties —the former is the component of
a vector with mixed undotted spinor indices y
while the latter is a scalar density with dotted
and undotted subscript spinor indices Pg~.

4

III. THE LAGRANGIAN FORMULATION AND THE
NOETHER INVARIANCE CONDITION

The only fundamental axioms invoked in the
above presentation of the principles of theories
of passive fields in a given background were the
existence of 'a linear field equation (2.1), the self-
adjointness condition (2.13), and the expression
(2.14) for the fundamental conserved current.

Although the existence of a variational formula-
tion was not invoked, it is nevertheless evident
from the foregoing analysis that the field equations
will necessarily be of lagrangian form as a direct
consequence of the self-adjointness. %e shall in
fact have

(e3CC) =-(CHC), (2.21)

where 4' (with components C„)is the Divac adj oint
of 4 (with components 4"}and is defined by

C =—@P. (2.22}

H= ihy'V', + mI

(where h is Planek's constant and m is the electron
mass) and

The classic exa,mple of the application of the
foregoing principles is of course the simple Dirac
equation (see e.g. Lichnerowicz29) for the electron
for which the operators 3C and H (acting on a field
4 with four complex spin components 4") are given
by

(3Ce) -=-
54

(3.1)

where Z is the real partial differential function
defined by

Z(4, 4 ) = --,'(43CC + 43CC) (3.2)

(3.3)

and it is to be noted that when they are satisfied
we shall also have

[as may easily be verified using the formula (2.4)].
The field equations (2.1) are thus equivalent to

3C= ikn'V, +mP
Z(4, C) =O. (3 4)

(the latter is the form originally used by Dirae)
with

n'=Py',
where V', is an operator of eovariant differentia-
tion, with components &,"~ =—5~, + F,"~ such that
n' and P, and hence also y', are eovariantly con-
stant. The Self-adjointness condition is ensured
by the condition that the matrices n' (with com-
ponents n'g~} be Hermitian. The matrices y'
(with mixed undotted components y'"~) can be used
to eonstruet the inverse, with components g", of
the space-time metric tensor, according to the

The basic conserved current (2.14) may be expres-
sed directly in terms of the Lagrangian by

g
i8(4, 4) -=2 ' 4 . (3.5)

Having thus obtained a Lagrangian formulation,
we may now apply the standard Noether theory
(see e.g Trautman") to construct additional con-
served currents associated with any symmetries
that the Lagrangian or its space integral may
possess. Substituting 8 in the general variation
formula (2.9) we obtain as a starting point the bas-
ic Noether identity
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d4+ —d4 —d =—d4+ dC' .
AC ZC 5C

(3 6)

From any one-parameter transformation group
with generator C, where a dot denotes differentia-
tion with respect to the group parameter X say,
i.e,

d4 =Cd'. , (3.V)

we shall obtain a correspondingiVoethex consezva-
tion laze if the corresponding derivative, 2 =—dZ jdA.
is equal to zero or to a, pure divergence, i.e., if
the group leaves tke sPace integral of Z invariant
(subject to suitable zero-boundary conditions),
since the right-hand side of (3.6) will drop out
when the field equations are satisfied, leaving

4+ 4 —2 =0.
6C

(3.8)

In the present application 2 depends bilinearly
on C and 4 and we shall correspondingly restrict
our attention to variations generated by a linem
partial differential operator iZ say acting on the
field, i.e., we shall take

4 = i(K4) (3.9)

Z = -(4+4) —,'ie.8',
whence we obtain

iZ = 4(X@4)—(K4)(X4) ——.6.8',

(3.10)

(3.11)

which will have the form of a divergence only if

(4[ac'I6-mc]4) -=o. (3.12)

(This quantity cannot be equal to the divergence
of any nonzero bilinear partial differenti, al function
of 4 and C since it contains no derivatives of C.)
Thus we see that in order for iK to generate an
invariance of the Lagrangian integral (in the sense
that Z should be equal to zero or a divergence for
an aybitxaxy unperturbed field 4) it is necessary
as well as obviously sufficient that the operator
K should satisfy

SCK=K~X. (3.13)

(the factor i is introduced for convenience later
on). To find the condition for iX to generate an
invariance group of the Lagrangian integral we
start by noting that by (2.3) and(3. 2) the Lagrangian
may be expressed in the form

dard case when P is just an operator of multiplica-
tion by a nonsingular Hermitian matrix), then
(3.13) will simply be equivalent to'the condition
that the commutator

[a,z] = HIt-: sca-

should vanish, i.e.,
[a, lc]=o.

(3.15)

(3.16)

8 8'(4 4) =0 (3.18)

obtained by substituting C and C respectively in
place of C and 4 in the basic divergence identity
(2.3). We could also obtain a conservation law by
interchanging C and C, but it need not be indepen-
dent, due to the basic identity

P(4 4) =—8'(4 4) (3.19)

[of which the reality condition (2.15) is a special
case] that holds as a consequence of the self-
adjointness of K. It is an immediate consequence
that the total variation of the basic current 8 de-
fined by (2.1), namely

8 —= 8(4, 4) + 8(4, C ), (3.20)

will also be conserved, i.e.,
8 8'=0' (3.21)

this last equation is merely equivalent to the zeal
past of (3.18). It follows immediately from (3.11)
that we shall also have

2=0 (3.22)

when the field equations are satisfied. Hence the
basic Noether conservation law (3.8) reduces [using
(2.12) and (2.14)] simply to

It is evident from (3.9) that if the operator X
satisfies the condition (3.13) [or more particularly
the combination of (3.14) and (3.16)] then we shall
have

(x4) =0

whenever 4 satisfies the basic field equation (2.1).
Moreover, when this last equation (3.1'7) holds
we can immediately derive not just one zeal con-
servation law —which is all that we could expect
from the general Noether argument —but a corn-
p/ex conservation law of the form

If, as is usually the case, we are concerned only
with operators K having the same self-adjointness
property as the endomorphism H corresponding to
X, i.e., such that

e 8'(x)=o

where we define

8(K) -=-,(8(4, 4) —8(4, C)),

(3.23)

(3.24)

(pz)' =pz, (3.14)

and if P has no vanishing eigenvalues (i.e., P4 =

0-4=0), which will certainly be true in the stan-

or equivalently

8(Z) =--,'(8(SC4, 4)+ 8(4, ff4)) . (3.25)

Thus the Noether conservation law is not indepen-
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dent but merely equivalent to the imaginary part
of our original complex conservation law (3.18).

It is to be mentioned that in practice the addition-
al non-Noether conservation law (3.21) [t.e., the
real part of (3.18)] will not necessarily be genuine-
ly independent. Thus for example in the trivial
special case when K is taken simply to be the uriit
operator I—which always. gives rise to an invari-
ance —then the real part 8 of the complex con-
served current will vanish identically, while the
imaginary part reduces to the basic conserved
current that was introduced at the outset, i.e.,
we have

8(1)=8- (3.26)

A nontrivial example is that of an energy-mo-
mentum conservation law resulting from a space-
time translation invariance: In Sec. V it will be
shown explicitly in the particular case of a second-
order scalar wave equation that the real part 8 of
the complex conserved energy-momentum current
will consist merely of a divergence, so that al-
though it may be locaUy nonzero, its integral over
a spacelike hypersurface, subject to appropriate
boundary conditions, will still vanish identically.

IV. THE SCALAR V(AVE EQUATION AND THE

- EQUIVALENCE PRINCIPLE

We shall illustrate the foregoing principles by
applying them in the simplest possible case, name-
ly that where the field 4 consists of just one com-
plex scalm component obeying asecond-order wave
equation. This type of. model theory has always
been used as a, first (exploratory or pedagogical)
step in the process of refinement from a crude
classical point-particle theory toward a more pre-
cise quantum theory. The scalar model has often
made it easier to perceive effects (such as the
Hawking particle emission process) that might
have eluded discovery longer if a more sophisti-
cated theory had been used at the outset. Its use
implies that we are not only ignoring effects such
as radiation reaction, as we have done throughout,
but also effects associated with spin, magnetic
moments, etc.

We shall, at various stages be concerned with
the transition from this first-quantized passive
scalar field model to the corresponding classical
limit in which the allowed motions are solutions
of a set of ordinary differential equations whose
coefficients are explicit functions of the external
fields that are supposed to be acting on the part-
icle. The classical particle may be said to be
neutral (or "freely falling" ) if it is possible to
choose a local ("freely falling" ) coordinate refer-
ence system in the neighborhood of any given point

in such a way that the acceleration at that point
is zero, that is to say, if the possible motions are
describable as geodesics of a certain projective
connection (see Ehlers and Schild"). The creak
version of Einstein's equivalence principle may
be expressed as the. statement that this projective
affine connection is universal in the sense of being
the same for all kinds of neutral particles.

(It is this principle that the Eotvos-Dieke-
Brazinsky experiments are generally accepted to
have tested with very high accuracy. ) The strong
version of Einstein's equivalence principle in-
cludes a further statement to the effect that this
universal (projective) connection derives from
the Riemannian affine connection associated with
a certain universal pseudo-Riemannian metric
tensor. Since the requirement of compatibility
with a metric imposes significant restrictions
(integrability conditions) on the possible form of
the connection, it is often maintained that the
strong equivalence principle needs independent
experimental verification (in addition to that given

by the Eotvos-type experiments) of the kind pro-
vided (so far to much lower accuracy) by gravita-
tional red-shift experiments such as those of Pound
and Rebka" for photons, or Colella. , Overhauser,
and Werner" for neutrons. However, according
to what is widely referred to in the literature (see
e.g. &ill'4) as Schiff's "conjecture, " such indepen-
dent verification should be superfluous provided
one accepts the standard principles of quantum
mechanics —in terms of which the strong principle
should be derivable as a logical consequence of
the weak version of the equivalence principle.

Now we shall argue at the end of this section
that far from being a difficult theorem, "Schiff's
conjecture" is virtually a tautology, provided
that the "standard principles" of quantum mechan-
ics are interpreted as including the principle of
loca/ Loxentz covaxiance, meaning that on scales
small enough for the metric to be considered as
uniform the laws of physics may be considered as
isotropic with respect to transformations leaving
invariant the Minkowski structure defined thereby.
Lorentz invariance in this sens6 may be considered
to have been experimentally verified —though not
of course with unlimited accuracy —by many types
of experiment; a classic example is the Lamb-
shift measurements (see e.g. Lundeen and Pipkin")
on the hydrogen atom, which confirm the predic-
tions of Lorentz-covariant quantum-electrodynamic
theory to at least one part in 10'. The isotropy
of Minkowski space that is observed in such ex-
periments would of course be violated by the ef-
fects of externally imposed electric or magnetic
fields (through the Stark and Zeeman effects), but
it is obviously possible to restore effective Lor-

I
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entz invariance in the theory of the phenomenon
by treating the electrodynamic field as part of
the dynamics and not as merely part of the ex-

. ternal background. However, we would not know
in advance how to do the same for a hyp'othetical
new and as yet unknown field that might conceiv-
ably be responsible for deviations from the pre-
dictions of the strong equivalence principle. Thus,
although such a field might (as with electromagne-
tism) be incorporated in a Lorentz-covariant
theory later on, its effect could be expected to be
first discovered experimentally as an apparent
breaking of the isotropy of space-time, showing
up /oealty through level splittings (analogous to
those due to the Stark and Zeeman effects) which
would presumaMy be of the same order of mag-
nitude as the globa/ frequency shifts of the type
sought by experiments of the Pound-Rebka type.
The chances of discovering such an effect are of
course increased each time the possible accuracy
of frequency comparisons is improved by a new
technical advance such as was achieved by the use
of the Mossbauer effect (on which the Pound-Heb-
ka —type experiments are based). However, so
long as such advances do not reveal local devia-
tions from Lorentz invariance (as manifested by
anomalous line splittings detectable in the labora-
tory) Schiff's argument would seem to imply that
there is little point in trying to detect deviations
from the predictions of the 'strong equivalence
principle by /ong-distance comparisons, as was
done in the rocket-launched hydroge'n maser ex-
periments recently described by Vessot "(Th.is .

is not to deny the potential interest of using highly
accurate —e.g. hydrogen maser —clocks for testing
higher-order general-relativistic effects in the
neighborhood of the sun. )

Vfe start from the fact that the most general
second-order linear partial differential operator
acting on a complex scalar field C may be written
in the form

Using the formula (2.14) we see that the fundamen-
tal current associated with (4.1) subject to (4.3)
will have the form

8' = i8"(44, —44,) —2i 8'4 4 . (4.4)

z, =-e"c .c,+e'(cc .-ec .) —ecc. (4.6)

It is to be noted that as the system stands the
field C is "unphysical" in the sense that the field
ecluations are covariant and the current (4.4) is
actually invariant under any transformation,
whereby 4 is multiplied by a freely variable com-
plex scalar factor, provided appropriate gauge
transformations are applied to the fields 8",g', C.
When we set

4 4 =S"4 (4.7)

[which may be regarded as a local action of the
group GL(1, C)] with

s= Is Iexp(ix), (4.8)

for some real phase angle y, then we shall have

3C K= SKS, (4.9)

where explicitly
Pa

8 aabe +~ay + 6a b a (4.10)

As the operator K is of second order, the cor-
responding Lagrangian density given by the auto-
matic prescription (3.2) will also contain second
derivatives. Since many standard procedures in
theoretical physics are based on the supposition
that the Lagrangian contains only first derivatives,
it is useful to introduce a modified Lagrangian A'I
from which the second derivatives have been re-
moved by the addition of an appropriate divergence
to Z. Therefore we write the Lagrangian obtained
by applying (3.2) in the form

(4.5)

where

X= B,Qab&b+Sa8, + Q, (4.1) with

where we may without loss of generality impose
the symmetry condition

gab g(ab) (4.2)

In order for the form (4.1) to remain covariant
under a general coordinate transformation, the
complex quantities 6'b, S', 6 must transform re-
spectively as components of contravariant tensor,
vector, and scalar densities. The condition (2.13)
that K should be self-adjoint can be expressed
very simply as the requirement that the quantities
Ci"' and 6 be real and that S' be pure imaginary:

(4.3)

I
s I'(ia "x,+ e'),

&'= I& I(&"I&l, ),.+ I&l'(- &"x,.x, + 2i'x, .+ &).
l

The 'most physically meaningful entity in the sys-
tem, the current 8, is left urichanged,

aa: ga ga

(4.11)

(4.12)

as is also the fundamental Lagrangian for which
we obtain

(4.13)

However, the modified first-order Lagrangian ,
is invariant only for pure phase transformations,
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i.e., transformations with. S = 1. (An analogous
situation occurs for Einstein's equations of gen-
eral relativity where the physically fundamental
Lagrangian —the Ricci scalar —is of second order
and can be replaced by an equivalent first-order
Lagrangian only at the expense of sacrificing its
eovariance property. )

The gauge invariance property of the system may
be used to transform it to various possible stan-
dard forms in which the external fields are simp-
lified as far as possible. One usually wishes to
express the external fields as strictly tensorial
quantities rather than as tensor densities. There
is a uniquely natural way of doing this provided
that the matrix 8, with coefficients 6'~ is nonsingu-
lar, which will necessarily be the case when the
field equation (2.1) obtained from (4.1) is hyper-
bolic (as also if it were elliptic, .though not of
course in the special parabolic case exemplified
by the nonxelativis tie time-dependent Schrodinger
equation). Since it is nonsingular the matrix 8
will have a nonzero determinant

~

8
~

and an in-
verse 6 ' which allows us to construct a new ma-
trix g given by

llell 1/(n 2)
g= — 4, 6' (4.14)

whose components g„will transform as those of a
covaxiant tensor under a general coordinate trans-
formation. The quantity 5 is an (essentially super-
fluous constant introduced in accordance with hal-
lowed custom for dimensional convenience. (we
recall that n denotes the space-time dimension
which will normally be taken to be 4). We may
go on to define covaxiant vector A with compon-
ents given by

of a Riemannian covariant differentiation operator
V' in terms of which the operator D is defined by

D, =@V,+ ieA, (4.19)

which will satisfy

(4.20)

vjp=0 (4.21)
I

when the field equation (2.17) is satisfied.
The effect of the GL(1, C) gauge transformations

can now be represented most conveniently by mak-
ing the decomposition

U Q+ p2 (4.22)

where

R =Ra (4.23)

is the scalar contraction of the Ricci tensor as-
sociated with the metric g, and p is a new external
scalar field. Then on making the phase gauge
transformation

A . Pg

&a &a Aa+ X,a (4.24)

and the confoz'mal gauge transformation
2

lab Jab ~ lab ~ (4.25)

with

l sl z/(n-z) (4.26)

We may also introduce a fundamental current vec-
tor with components ¹given by

~a g -1llgll-1/2gs

ze~, = Pi 'llgll '/'g g'

and a scalar U given by

f/=Iz 'llgll ' '(hc —ze/Jz'A )

(4.15)

(4.16)

we obtain (with the aid of formulas given e.g. by
Schouten")

(4.27)

H= —D~D + U, (4.18)

where we now treat g as a (pseudo-)Riemannian
metric tensor, which is used for raising and low-
ering space-time indices and for the construction

where e is another constant introduced for dimen-
sional convenience. We now introduce a fundamen-
tal Hermitian structure —which in the present
case must have just a single component, trans-
forming as a scalar density —by setting

(4.17)

Hence using (2.19) we may replace our original
self-adjoint scalar density operator X by a strictly
scalar operator H which will have the very simple
form

with

(4.28)

where all careted quantities are defined in terms
of the new metric A.'g. The corresponding trans-
formation of the current vector is

~a ~a ~-n J.a (4.29)

As can be seen 'more clearly from the earlier
form (4.12), this last condition is precisely what
is required to ensure that the total charge flux
across a given hypersurface segment remains con-
stant under the gauge transformation. Since it is
the charge flux rather than the amplitude or phase
of 4 that is of direct physical significance, one is



F,„=QAt,q] (4.31)

is zero (in which case A can be adjusted to vanish),
there is no correspondingly unique way of fixing
the phase gauge, but it can at least be restricted
partially in a convenient way by a gauge condition
of the much used Lorentz form

(4.32)

In so far as gauge conditions are permissible,
we see that the 15 independent external field com-
ponents (8",S', 6) with which we started out are
partially redundant, and that the invariant proper-
ties of the wave equation can be completely char-
acterized by just two tensor fields which may be
taken to be g and I', where the latter is subject to
the further Maxwell restriction

(4.33)

these fields are defined in a uniform-mass gauge
to within constant scalar multiples which are ad-
justable by the choice of e and of the constant value
of p. . What we have shown so far in this section
may be summed up as follows:

The laws of motion. of a particle in an external
field, as determined by a single self-adjoint par-
tial differential equation in the first-quantized pas-
sive-test-particle limit (wherein self-interactions
and internal spin or multiple structure are
ignored), depend on just two constants, e and p

say, and just tsv0 tensor fields, namely a symme-
tric pseudo-Riemannian metric tensor g and an
antisymmetric Maxwell tensor F subject to (4.34).

We are now in a position to state what may be
called' the extended equivalence principle to the ef-
fect that we have the following.

The metric tensor g and the Maxwell tensor F,
as specified in the preceding paragraph, are uni-
versal, in the sense that the same g and I may be '

used for the description of any free passive-test-
particle motion (so that only the constants e and p
depend on the particular kind of particle involved).
This principle is an immediate corollary of the
fact that the graviton and the photon are —as far as

[ab,.]

in practice free to adjust the gauge according to
convenience. In practical applications to relativ-
istic free particle wave equations the most obvious, -
ly natural and convenient way to choose the con-
formal gauge is to require that the "effective
mass" field, g, be uniform, i.e.,

' (4.30)

(see, however, the discussion of Bekenstein, "who
considers an alternative possibility which has cer-
tain advantages when active gravitational effects
are being treated). Except when the gauge-invari-
ant "electromagnetic field" E defined by

is known at present —the only ~e~o-nzass bosons,
i.e., the only particles. that can give rise to long-
range effectively "external". fields governing the
background in which local processes take place.
(If a violation of this principle were one day de-
tected experimentally, the immediate conclusion
to be drawn would be that another kind of zero-
mass boson exists. )

The extended equivalence principle expounded in
the previous paragraph is a generalization of the
better-known (strong) Einstein equivalence prin-
ciple which refers only to the metric tensor g but
not to the Maxwell tensor. In other words, the
Einstein version of the principle applies directly
only to particles that are electrically neutral in the
sense that the quantities 8' (or A, ) have no influ-
ence on their motions which may therefore be
characterized by setting e = 0 in the foregoing for-
malism. It should now be remarked that this
Einstein equivalence principle is merely a slight
reinforcement of the principle of local Lorentz in-
variance as applied within the present framework.
According to this )atter principle, 'the metric g
determined by the wave equation describing the
motion, of any particular kind of particle must be
invariant under the Lorentz group action that
leaves invariant the metric g' say determined by
the wave equation describing the motion of a sec-
ond kind of particle, which implies that g may dif-
fer from g' at most by an overall conformal scale
factor.

To establish the Einstein equivalence principle
itself we need only to know that the conformal fac-
tor relating g and g' is a cou&&a«(which will then
be able to be absorbed into the definition of the ef-
fective mass p in such a way as to render g iden-
tical to g'). Thus to prove the validity of the
Schiff's conjecture subject to local Lorentz invari-
ance, we need only to demonstrate that the con-
stancy of this conformal factor is a consequence of
the "weak" equivalence principle, i.e., of the uni-
versality of the projective affine connection deter-
mining the classical trajectories of neutral par-
ticles.

To obtain an explicit demonstration of this al-
most obvious result, one takes the classical limit
by the standard Ehrenfest method, using the fact
that, tpe trajectories of localized kigk-frequency
wave packets obeying any /inear (first- or higher-
order) scalar wave equation may be obtained as
bgchmactexistics of the corresponding nonlinear
first-order Hamilton- Jacobi equation by applying
the eikonal aPPxoximation to the scalar wave equa-
tion

(4.34)

'Ihis approximation consists of ignoring all de-
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rivatives of background tensor fields in the scalar
wave operator H, while replacing the operator
components V, when they come to act on 4 by
gradient components (i/S)S „a-so that the real un-
known S (the action) replaces the original unknown
4 which factors out leaving an equation of the Ham-
ilton- Jacobi form

H(x, VS) =O, (4.35)

H=O, (4.38)

where w, are the components of a generalized mo-
mentum covector v, and the function H(x, m) is
obtained by substituting w in place of V'S in the left-
hand side of the eikonal equation (4.35).

In our particular case we obtain from (4.18) and
(4.22) a Hamilton- Jacobi —type equation given by

(S,+ eA, )g "(S,+ eA, )+ g'= 0, (4.39)

and the directly corresponding constrained Ham-
iltonian system is specified by

H (x, m) —= (v, + eA, )g "(v,+ eA ) = 0 . (4.40)

When e is zero (and assuming of course that we
are using the conformal gauge in which p is uni-
form) the resulting Hamilton equations are simply
those for the geodesics of the connection derived
from the metric g. The effect of a conformal vari-
ation of g can be represented by allowing p instead
to vary, which would have the effect of introducing
an extra force proportional to the gradient of 'p,' '

and thus would cause the trajectories to deviate
from the geodesics of the universal connection in
violation of the weak equivalence principle. ' Th'us "'
this latter principle allows us to conclude (in ac-
cordance with Schiff's conjecture a.nd subject to
local Lorentz invariance) that the inetric is indeed
universal as required by the strong equivalence
pr inc iple.

We note here for future reference that since the
eikonal equation (4.35) is unaffected by multiplica-
tion of the left-hand side by an arbitrary positive
scalar field, A.

' say, it follows that the trajectories

where H is a scalar function of the space-time po-
sition x, and of the covariant vector VS. This
function will be real as a consequence of the self-
adjointness property of PH. The bicharacteristics
of Eq. (4.35) are now obtainable immediately as
solutions of the corresponding Hamiltonian system
of ordinary differential equations

(4.36)
d 7 O'TTa

BH

d'T Bx

subject to the "proper mass-shell" constraint

7', dr'/dr= X '. (4.42)

Thus —provided p is nonzero —we may replace
(4.40) by the equivalent systems

ab
H' = (v, + eA, ) (wb+ eA, ) + —,p, = 0

2p
(4.43)

or
ab

H" = (w, + eA,), (v, + eA, ) = 1, (4.44)

the last of these having the advantage of maximum
brevity of expression. When dealing with relativ-
istic free particle wave equations in the standard
conformal gauge for which p is uniform the dis-
tinction between these three alternatives is imma-
terial. However, an important relativistic applica-
tion in which it is preferable to retain a variable
u occurs in the treatment ofP erfect fluids (see
Carter, "work in preparation). In such cases the
second alternative (4.43) has the attractive feature
that it corresponds to a parametrization which can-
tains the pzoPex time with respect to the metric g.
Nevertheless the original form (4.40) remains the
most satisfactory for many purposes since, al-
though it implies improper parametrization, it is
the only one of the three alternatives that remains
valid for null trajectories.

V. CONSERVATION LAWS RESULTING FROM ORDINARY

SPACE-TIME INVARIANCE GROUPS

Before returning to consider the first-quantized
system described by (4.18) and (4.34) we shall re-
capitulate some well-known results concerning the
constants of motion in the classical limit. We
start with the familiar fact that a general function
E say of position x and of momentum w will be a
constant of any motion satisfying (4.36) and (4.37)
if and only if the Poisson bracket, as defined by

7

BH BK

a

is zero, i.e.,

[H, sc7, = o;

BE BH

Bx 87T

(5.2)

this is the classical analog of the quantum commu-
tation condition (3.16),

The most obvious kind of constant of motion is

are also unaffected by a transformation of the form

(4.41)

It can be seen directly: from the Hamiltonian equa-
tions (4.36) and (4.39)—bearing in mind, the re-
straint (4.38)—that the effect of such a transforma, -
tion is merely to bring about a reparametrization
of the trajectories given by
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the kind that arises from a straightforward space-
time symmetry of the system. Clearly the Hamil-
tonian function H(x, m) will be invariant under a
space-time action generated by a vector k say if,
and only if, for any space-time covector field w

(consistent with the restraint) that is invariant
under the action generated by k, the corresponding
scalar field H(x, m) is also invariant, f.e. , if and

only if

kk][= 0 k&H(x, n') = 0, (5.3)

where the symbol k8 denotes Lie differentiation
with respect to the vector field k. Using the expli-
cit formulas

k&~—=
&g, bk +'trbk ~, ,

BH BH
kSH(x, ][) —= , + 7[k, k',

(5.4)

(5.5)

one obtains the identity

kSH(x, ]T) —= [H, k'm, ]~+ kkv, ,
a

(5.6)

1 'dx
Q

2p, d7'

the corresponding Hamiltonian equations (4.36)
and (4.37) may be expressed as

(5.7)

~a= »a —e+a ~

I

u ~ Q= —Eub b
alb ~ ab

while the constraint (4.38) takes the form

Q ug= —1,

(5.8)

(5.8)

(5.10)

Since the only fields involved are g and A we de-
duce that the necessary and sufficient condition
for k'm, to be a constant of motion will be

from which the following theorem is an obvious
deduction:

For a space time fie-fd k to generate a symmetry
of the Hamiltonian function it is not only necessary
(as is well known from the theory of ignorable
coordinates) but als'o sufficient that the scalar con-
traction 0'm, be a constant of the motion.

We are concerned here with the particular case
when H has the form (4.40), for which, by intro-
ducing

(5.15)

Provided this condition is satisfied, the require-
ment of invariance of the- system under the space-
time action generated by k is equivalent to the re-
quirement that the system be invariant under the
action on the fundamental scalar field 4 generated
by the operator

(5.16)

By (3.15) we may express this in the equivalent
form

K= 2i[k'7 + & k'] (5.17)

wherein it is manifest that the seU-adjointness
requirement (2.20) will be satisfied. The corre-
sponding commutator with the scalar wave opera-
tor (4.18) subject to (4.22) will be given by

(5.11)

(which will be sufficient in the neutral case) and

k@A= 0 (5.12)

(which will only be relevant when ekk 0). This may
be verified directly by evaluating the'Poisson brac-
ket, which has the explicit form

[H, k')T ]z —= —2k„&]],'u'uk+ 2(A„&k'+k', ,A&)e]]u' .
(5.13)

I

Since pu' may have an arbitrary initial value the
coefficient of the linear term and the (symme-
trized) coefficient of the term quadratic in pu'
must vanish separately if the quantity in brackets
is to be zero always. Hence, using the identities

kA5g„=—2k(„.,), kSA, =A...k" + A,k~... (5.14)

we immediately obtain the conditions (5.11) and

(5.12).
Now let us consider the analogous situation for

a corresponding first-quantized system. The con-
dition that the system be invariant under the space-
time action generated by the field k is equivalent to
-the requirement that all the various operators of
the system should .commute with the operation k8.
In particular, this must apply to the fundamental
Hermitian structure P which in the scalar case is
simply equal to the measure ~P~~'~', and hence we
obtain as a preliminary requirement that

2

[ V,]:—ff—kkk
&

'
f[,If(kDk„D,»' —k'...', ) —Ie(A. ..k'+A, k', ,)]D'+ — )k'R, (elf(A ..k' Ae, k', ,)", +.

I

(5.18)

Since the symmetrized derivatives of 4 may be
chosen arbitrarily at any initial point, it follows
that such an operator can only vanish identically
if .the coefficients of each of the symmetrized

operators O', D 'D ', etc. appearing within it are
zero separately.

Applying this to the first line in (5.18) we obtain
the familiar Killing condition
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k(a+b) 0
y (5.19) & (v'k')=0. (5.29)

which is equivalent to (5.11) by (5.14) and implies
at once that the first term of both the second and
third lines will drop out. From what remains of
the second line we obtain

&„-bk+ Abkb, ,= 0, (5.20)

+ @ya~b@@ &eybga@@,
t f (5.21)

This c:an be written in.a more meaningful form if
we introduce a covariant tensor W with compo-
nents given by

which is equivalent to (5.12) by (5.14) and implies
that the remaining term on the third line drops
opt. Thus we confirm that the same conditions
(5.11) and (5.12) that were necessary and sufficient
for the function K= k'm, to be a constant of motion
in the classical limi;t are also necessary and suffi-
cient for the operator K= -ik'V', to be a constant of
motion —in the sense of Sec. III—in the quantized
theory;

Let us now examine the form of the corresponding
conserved current obtained by substituting the field
(K4) as given by (5.17) in place of C (but not C ) in
(4.20) which gives

¹(Kc,c ) = kk~(-c c' "+4"4,)

The effective "energy-momentum tensor" brought
to light in this way is in fapt just the "canonical"
energy-momentum tensor defined in the standard
way by applying the formula

BA ' BA
c', a

— — c', t + +goBC, '
.B4, (5.30)

to the first-order Lagrangian scalar A defined
from (4.6) by

& = I gI"'~
which gives the explicit expression

I

A=--(D,c)(D'c) -Ucc .
This may be expressed alternatively by

g', = T', —eN'A, ,

where

(5.31)

{5.32)

(5.33)

T'b=2 +&g 'BA

Bgab
(5.34)

(5.35)ab ega ~ab
b b

VI. GENERAL FIRST- AND SECOND-ORDER CONSTANTS

is the ordinary geometric energy-momentum tensor
which satisfies

w" = 2k(c k'Ds'c, ) (5.22) OF MOTION

and a mixed tensor V' with components given by the
expression

v' = k(c D'ci+ c D'c')

g"[(D c)D—'c + c.Dj)'c] (S.23)

in which all the terms except the last are manifest-
ly real, and where the last term also will be real
whenever the field equations are satisfied, so that
we shall have the properties

The canonical quantity k'm, and its quantum ana-
log that arose in the preceding sec'tion as con-
stants of motion a,ssociated with a space-ti. me
symmetry have the —for some purposes undesira-
ble —property of being phase- gauge dependent.
We shall start our investigation of constants as-
sociated with more general kinds of symmetry
by considering the necessary and sufficient con-
ditions to have a constant of the classical motion
of the general linear form

w" =- wl:"' (5.24) K =-p, k'u, +c, (6.1)

ga ~a'b b'

In terms of these quantities we obtain

n¹(Kc, c)= v' k'+~, w".

(5.25)

(5.26)

Since it is the divergence of an antisymmetric
quantity, the second term is trivially conserved,
l.e

w'here k is a vector field and c is a scalar field,
and where we now choose to work with the gauge-
independent velocity u rather than the gauge-de-
pendent momentum g.

On working out the Poisson bracket with H as
given by (4.40) we obtain

[H, gk'u, + c]~ —= —2K,.,p, 'N%c~

v (v w")=0

so that the complex conservation condition

v, ¹(Kc,c)= 0

(5.27)

(5.28)

(6.2)b a+ 2(eE,P —c„)gN,

from which we see that the necessary and suffi-
cient conditions for K as given by (6.1) to be a
constant of the classical motion are

finally yields only a single nontrivial conservati:on
law for the real vector field with components
V'blab, whiCh muat SatiSfy

k(ao b)

eI;bk' =c„,
(6.3)

(6.4)
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K= zPa u ub (6.6)

where a'b is a, symmetric tensor field. Working
out the Poisson bracket with B as given by (4.40)
yields

[H, g'a"u, u,j~ -=—2a'~'p'u, u,u,

+4a,'Zb)'ep, 'u, ub . (6 7)

The requirement that the coefficients of the terms
cubic and quadratic in u must vanish separatly
gives

a(ab;c) P

a (a~b)c p
C

(6.8)
(6.9)

as necessary and sufficient conditions for the ho-
mogeneous quadratic function (6.7) to be a con-
stant of the classical motion for general neutral
and charged particles. It was the discovery" in
the Kerr and Kerr-Newman spaces of a constant
of precisely this kind that provided the initial
stimulation for the present study. If we are in-

of which the first is once more the Killing con-
dition for % to generate a symmetry of the metric,
while the second may, if k is timelike, be inter-
preted as a requirement that c play the role of an
effective potential. for the electric component of
the Maxwell field as defined relative to the rest
frame determined by k. A field c of the required
form can exist locally if and only if the exterior
derivative of the left-hand side of (6.4) is zero,
which is equivalent (by Cartan's identity) to the
condition

% g F,~=0. (6.5)

Thus we see that there can be a linear constant
of the motion of the form (6.1) only if k generates
a symmetry both of the metric g and of the gauge-
independent electromagnetic field E, and that when

this requirement is satisfied the required field c
will be determined uniquely modulo an additive
constant. A noteworthy special case is that when

the field is purely magnetic relative to a, the
frame determined by k—if it is timelike —in the
sense that F,P' is zero, in which case we obtain
a constant of the motion of the simple homogeneous
form K'u, .

Having thus seen that a linear constant of class-
ical motion is always related to a symmetry of g
and Funder an ordinary space-time transformation
group, let us now move on to consider the require-
ments for the existence of a quadratic constant of
the classical motion, starting with the case of a
constant of the homogeneous form

terested in functions of the more general nonho-
mogeneous quadratic form

K=p, 'a' u,ub+gb'u, +c. (6.10)

then it is evident that by combining (6.2) and (6.7)
we shall obtain as necessary and sufficient con-
ditions three equations consisting of firstly (6.8)
as it stands, secondly the combination

2ea (apb) c y(a;b) (6.1I)
which replaces the separate equations (6.3) and

(6.9), and thirdly the equation (6.4) as it stands.
If we are only interested in the geodesic trajec-

tories of neutral particles then Eq. (6.8) alone is
clearly a necessary and sufficient condition for
the existence of a quadratic constant of motion.
Analogous conditions for cubic and higher-order
constants of geodesic motion have been discussed
by Eisenhart" and Woodhouse. " Walker and Pen-
rose" have suggested that because (6.8) is the
analog of the Killing condition (6.3) for the exis-
tence of a linear constant, then symmetric tensor
a satisfying (6.8) should be described as a 'xiii
ing" tensor; but since the earliest studies of con-
ditions for the existence of such a quadratic con-
stant were made by Stackel, ' it would seem that
the term Stackel tensor is more appropriate. I
prefer to reserve the description Killing tensor
for the case to be described below where the sym-
metric tensor a gives rise to an operator gene-
rating a (hidden) symmetry of the quantized sys-
'tem in an analogous manner to that in which a
(nonhidden) symmetry operator arises (as des-
cribed in the preceding section) from an ordinary
KiIling vector. In the particular case of the Kerr
and Kerr-Newman solutions the distinction does
not arise since the Stackel tensor turns out' to
be also a Killing tensor in this strong sense. A

primary purpose of the present work is to account
for this fact by showing that for a vacuum Ein-
stein or Einstein-Maxwell space, though not in
general otherwise, a Stackel tensor will automat-
ically be a Killing tensor.

Let us now move on to consider the analogous
conditions for the existence of corresponding con-
stants of the motion in the first-quantized system.
Subject to the self-adjointness condition (2.20) the
most general first-order differential operator may
be expressed in the gauge-invariant form

K = 2(k'D, +D,k')+—c, (6.12)

and hence substituting the expression (4.18) for H
we obtain the commutator analogous to (6.2) in the
form

[8,—,'i(k'D, +D,k')+c—]=2i Sk" D,D, +25(ik "~
~ eke" c")D-+k'( ,—i 8k~" —eke ——c'").,+ihk'U„.
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kg U=O, (6.14)

and if U has the form (4.22) this will be satisfied
automatically by consequence of the isometry im-
plied by (6.3). Thus for the first-order quantum
operator (6.2) to be a constant of motion in the
sense of Sec. III the necessary and sufficient con-
ditions are precisely the same as for its classical

In order for such a commutator to be zero, the
(symmetrized) coefficients of the symmetric
gauge-invariant differentiation operators of each
order must vanish separately. From the first
(highest-order) coefficient we obtain our previous
(classical) condition (6.3), and when this is satis-
fied the condition obtained from the second term
reduces to (6.4).

Finally when both (6.3) and (6.4) are satisfied the
last (nondifferential) term yields simply K =-D,a' D~, (6.15)

which is the quantum analog of the homogeneous
quadratic function (6.6). The most general second-
order operator satisfying (2.20) may be written
as a constant coefficient linear combination of
(6.12) and (6.15). The commutator of (6.15) with

Ji as given by (4.18) may be evaluated in two steps
by working out

' analog (6.1). We shall see now, however, that for
a second-order quantum operator the analogous
property does not exist, in so much as such re-
quirements for it to be a constant of motion are in

general more severe than in the classical limit.
The simplest gauge-invariant form for a second-

order operator satisfying the self-adjointness con-
dition (2.20) may be given by

[D~c Da'"D ] —= 2haab "D++ +h( 3haa'b" , 4i. e—a/Fb~')D&, D»

453
+ I (cala);b a(ca;b);a) a [allblc 4iehba (aFb)c

+ gg a aF bc 2(a aF bc) + (a bFac ) }+ g a(ca;a);bF (6.16)

and

[U, D.a"D,]-=2fla"V„D,+ (a'a"U„)., (6.1V)

and then taking the sum

[If . D aabD ] [D~c D aabD ]+ [U D aabD ]

(6.18)

By setting equal to zero the symmetrized co-
efficients of the differential operators of each
order separately, we obtain as necessary and suf-
ficient conditions for the operatbr (6.15) to be a
constant of motion four separate equations con-
sisting firstly and secondly of the corresponding
classical equations (6.8) and (6.9), together with
thirdly the equation

[aft b]c} s aabU (6.19)
a

. „&'0J~:I I '.

[obtained by setting equal to zero the coefficient
of D, after (6.8) and (6.9) have been satisfied] and

finally the equation
Ft'c'

hbfa bFac } 0 (6.20)

[obtained by setting the nondifferential term equal
to zero after (6.8), (6.9), and (6.19) have been
satisfied), where we retain the multiplying factor
k' as a.reminder that this condition is redundant
in the classical limit. This last equation (6.20)
will be irrelevant if we are concerned only with
neutral-particle motions. However, it would seem
reasonable to stipulate that a" should at least sat-

isfy (6.19) in addition to (6.8) in order to merit
description as a Killing tensor.

It is 'now apparent that the first auxiliary quan-
tum requirement (6.19) will automatically be sat-
isfied when the Hicci tensor is zero, bearing in

mind that by (4.22) we shall have

U~= — R~. (6.21)

Thus we see that a Stackel tensor will necessarily
be a Killing tensor when the gacuum Einstein equa-
tions are satisfied. It is also apparent that the
second auxiliary quantum requirement (6.20)
(which will in any case be relevant only if we are
concerned with charged-particle motions) will be
satisfied automatically if the source free Maxwe-ll

equation

F~ =0 (6.22)

[aab]c P
C I (6.24)

is satisfied. Furthermore, it can easily be seen
that if the source-free Einstein-Marvel/ equations
are satisfied the auxiliary conditions will still be
redundant, since when the Bicci tensor is propor-

~ tional to the Maxwell energy tensor we shall have
not only

(6.23)

but also —as a consequence of the classical con-
dition (6.9)—'
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K= -D',a''D~ —2[b'D, +D,—b'j+ c. (6.25)

By combining (6.13), (6.16), and (6.17) and re-
quiring that the symmetrized coefficients of the
differential operators of each separate order be
equal to zero, working systematically from the
highest-order downward we obtain in succession,
as necessary and sufficient conditions for this
operator K given by (6.25) to commute with H as
given by (4.18), a set of four equations consisting
of firstly and secondly the corresponding classical
conditions (6.8) and (6.11), followed by thirdly
the equation

which is clearly sufficient for (6.19) to be satis-
fied. (It has been pointed out to me by Gibbons
that the automatic satisfaction of the quantum aux-
iliary conditions in the vacuum Einstein-Maxwell
spaces could have been predicted from the corre-
sponding result for pure Einstein vacuum spaces
by using the five-dimensional formulation of Ein-
stein theory wherein the field equations take the
same form —namely vanishing Ricci tensor —as
in those of pure Einstein theory in four dimens-
ions. )

This completes our demonstration of how the
existence of a quantum constant of .motion of the
form (6.15) in the Kerr and Kerr-Newman spaces
follows automatically from the existence of a
classical constant of the form (6.6) by consequence
of the fact that the source-free Einstein-Maxwell
equations are satisfied.

Analogous conclusions apply if we go on to con-
sider the most general possible second-order op-
erator subject to (2.20), which may be expressed
as

itational and electromagnetic source equations

Rah &R~ ab . (Ea gab E yedgt & T ab)

(6.30)

y ac 4+~a
t

(6.31)

classical terms

I a(ab;c) p

$(a,b) 2&+ (a& b)c
C

~;a ~g ~ba
b

auxiliary terms

4m' 2

{a"r„'...
+ 4(a, 'T„'~').,),

IV 0 @2(n a&e) (6.32)

It is now evident that when the sou~ce free Max-. -
svell equations

~a p (6.33)

are satisfied, the fourth condition will be redund-
ant, and that when in addition

Tab pN (6.34)

so that the source free Einstein--Maxwell equations
hold, the remaining three conditions will reduce
to their classical form.

where j is the electromagnetic current vector and
T&~is the nonelectromagnetic part of the energy-
momentum tensor, as in the following theorem:

[ DQ'-+~h'R+p, , D,a'D— ——,'[O'D +D 5']+c]=0
if and only if the following is true:

Eha+ c.a oabU @2{+ [aRb]c)
yb 3 . c t

(6.26) VII. SIMPLE EXAMPLES

O' =Q;a (6.28)

so that although it need not be the generator of an
isometry, it must at least generate a symmetry
of the fundamental measure p. Bearing this in
mind we see that the condition (6.27) reduces ra-
ther miraculously to the form (6.20) if we sub-
stitute for U the expression obtained from (4.22)
in the particular case when the space-time dim-
ension n is set equal to four, which gives simply

U- ~h'R=g (6.29)

which is just a constant. In. so far as we are con-
cerned only with the four-dimensional case, our
results may be summarized, in terms of the grav-

and finally the equation

{el'a 'F ~.,+ 3b'(U -~K'R)).,= 0 (6.27)

It is noted that (6.11) implies that the vector 5
must necessarily satisfy

%e start by remarking that the metric tensor
will always be a Stackel tensor, in the sense that
if

~ab g ab. (7.1)

then (6.8) will hold; but the metric will not in
general be a Killing tensor, since the auxiliary
condition (6.19), which would be required for the
operator

(7.2)& =- &ag"&b

to commute with H, as given by (4.18) and (4.22),
will be satisfied only if the Ricci scalar is a con-
stant, i.e., if

R =0
ya (7.3)

However, when there are geometric symmetries,
generated by not necessarily distinct Killing vec-
tors%~» and k&» say, then their symmetrized
product %&,&

$%&» will necessarily be not only a
Stackel tensor but also a Killing tensor in the
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strong sense: If we set

a' =k e) (7.4)

we shall not only satisfy the Stackel condition (6.8)
but will also have both

and

a"g = 0
bb (7.5)

[aab]c &
lb [a:bQ c1+ 1) [a;by c) (7

'.

6)C & '(1) (2) '.(2) (1.) -;C &

whence

Z 'ab' =0
C gC (7 7)

(since the right hand side of (7.6) is divergence of
a trivector), so that both the left- and right-hand
sides of the auxiliary Killing tensor condition
(6.19) will be zero.

. A trivial but instructive special case is that of
flat space, for which the metric may be expressed
in terms of a particular system of flat coordi-
nates r'say by

QS =~AB~r ~r (7 8)

whereg~ are constants and the Cartesian capi-
tal indices A. , B run from 1 to n. In such a
space there will not only be an n parameter fam-
ily of translational Killing vectors e~~ with flat
coordinate components given by

e(x) ('7.9)

but also a ~n(n-1) parameter set of independent
rotational Killing vectors m~~~~~ given by

mg)(~) =2r @Dyed~ (7.10)

Among the very large [actually (n'+n)(n'+ n+2)/8
parameter] family of flat-space Killing tensors
that can be constructed from these by taking linear
combinations of symmetrized tensor products,
there is a particularly important (n+ 1)-parameter
subset of the form

2c(g g m(b)(s)(-) m(c)(Jn + P g m(A)(B) e(c)

where the parameters (I and l)" may be regarded. .-, -:

as a scalar and as the components of a Cartesian
vector, respectively.

Now although the constants of the motion obtained-
from these Killing tensors are essentially trivial
when the Hamiltonian operator has the canonical
relativistic form specified by (4.18), (4.22), and
(4.30), the formalism of the preceding section en-
ables them to be used for the construction of non-
trivial constants of the motion in certain important
special cases when the flat-space symmetry is
broken by taking U to be an appropriate potential
not of the form specified by (4.22) and (4.30).

These cases arise in the context of the nonrelati-
vistic limit in ordinary Euclidean flat space where
the dimension n is taken equal to 3 (instead of
equal to 4 or 5 as in the physical examples that we
have been considering hitherto); this is sufficient
for treating cases where the background fields are
stationary. While abandoning the expression (4.22)
for U (it would diverge in any case in three dim-
ensions), we may still retain the general form
(4.18) for what is now to be interpreted as an ord-
inary nonrelativistic Schrodinger operator, but we
must replace the expression (4.40) by the more
general form

FE =g'"(I(, + eA, )( I(b + eA b) + U (7.12)

for the corresponding classical Hamiltonian.
In the physical interpretation of (7.12) the co-

vector A is now to be thought of as the three-di-
mensional potential for the magnetic part only of
the Maxwell field, and U is a combined potential
for both the electrostatic and Newtonian gravita-
tiona1 fields. Using those formulas of the preced-
ing section which were left in their general form,
it is easy to see that the necessary and sufficient
conditions for a general quadratic function of the
form (6.10) to be a constant of the classical motion
determined by (7.12) are

&(ah; c) 0 eb F"+c'=a' U,
(7.13)

5 ' =2ea ~'I ' ' O'U =0

(where we are now to interpret F"as being re-
lated to the magnetic field components 8, by I'""
= &' 'B„where 4'" is the three-dimensional al-
ternating tensor). Moreover, since we are now

restricting our attention to flat space, the only
additional requirement for the corresponding
quantum operator of the form (6.25) to commute
with the Hamiltonian (4.'l8) will be the condition

(a'i') b=o, (7.14)

where j' is now to be interpreted as the ordinary
three-dimensional electric current vector.

I know of two cases where nontrivial constants
of the motion can be constructed in addition to
those whose presence is obvious from ordinary
space symmetries. Both occur when the magnetic
field is absent, in which case the restrictions on
a and c in (7.13) decouple from the restrictions on

b, which is merely requi. red to be the generator
of an ordinary space symmetry of the system.

The remaining classical restrictions on a and c
thus reduce to

a~' '&=0 a U =c' (7.15)

Moreover, since the absence of a magnetic field
implies by the relevant Maxwell equation that there



BRANDON CARTER 16

can be no current, the auxiliary condition (7.14)
will be redundant, so that the classically necessary
conditions (7.15) will also be sufficient for the
corresponding quantum operator

K= —k2V' a V'b+c (7.16)

to commute with the Hamiltonian operator (4.18}.
The most famous example of a nontrivial con-

stant of the motion of the form (V. 16) arises when
the translational symmetry generated by the vec-
tors (7.9) is broken by the introduction of a simple
spherically symmetric potential of the standard
monopole form

(7.17)

where Q is a constant and

xrayA (7.18}

Since the rotational subgroup generated by (7.10)
is left intact, it is obvious that the corresponding
Casimir operator (i.e., the total squared angular
momentum) obtained by setting P" equal to zero
in the special form (V. ll) will still give rise to a
constant of the motion. However, since the po-
tential (7.17) is not invariant under the 'action gen-
erated by the vectors (7.9), it is no longer at all
obvious that a Killing tensor of the form (7.11) will
still give rise to a constant of the motion in the
more general case when the P" are nonzero. It
turns out nevertheless that a constant of the form
(7.16) can in fact be constructed for a tensor a of
the form (7.11) for an arbitr'ary set of constants

Pg =gi's, P simply by setting

(7.19)

It can easily be checked directly that this does in

fact satisfy the condition (7.15). Thus in addition
to the trivial total angular momentum constant, -

obtained when the P" are zero, we have found a
three-parameter family of nontrivial constants,
for which we may take as a basis the particular
members obtained when e and any two of the three
P" are zero The three i.ndependent constants
found in this way are in fact well known as the
components of the famous Runge-Lenz vector whose
existence can be regarded as accounting for the
closure of the orbits in the classical Keppler prob-
lem. The existence of the corresponding quantum
constants, which were discovered by Pauli, ac-
counts for the degeneracy of energy levels in the
nonrelativistic hydrogen atom problem. [Although
these operators do not commute. with each other,
they do not thereby give rise to any further non-
trivial linearly independent constants of the motion
since they combine with the ordinary angular mo-
mentum operators to form a closed O(4) or O(3.1)

algebra when acting respectively on negative- or
positive-energy eigenstates —see e.g. Barut and
Bornzin" for a recent discussion. ]

The second example of a nontrivial constant of
the form (7.16) arises when even the rotational
part of the flat-space symmetry group is broken
by adding a second monopole potential with the
center displaced from the origin at a point with
Cartesian coordinates s" say, so that the total
potential takes the form

U=—+r rI (7.20)

where

(V.21)

and Q' is a second constant. Under these circum-
stances even among the angular momentum Killing
vectors the only linearly independent one whose
action leaves the system invariant is the generator,
z„e m&z~~c&, of rotations about the connecting
axis. Despite the fact that the obvious space sym-
metries have been thus cut down to a single-para-
meter group, there remains a second independent
but nonA ivial constant of the motion based on a
Killing tensor of the form (7, 11) with

P~ = nz". (7.22)

rgA + zA (7.23)

and then had chosen as a second point the original
origin with new coor'dinates given by z '"=- z
In brief we shall have

a(n, z) =a'(n, z'). (7.24)

It follows from this involuted symmetry (which,
if not quite obvious, . can easily be seen by direct
algebraic substitution) that since a single mono-
pole at the original origin r"=0 could be allowed
for by a term c of the form (V. 19), then a mono-
pole at the new origin r' =0 can be allowed for
by a term defined analogously in terms of the dis-
placed coordinate system. Hence by the linearity,

To see how this arises, we start by remarking
that a, Killing. tensor of the form (V. ll) may be
considered as being uniquely specified by the
choice of the origin, with r" '=0, of the Cartesian
coordinate system and by the choi ce of the second
point, with r" =z", modulo an arbitrary scalar
multiplier n used to relate p" to z" via, the form-
ula (7.22). Furthermore —and this is the key
point —the same Killing tensor a would have been
obtained (with the same value of n) if we had
started by taking our origin at the second point
(with coordinates r" = z in t'he original coordinates
system), thus introducing. a new system of coordi-
nates r'" defined by
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a potential of the double monopole form (7.20) can
be allowed for immediately just by replacing (7.19)
by

n Qr Q'r's
C =—gABZ2 (7.25)

Since the operator K thus obtained [by substituting
(7.11), (7.22), and ("l.25) in (7.16)] commutes with
the only other independent constant of the motion,
(namely the axial angular momentum operator),
we do not obtain an interesting noncommutative
algebra as in the previous example; but its roIe
is even more vital because without it one would
not have a "complete commuting set of good quan-
tum numbers" for the prob1em. The existence of
the constant constructed in this way is in fact well
known (see e.g. Coulson and Walmsey4'), but it is
normally derived by separation of variables in
ellipsoidal polar coordinates, in contrast with the
present approach based only on the use of ordinary
Cartesian coordinates. It is apparent that the more
widely known Hunge-Lenz constants may be thought
of as a limiting case arising when the second mono-
pole is set equal to zero. Another physically in-
teresting limit is that where the two monopoles

becomes infinitesimally close, so as to give a
pole-dipole potential of the form

Q P~r"
r r3 (7.26)

(where the constants P are the components of
the dipole moment), which can be allowed for by
setting

eP„r"
r (7.27)

in (7.11) and (7.16). lt was this last example
(drawn to my attention by Misner in 1966) that
provided the original encouragement for seeking
the closely analogous constant of the motion that
turned out to occur in the Kerr and Kerr-Newman
solutions.
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