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Stress-tensor conformal anomaly for scalar, spinor, and vector fields
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I

The conformal trace anomalies for massless scalar, "neutrino, " and photon fields propagating in an
arbitrary Riemannian space-time are derived. They are seen to be a consequence of the subtraction, during
renormalization, of a finite term, —ln(m L '), which violates the scale invariance of the massless theory.
A general derivation of the scalar anomaly is given based on the g-function regularization developed
earlier.

I. INTRODUCTION

In this paper we wish to give an account of our
own derivation of the so-called trace anomaly in
the vacuum expectation value of the energy-mo-
mentum tensor of a quantum field propagating in
a background space-time. The approach was used
by us some time ago for the scalar field; but in
view of current interest in this topic (references
will be given as they become relevant) it was
thought that it might be useful to indicate the meth-
od and to extend it to the spin--,' and spin-1 fields.

II. CALCULATION

For convenience we use the notation of a previous
paper' and begin with the vacuum-averaged stress
tensor as a functional derivative (e.g. , see Ref. 2)
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where W~" is the one-loop effective gravitational
action,

(T ")=im' lim G„(x,x')
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where G„(x, x') is the Feynman Green's function.
(The corresponding equations for the spinor field
will be given later. )

In Ref. 1 we gave the asymptotic perturbation
expansion for LI " in the form
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From the explicit expression for the improved
scalar T„„[seeRef. 2 or Eq. (22) of Ref. 1] it is
easily shown that the trace of (T„,) is given by the
coincidence limit,
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[y —= -$(l)], where the a„are the coincidence limits of the coefficients in the asymptotic expansion of the Fock-
Schwinger-DeWitt quantum-mechanical propagator. We have also introduced the arbitrary scale length L.

The regularization employed in deriving (4) is explained in Ref. 1 where we referred to it as g-function
regularization. It is virtually equivalent to a dimensional regularization. Further details can be found in
Sec. IV.

A conventional renormalization (see Ref. 2) consists of removing both the divergent pole term and the
first sum in (4), i.e. , all the a„a„and a, terms. This leaves Z~„',„' as

2(" (32m') 'lim ' o ' ' + g a [p(3 —n) +y -ln(m'L')]v-1 „,(2 —n, )!

Prior to renormalization we have the formal re-
sult that (T„")tends to zero as m' vanishes. Thus

g L. (i)
, -0 as m'-0,

8 lnrn

which, together with (3) and (5), yields the con-
formal trace "anomaly, "

lim (T„") = —
6+ a, .

m2 ~Q
(6)

This result is seen to be a consequence of the
renormalization, in particular of the subtraction
of the finite a, term. If desired we could leave
part of the a2) term, viz. , (4v) 2 g, in(L'/L), with
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X~I.',.~ . This would simply alter I. to I.' in (5). How-
ever, ' it seems to be essential for the appearance
of the anomaly that all of the in(m'I. ') term is re-
moved. This raises problems of infra'red diver-
gences in the full (T„„)but not in the trace.

Before comparing with other results we deal
with the spin- —,

' and spin-1 cases. The energy-mo-
mentum tensor for the Dirac field. ig

=
4 lI 4 'YIp&p) 4] —

l. ~( TII'Yp) 0)]'

where the square brackets and comma, indicate
antisymmetrization when l|I is interpreted as an
operator field.

The equation which corresponds to (2) is

(T„")=-im lim tr$„(x, x'),
x'~x

where $ (x, x') is the Feynman Green's function
satisfying

(iyPV„—m)$„(x, x') =16(x, x').

(8)

Note that since we imagine all divergent, or poten-
tially divergent, expressions to have been regu-
larized we do not include any parallel propagators
in the definition of (Tp,).

In place of S„ it is more convenient to use the
solution of the iterated Dirac equation and write

$„=-(iYp v„+m)G„

so that G„obeys the equation

(m - iYP Vp )(m +iY"V,) G„(x,x') =16(x,x') .
Then (8) becomes closer to (2),

(Tp P) =im' lim tr G„(x,x') .
x'~x

We can now imagine pursuing the same path that
led to (6). There is really no need to introduce P~"
for this purpose. All that is needed is the proper-
time expansion of trG„(x, x), and this is known
from the work of DeWitt. ' It is clear that the
answer will be

lim ( T„")„= + tra, ,m~0

where a, is given on p. 158 of Ref. 3.
The spin-1 case can also be treated in a similar

manner although one must be prepared to start
from a massive theory which makes sense only in
the massless limit, if one is to obtain the correct
massless results. This is because the ghost con-
tribution comes in with different strengths in the
massive and strictly massless cases. Thus we
choose the Lagrangia~

,'(A."IIp) +--',-m'A Ap-c„„c' "+m'cc

with E„,=A„~|„-A,]~& and where c is the complex
ghost field. The stress-energy tensor is then
given by

» P& U 4 gP" P~ m +u+& 2m tgPv+P+ 2'~~ II p) g pe+ + llap ++p+ II pp
II pllpp, —C llpCII Cll Clip +gp (Clip C -m CC).

The vacuum average of the formal trace of T„,is
found to be lim (T„") =—,(tra,' .—2a,') .16m' (12)

( T
p

P ) = -im' lim I Gp
P (x, x') - 2G, (x, x')],

x
The numerical results are given and discussed

in the next section.

where the Green's functions G, and G„" satisfy the
equations

III. RESULTS AND DISCUSSION

In nearly the notation of Christensen and Fulling'
the anomaly is written in the general form sug-
gested by Deser, Duff, and Isham'

and

G„„P+m'G, = 6(x, x').
-(Tp P), (288Om')=' [k,C~p, CP"'+k, (R p,R~--', R')

—k, R+k~ R']
Note that the ghost Green's function, Q„satisfies
the minimal Klein-Gordon equation and not the
conformal one.

We now need the proper-time expansions of
Gl&(x, x) and G" „(x,x), in particular the coefficients
of (i7)2. If these are denoted by ao and a,', for G,
and G„', respectively, the vector anomaly can be
written

—= (2880m ) 'k„I".
(Our conventions are a negative signature for gp„
and Schouten's' definitions for R„,p„etc.)

We do not write out the values for a, and a, for
spin 0 and spin —,

' since they are well known and
are given, e.g. , in Refs. 2 and 3.' However, the
spin-1 (vector) expressions are not so widely
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known. We take them from the work of Gilkey'
and list them here in our conventions for conven-
ience,

tra0' = 4,
tr a', =A/3,

trg& — & /2+ M3g g&I' ~&g gu p~+ & g u
9 90» 180»pa 30 II p

(In Misner-Thorne-Wheeler conventions the sign
of R would be reversed. )

These values are confirmed by the work of
Donnelly' on Kaehler manifolds. If the. results for
the three spins are collected we find the sets of
values for the anomaly coefficients,

mensions of the first three coefficients. These
are

tr a,'((u) =2u) a,',
tr a', (&a) = tr a,'(1) +2(cu —1)a, ,

tr a,'(~) = tr a,'(2) + 2 (&u —2)a,',
(16)

where the a0„are the standard scalar coefficients,
for the minimal equation, ' and where tra,'(2) is
given above and tra', (1) =2A/3. Clearly the scalar
additions will mix in with the effect of the ghost,
but we do not intend following this line of develope-
ment further now.

(k ] =(1, 1, 1,0) for spin 0 (13) IV. SCALE TRANSFORMATIONS. GENERAL DERIVATION

=(—,', —", , 3, 0) for "neutrino"

(massless Dirac)

=(-13,6$, -18, 0) for photon.

(14)

(15)

We have divided the value (9) by two to give the re-
sult for a single "neutrino" (= massless real Dirac
spinor).

The values (13) agree with those in Ref. 4 where
they were tentatively identified from basically the
same term that we used. Christensen and Fulling
use the point-separated (T„,) derived by Christen-
sen, ' and so the status of the anomaly as a conse-
quence of a straight subtraction is slightly ob-
scured. -Also the hesitancy shown by these authors
about drawing conclusions for the massless case
from an asymptotic expansion, like that for J ',
is, in our view, unjustified. Thus g, '„ is defined
by (5) and we do not use its asymptotic expansion
[which is just the last sum in (4)]. The only diffi-
culty that might arise is an infrared one.

Brown" in an extensive calculation has derived
the scalar anomaly (13) using a variant of dimen-
sional regularization.

The spin- —,
' coefficients agree with those found

by Bunch and Davies, "who use a completely dif-
ferent method but one which involves feeding-in
the value of k, from the perturbation-theory cal-
culations of Capper and Duff. " The value 0&=—',
was also given in Ref. 4.

For spin 1 our value of k, differs from that de-
rived by Capper and Duff~ and by Brown and
Cassidy. " We attribute this to their use of dimen-
sional regularization. The vector coefficients
derived in Ref. 13 satisfy the relation 3k, —k2 2k'
=0 derived by M. J. Duff, again on the basis of
dimensional regularization.

If dimensional regularization had been used here .

it would have been necessary to include the dimen-
sion dependence of the vector coefficients tr a„'.
For reference we give the expressions in 2v di-

OF THE ANOMALY

Perhaps this is an appropriate moment to make
our attitude towards scale transformations clear
and, at the same time, begin to place the discus-
sion on a more general footing. To do this we
avail ourselves of the general expression for the
one-loop effective Lagrangian Z "derived in Ref. 1
in terms of the f-function g(v, m3), viz. ,

Z ' =-—
1

+ln L ' f(0, m') + f'(O, ml), .(18)(j,)

g(i) ~-4 g(i)
. (20)

¹tethat eve have taken L to xescale, L- ~L.
Equation (20) implies the invariance of the unre-
normalized action W " under rescalings. Renorm-
alization breaks this invariance since the term sub-
tracted from Z~», ln(m L'), does not rescale as
(20).

This can also be seen directly from (18). The re-
normalization of g(' consists of dropping the en-
tire f(O, m') term, and some finite terms from
g'(O, m') detailed in Ref. l. It is the first operation
that destroys the scale invariance (20) of the mass-
less limit. Note that the scale-breaking term
lnL ' is closely associated with the pole, which

where we have included the contribution from the
arbitrary scale length L.

Under the constant rescaling g»- A.'g„„ the quan-
tum-mechanical propagator K transforms as K- X 4R and the proper time as 7 —A.'v so that for m'
=0 the f function rescales by

g(v, 0)- X'1' "g(v, 0).
(This also follows from the transformation of the
massless Green's function G X 'G. )

Therefore

g'(v, 0)- X"' "[&'(v, 0) + in ) 'g(v, 0)],
whence from (18) we find the rescaling law for
g1»(m2 =0)
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suggests, but does not prove, that it is correct to
remove thb finite terms proportional to ao, a„and
Og ~

So long as we restrict ourselves to conStant re-
scalings the situation is as we have described it.
However, in order to cover spatially varying, or
local, scale transformations, g„,(x)- X'(x)g„,(x),
the. f function has to be modified, and we would
like now to make some observations of a technical
na, ture about this.

The f function, as defined in Ref. 1, , is the vth

space-time matrix power of G„,

g(v, vari') =(G )', (21)

W'"'(1) = —— diag'(v —1, 0)(-g)~' d'x.
2 v —1

(22)

Up to a factor, W'~" can be thought of graphically
as a closed loop of (v —1) Green's functions with

(v —1) space-time integrations.
Ask now what is the effect of a local. rescaling.

The massless Green's function transforms a,s

G„(x,x') —~ '(x)G„(x, x')~-'(x'),

while the invariant space-time volume, element
changes as

( g) v 2 d4x $4(x) ( g) "~ d4x
\

Thus the rescaling amounts to the introduction of
a factor X2(x) at each of the (v- 1) integrations in
(22), and so the action is not invariant (as expect-
ed since the scale length has been omitted).

If X(x) were uniform then an invariant action is
obtained by introducing the constant. scale length
I. as a simple multiplier,

W(v)(I ) - I 8(P 1) W(U) (1.)- (23)

We'leave the proof to the reader. It has been
given, for the limit v-1, in the preceding section.

For X(x) nonuniform, (23) is not the correct way
to introduce the scale length. Rather it is neces-
sary to insert at each integration in (21), or (22),
an arbitrary weight p(x) which transforms as p(x)- X '(x)p(x) in order to cancel the effect of the
local transformations of G„and (-g) 'd'x, We
denote the corresponding action W ' [ pj.

It does not seem possible to give a simple ex-
pansion for W~'[ p] in terms of the a„as it is for
W "[1]=W '~ (1) [see Eqs. (12) and (17) in. Ref. '1].

and the effective one-loop massless action, M)ithout

the introduction of a constant scale length, is [see
Eq. (10), Ref. 1]

W~'~(1) =lim WI'~(1),
V~1

where

1

However, it is straightforward to derive the func-
tional derivatives of W '[ p] with respect to p.
For example, , we have

6W&"'[p]

~p(x)
= ——diag, &(v —1, 0)[-g(x)j' ',

(24)

g~'(x)= —— +lnp(x) diag„g(v -1,m') .
2 v-1

(26)
I

It will. be noticed that we have reintroduced the
mass into Eq. (26). This is because, although we
have motivated the analysis using the massless
limit, it is in fact independent of this. Qf course,
only in the massless limit will W~' [ p] be scale
invar iant.

The limit of (26) as v tends to unity is exactly
Eq. (4) except that L' is replaced by the local scale
function p '(x). The same is true of Eq. (18).

We note now that (24) contains essentially the
statement of the conformal anomaly. The explana-
tion of this will give us an alternative and morc
general proof of the anomaly (6) and, moreover,
a proof which does not involve taking a massless
limit. Rather we can discuss the massless case
immediately, as we now do.

%e star't with the general relation

~, 6W'"'[ p, ~]
( T„"(x)) = —lim (-g) ~'

6~(x)
(27)

where W~' [p, X] is the action after a, local scale
change g -X2g„„and we have explicitly displayed
the dependence on X(x). In the massless case, the
scale invariance says that W "'[p, X] is independent
of X(x),

W" [p X] =W'"'[ p, 1]=W" [ 0],
so that (T„")is zero. The action must now be
renormalized. Qne of the terms to be subtracted
is the scale-breaking integral in (25). From (24)
this is finite in the limit v- 1. There will be other
subtractions, but these will preserve the scale
invariance so we do not need to specify precisely

so that in the case when p is nearly unity, i.e. , lnp
small, an expansion which takes the place of (4)
can be derived without difficulty. Thus the first
two terms in the Taylor-series expansion of
W~ "~[p] in powers of lnp are

. 6W(vI (p)W" [p]= W"[I]+ lnp(x)d'x,
6 p(x)

(25)

so that the Lagrangian density Z~ '~(x) is, if (24)
is taken into account,
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what they are. Let us write the scale-transformed
(25) in the shorter form

W&" [ p, X] =W'"[1,X]+II"[ p, X], (28)

where 8 ' stands for the scale-transformed inte-
gral, and define the renormalized action as

W,"„'[p,A. ] =W '[p, A] —B "'[p, A. ] —I '[p, X],

(29)

where I ' are the scale-invariant subtractions.
The finite trace will be given by Eq. (27) with W,",„
instead of W ' . From (29) it is clear that only
the scale-breaking term -B~"' will contribute to
this trace and also, (28) yields the functional-
der ivative statement

5 B~"'[ p, X] 5W ~' [ 1,X]
5x 6A

We have met the quantity W "'[1,X ] before and
the functional derivative is easily evaluated since
it amounts only to differentiating with respect to
a X' at each (v —1) space-time integration. In fact
the required derivative is given by (24) since, by
definition, W '[1,X]=W "'[X']. [This ws, s why we

introduced p(x) in the first place. ] Putting every-
thing together we find

(T„")„,.„=idiag&(0, 0)
1

168 '

from Eq. (16) of Ref. 1.
This derivation of the scalar anomaly is a gener-

al one, independent of any massless limit, and
since it does not involve the mention of an asymp-
totic expansion it could replace the discussion of
the earlier section with some formal advantages.

V. CONCLUSION

. We have tried to emphasize the role of the finite
renormalization in producing the conformal anoma-
ly. It seems to us that this has not been brought
out sufficiently clearly in other treatments, and
we have tried to give both a simple explanation
and a general derivation.

It is arguable whether the loss of conformal in-
variance should be allowed. If it is not then prob-
ably some other property of (T„,) will have to be
given up.
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