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Many-body equilibrium of dual charged sources in general relativity
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Starting with the basic equations of Israel and Wilson, and Perjes, we give the explicit axially symmetric

metric for n dual charged sources in equilibrium under their mutual electromagnetic and gravitational forces.

We give the conditions for the removal of all connecting strut singularities and for an asymptotically flat

space-time, In the case of two sources, we show that the strut-free asymptotically flat solutions having given

values of electric and magnetic charge cannot have a separation of the sources which exceeds a certain

maximum value.

I. INTRODUCTION

In 1972, Israel and Wilson, ' and independently
Perjes, ' extended the static many-body solutions
of the Einstein-Maxwell equations found by Majum-
dar' and Papapetrou' to the stationary case. This
generalization allows one to discuss not only-
sources with spin but also sources with nontrivial
dual (electric and magnetic) char'ge. Particular
examples of the class of metrics found by Israel, -

Wilson, and Perjes (IWP) have been investijated
in the literature. ' "

This paper extends the explicit axially:symmetric
metric of Ref. 9 to the case of n sources. We give
the conditions necessary for the absence of strut
singularities between the sources. In these solu-
tions, ' the, electric charge is equal to the mass,
and the magnetic charge is equal to the Newman-
Unti-Tamburino (NUT) parameter (in the case of
zero duality angle). It was shown in Ref. 5 that the
only IWP solutions with discrete sources which
represent black holes, rather than naked singulari-
ties, are the static Majumdar-Papapetrou solu-
tions (Refs. 3, 4). The Majumdar-Papapetrou solu-
tions correspond to configurations of static sources
having electric charge equal to the mass, held in
equilibrium by the balance of electric and gravita-
tional forces, while the IWP solutions in addition
may have magnetic charge as well as spin. In the
case of two sources, we show that the absence of
struts in general imposes a limitation on the max-
imum separation. The IWP solution for n sources

. has also been considered by Spanos. "
II. THE 6-BODY METRIC

)

The stationary line element is written in the
standard form"

(ds)'= -f 'y„„dx"dx"+f(&u„dx" +dt)',

where Z „dx dh" corresponds to Euclidean 3-space.
Given any solution U of Laplace's equation in flat
3-space, IWP have shown that a valid metric is
obtained by setting

and

& "~'s~u), = -iy'~'f 'y "s„[ln(UIU*)],

where U satisfies the Qat-space Laplace equation.
An n-body solution corresponding to dually charged
sources is generated by

U= l+ g (m, /ft, )

/=1

with

ft, ' = x'+ y'+ (z —Ip,.)',
where

(4)

(5)

l~ = b +icosa, m~-—M~+iN~. (6)

As in Ref. 9, a& represents 'an angular momentum

per unit mass for the jth body, I,. the real part,
and N& the imaginary part of the mass parameter.
The total mass of the system is ZM~. For the
special case of zero duality angle (see Appendix),
M& can evidently be identified with the electric
charge of the jth body and N& with its magnetic
charge (at least in the absence of singular struts).
The approximate position of the jth source is given
by ejbj. The symbol e& is a sign indicator; its val-
ue is +1 if the origin is below the jth body and -1
if above. Thus, b,. is always positive.

In spherical background coordinates,

x=rsin8cosg, y=r sin9sing, z=xcos8, (7)

the expression for A, becomes

R&' ——x' —2l j»p coso+ l&'.
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Tl)e flat background metric is
2

~]l ~ Y22

y»=r'sin'8, y=Det(y„„)=r'sin'8.
(9)

»d, = -Im

+Ar' sin'8+ O(r'),

2m; «; 5;~ —(1 —E'» «»)

Because of axial symmetry one can set (d„and roe

equal to zero as in Ref. 9; Eq. (3) reduces to

n

s„to = 2c sic'S im i P m/ Si)

where A is a constant. Thus, w~ will not generally
vanish at r= 0 and strutlike singularities will con-
nect the sources. These struts will not appear if
the following condition is imposed:

n

x g l»«, m, /Il, '
i »-1

n ~+ n

Be& = -2r'sin8Im 1+ P
j-"1 " i =1

1
x (r —«, l, cos8)

The integration of Eq. (10) yields
n

&u~ = -Im g 2m, («,.l,. - r cos8)—
z

(«,I,. «,IP) (r' —«,.«, l,.lg) &»i

i

i i

(12)

Im 2m, &,.5,, —(1 —«,.«,.)
™

~$J . '4 J =0 (15)

This yields a separate condition for each choice of
the «,. or the origin. Note that Eq. (14) is included
in Eq. (15) when the origin is above or below all
the sources. One can show that closed timelike
world lines circle the symmetry axis where ~~
does not vanish. The above regularity conditions,
Eq. (15), are needed to avoid this violation of caus-
ality.

As an example, consider the special case of
three-body equilibrium. The singular struts will
be removed one at a time by positioning the origin
between pairs of sources. Positioning the origin
between sources 1 and 2, one finds from Eq. (15)
that

For the special case of two bodies, the above ex-
pression for &~ reduces to the metric of Ref. 6.

C= -Imp (2m,.) —Im —l) 6i
i "-1 i~ /=1

(12a)

Expanding the above expression for co~ in the as-
ymptotic region, one obtains

=Im 2+ m; (coco 1)s ' s.io S I,
2m»«;l»

i -"1

(13)

Thus, for the space to be asymptotically flat, we
must further require that

III. CONDITIONS FOR STRUT-FREE SOLUTION

The differential equations (10) and (11) require
that ~~ be constant for 8=0, m. One can show that
the limit of the first two terms in Eq. (12) is in-
dependent of x for 8- 0, 7t. Asymptotic flatness
requires that ~~ vanish for large r. Setting co~, = 0

for r large and 8= 0, one obtains from Eq. (12)
/

When the origin is positioned between sources 2

and 3, one obtains

If the origin is displaced from between the
sources, all of the &, 's will be of the same sign
and Eq. (15) reduces to the condition for asymptot-
ic flatness,

Im(m, + m, + m, ) = 0 .
If one sets a,.= 0, one finds that the determinant of
the coefficients of the, N& is positive definite, which
indicates that only the trivial solution N&= 0 is pos-.
sible. Of course, when the a& do not vanish there
are solutions with nonvanishing N&.

The previous expression for co~, given in Eqs.
(12) and (12a), can be expanded for large r [where
Eq. (14) has been imposed],

g «, (b&N, + a,eM, ) .2 szn'8
'V

Im g (m,.) -=g (iV, ) = 0. (14) Thus

In addition to the above asymptotic considerations,
let us expand &~ for small x in a neighborhood of
the origin, which can be situated anywhere along
the. symmetry axis. One obtains

sin'0
&~= 2J

where

~= g (&,~, X,. +a,.l,)

(20)

(21)
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can be identified with the angular momentum of
the system. This expression is independent of
origin; for example, it can be written as

J= Q Q A, „,Nq+ Q aqM~,
l=j j»-1

(21a)

where A&„&——
~ e&+,b&+, —e&b~

~
is the coordinate sep-

aration.
The leading term in the asymptotic form of &~

in Eq. (13) is

IV. PARTICLE SEPARATION LIMITATIONS
t

We will consider the special ease of two bodies
(n = 2), and allow the separation parameter, b, + b„
to change through an infinite sequence of equilib-
rium positions while maintaining charge (electric
and magnetic) conservation. For n= 2, the regu
larity condition Eq. (15) becomes

Im m, + (23)

(u, =2 PN, (1 —cos8).
i =1

This is the same as the asymptotic form of the
NUT solution" to the free-space Einstein equa-
tions withe, . acting as NUT parameter. It has
been suggested that the NUT parameter corre-
sponds to a dual mass formally analogous to the
charge of a magnetic monopole. "'" In the present
solution of the Einstein-Mmvvell equations the cor-
respondence is more than formal, with magnetic
charge equaling dual mass when n= 0.

J=M,a, + M,a, + Nb (28)

is not of the form that one would expect for two
dual charged particles. For two such spinless
particles, one has in flat space-time that

('vel@m2 'Ie2@ml) I (29)

where q,» q &
are the electric and magnetic

charge, respectively, of the jth particle ( j=1,2).
The expression Eq. (29) continues to hold even in
curved axisymmetric space-time when the par-
ticles are point test particles, "'"and might be
expected to hold in a suitable limit when the two
sources are widely separated with respect to their
geometrical and gravitational radii. In the present
context, Eq. (29) would give J=N(M, +M,), which
differs from the last term of Eq. (28). When the
separation is large, a strut appears between the
sources, and this may be partly responsible for
the difference in the two expressions.

b = -M+ (M'+ a')'~' (27)

where M=-,'(M, +M,) is the average mass (charge).
The quantity a= a, + a, is the average coordinate
diameter of, the two ring singularities associated
with the sources. For M'«a', one has b = ~a~,
while for M'»a' one has b =2(a/M)'M. Thus,
with N and M& fixed, one, cannot have a situation of
strut-free equilibrium in which the separation of
the sources is large with respect to both the di-
mensions of the sources and of the region of strong
gravitational field.

This limitation on b appears to be related to the
fact that the total angular momentum of the two
sources,

%hen N does not vanish, one obtains the following
expression for a =—a, +a, :

MM N
2N 2N

a= ' ' a f(M M -Ã')'

—4N[N(M, +M,)b+Nb'j"I'i'.

For a to be real, b = b, + b, must be such that

U(r, &)- U(r, e)e' (Al)

where n is independent of x and 8, and the m, ap-
pearjng in U are unchanged. The electric and
magnetic scalar pot.entials are given, for zero
duality angle, by

APPENDIX

A duality rotation of the electromagnetic field is
obtained by

o~b~b „==.'(M, +M,)

+ —'[(M+M) +N (MM -N) ]

A = Re(1 —U '),

P = Im(1 —U ') .

(A2)

a = (M~M2 —N )/2N.

One can write

(26)

where the + sign on the square root was chosen be-
cause b is positive by definition. To interpret the
limitation on b, consider the ease when b= b
Then Eq. (24) gives

lf Eq. (30) is applied to the above potentials the
corresponding expressions for the fields undergo
a duality rotation. From Eqs. (2) and (3) one can
see that the metric is invar iant under this trans-

formationn.

When &= 0, examination of the asymptotic elec-
tromagnetic field shows that M,- can evidently be
identified with the electric charge and N, with the
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I& = M& cosa+ A, sinn, (A4)

magnetic charge of the ith source (at least in the
ahsence of struts). For nonzero &, the' corre-
sponding electric and magnetic charges are

¹
=

¹ cosa -M,. sjna. . (A5)

The condition Eq. (14) for asymptotic flatness,
ZN, =Im(Zm, .) = 0, rema, ins unchanged; only the
interpretation of ¹ in terms of electric and mag-
netic charge changes.
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