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The grand partition function of hadronic brernsstrahlung is obtained using saddle-point procedures. Several
levels of approximation are considered. The results are qualitatively consistent with earlier simple

approximations.

I. INTRODVCTION

In the last few years production of hadrons at
high energies and with large transverse momen-
tum (Pr) has been a subject of extensive theoret-
ical and experimental study. Models based on
hadronic bremsstrahlung' ' have been found to
provide a useful description of the main experi-
mental facts concerning single-particle inclusive
distributions and associated multiplicities"- as
well as two-particle correlations for hadrons pro-
duced with large p ~.'

The principal results of these models in connec-
tion with high-p~ processes are the following:

(a) Hadronic bremsstrahlung provides an im-
portant dynamical mechanism leading to single-
particle inclusive distributions decreasing like in-
verse powersofPr (R, efs. 1, 4, and 5) inaccord
with well-estabbshed experimental: facts.

(b) In association with a large-Pr trigger, the
same mechanism leads to hadron multiplicities
increasing with the trigger's Pr. (Refs. 4 and 5),
again in accord with experiments.

((c) With regard to hadron correlations, together
with a large-p~ trigger, bremsstrahlung predicts a
strong jet of hadrons on the opposite side to the
trigger as well as another jet (somewhat weaker)
on the same side." This feature is one of the
most interesting recent discoveries of experimen-
tal hadron physics at large p~. '

On the other hand, it has been! known for. quite
some time that hadronic bremsstraI'lung accounts

well for the basic features of elastic scattering of
hadrons at large p~,"for the asymptotic behavi. or
of electromagnetic form factors' and for some of
the features of deep-inelastic electron-proton
scattering. ""

There are two basic processes occurring in
scattering described by hadronic bremsstrahlung.
An elastic scattering of off-mass-shell hadrons
(protons for example) is accompanied by the emis-
sion of neutral vector mesons from the external
lines. The rapid drop of the elastic pp differential
cross section with increasing pr (Refs. 8 and 9) is
partially compensated by the larger phase space
available owing to increased vector-meson (V)
emission.

The basic structure of these models is described
in Refs. 2 and 3. There the amplitude for the pro-
cess pp pp+nV is taken to be

~n(P 1IP 21P 3&P 4) R MO(P 1)P 2)P 3NP 4)

n

x V~/; 6 Q;, A. ;
g. =1

where e" is the vector-meson polarization vector,
M, is the elasti;c scattering ampli. tude, and

(1.2)

The differential cross secti.on for pp pp+nV,
av'eraged over initial and summed over final pol-
arizations, is

If none of the vector mesons is observed then we perform the k integrations and. insert a 1/n! symmetriza-
tion factor. Using the integral representation for the 5 function we have

where

iM i' m' d'P, d'P,
4~ "

. 1 2.12 . 3 . 4 2, .—„, &"(~)exp[i~(P, +P. P. P)], --d4& 1 (1.4)
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2

K(x)=- ~.,(2a)'
d'A e-iAx V2(k)
2(0

We now sum (1.4) over all n to obtain

~M, )' m' d'p, d p,= 4'' ZZ Z' Z'
1 2~12 3 4

where the "grand partition function" is

(1.6)

A(P)=,exp[iPx+K(x)] .X (1.7)

Following the same procedure, we find that dv for the emission of n observed vector mesons and an arbi-
trary number of unobserved vector mesons is obtained from (1.6) by including a factor [—g'/(2w)']
x(d'k/2&o) V'(k) for each observed V and adding —k to the argument of 6 for each observed V.

In addition to cross sections, bremsstrahlung models give definite predictions for associated V multi-
plicities. With (1.4) we find

)m, ~' m' d'p, d'p,s do„=
n ~ 1 2~12 3 4

, K(x)exp[ix(p, +p, -p, —P,)+ K(x)] .
d4m

/

(1.8)

Since K(x) is linear in g' we can obtain the inte-
gral in (1.8) by differentiating n. (P) with respect to
g' and multiplying by g'. .The multiplicity of neu-
tral vector mesons associated with finding the
final protons in the momentum-space elements

p3 and d'p, is

( ) „ndo„
do'„

= a' d, »[&(P, P+. P. P.)l--dg
(1.9)

n. (P) = e '~5'(P) . (1.10)

This approximation clearly does not conserve en-
ergy or momentum. The latter is conserved, how-

ever, if one makes the assumption that the unob-,

served vector mesons carry off, on the average,
no momentum. Energy conservation can be re-
stored by postulating a probability distribution for
energy loss to unobserved vector mesons. In the
case with no observed vector mesons, as in (1.6),
the choice made is' '

&(P j.+P2-P3-P4)

=5 (p +p, ) d7l 5(E3 —gE, )P(q)e ~o~ (1.11)

If there is a strong correlation between the final-
state protons then (1.9) will remain valid for the
single-proton distribution. Notice that the as-
sociated multiplicity is not dependent upon M, .

In the usual treatment the grand partition func-
tion is estimated by expanding the function K(x) in
(1.7) around x= 0. If only the first term in this ex-
pansion is kept then (1.7) becomes

in the c.m. frame.
An immediate difficulty arises because K(x) di-

verges at x=0. This is avoided by the use of a cut-
off. We shall remove this problem by expanding
K(x) around the saddle point of the x, integral
rather than x, = O. This approach also avoids the
introduction of the unknown function P(q). In Sec.
II we develop a first approximation to the grand
partition function in which momentum conservation
is imposed as discussed above. In Sec. III we ob-
tain a more accurate form which displays both en-
ergy and momentum distributions.

Another. difficulty with the usual approach con-
cerns the momenta of the protons participating in
the elastic scattering subprocess described by Mp.
For neat elastic scattering, in which little energy
is lost to vector mesons, it is reasonable to let the
internal proton momenta. be the same as the ex-
ternal momenta. If a significant amount of energy
is lost, however, then this approximation is cer-
tainly not accurate. This problem is discussed in
Sec. IV.

There are two appendixes included. In Appendix
A we present a detailed calculation of the function
K(x) which is valid for small x and p, p&»m'. In
Appendix B we discuss the properties of functions
which are frequently used in this paper.

Pk,. =~, (2 1)

II. .FIRST APPROXIMATION TQ A(P)

In this section we shall examine our simplest and
most readily calculated approximation to n(P). We
shall assume that the unobserved vector mesons are
constrained so that their three-momenta satisfy
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~(P) = 6'(P - ~)Z(P'), (2.2)

where x is a function of the momenta p,. and the mo-
menta of the observed vector mesons. For ex-
ample, if we observe no vector mesons and if we
work in the c.m. system then it is reasonable to
take x=0.

With the constraint (1.1) we find

where P = (P', P) and

rK(P') = —exp[iP'y + K(y)] . (2.3)

K(y) in (2.3) is now an abbreviation for K(y, 0, 0, 0).
The function K(y) in approximated in Appendix A.

Substituting (A15) and (A35) into (A2) we find

K(-iw/p)= —, , Z CI' w ~ + sx' w ~ +g w ~
rn 4

+, (y+lnw) g q,.7I,.In[2(1 —z, ,)] —
2 Q q,.g&lln'[2(l —z,.&)] —2G(z,.&)j . (2.4)

47t
'

g
1T j +f

z, , is the cosine of the angle between p, and p„., G(z) is defined in (A34) and approximated in (A36), g(x) is
a well-known auxiliary function defined by

g(x) = -Ci(x) cosx —si(x)sinx, (2.5)

and Ci and si are defined in Appendix B. The approximation is good for zg small, E,. »m, and z,. f 11.
We may simplify (2.4) somewhat if we assume that the final-state protons are emitted back to back in the

c.m. system:

p). +P2=0) P3=-P. .
This is certainly the case if x=0 and also if z is in the direction of p, or p, . In this case-

Z]2 Z34 1 )

Z ~3
—Z24 —COS6 —Z

Z ~4
= Z23 = -COSH:—-Z

where 0 is the angle between p„and p,. With these substitutions we easily find

p q, 71,.In[2(1 —z, &)] = —8 ln sine
f wf

and

7I,.q&(ln'[2(1 —z, &)] —2G(z, ,)] = 4{ln'4 —ln'[2(1 —z)] —ln'[2(1+ z)] —2G(- 1) + 2G(z) + 2G( —z)] .

with (A36) we see that G(- 1) = v'/3 and

1-' 1+z
G(z)+ G(-z) = —+ln

2 2
ln '2

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

Upon substitution into (2.9) we have

g 71;q& {In'[2 (I -z;, )] —2 G(z, &)]
= 16 ——In'sin 9+ ln ln

1 —cos(9 1+cos(9
(2.11)

Equation (2.4) therefore becomes

1 —z 1+Z
+ —, (y+lnw —lnsin8)' —ln

2
ln

2
+ (2.12)

In the region of validity of our approximation K(0) is positive-infinite and K(y) is real along the negative
imaginary y axis. For P'&0 the function i P'y is real along the negative imaginary y axis and becomes
positive-infinite as y- -i~. The exponent in the integrand of (2.3) is therefore real along the negative
imaginary y axis and has a minimum on that ray. With Cauchy's equations we can easily see that the mini-
mum is a saddle point.
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I.et us suppose that the minimum is at y = —i$/p. . Then changing variables in (2.3) to x=yp, +i) and ex-
panding the exponent about x=0, we have

&(Po) &(s' /u) K+rc(-~ K/v) dx {„2/2){d2/d~ )+{—~ ~/P)

Z~ &{&0/&) E+Z{-;g/

p, /2m id(' p.
(2.13)

The value of g is determined from

P'/p, + (d/dt )K(—i$ /p, ) = 0 .
With (2.12) this condition becomes

(2.14)

B,(x) = —,'(Ci(x)[2xsinx+ (2 —x')cosx]

—si(x)[2xcosx —(2 —x')sinx] j
= —,'[2xf(x) + (x' —2)g(x)] . (2.22)

where x, =E,g/m and

B,(x) = —,'[Ci(x)(xsinx+2 cosx)

—si(x)(xcosx —2 sinx)]

The auxiliary function g(x) is defined in (2.5)
while"

f(x) = Ci(x)sinx —si(x)cosx .

(2.16)

(2.17)

PO g2
g+ —, I+2y+21nt —2lnsin8 —Q B~(x,) =0,

S

(2.15)

The procedure for evaluation of 6 is therefore a
two-step one. First, we solve (2.15) to determine

Second, we use this result in (2.19) and (2.21)
to determine F, and F, and then, with (2.18),

The' procedure outlined above is rather tedious.
Unfortunately, it seems to be the only way to get
a good approximation to Din most regions. There
are, however, two cases in which simpler forms
are available.

Consider first the case in which P'w'/p g'= R is-
small while the energies of the external protons .

remain large. In this case $ is small but the x,
are not and we can use the asymptotic expansions
for f and g to simplify the expressions. Equation
(2.15) becomes

The first form for B, is useful for small x while
the second is useful for large x.

If we write (2.13) in the form

+ +2(y+In) —lnsin8) = 0,
while (2.19) and (2.21) are

(2.23)

&(P )= 1 P -1/2 ~E2
]tL & 2w

then we find

F,= + —, (y+ In/ —lnsin8)'+-P'$ g'
7T 6

1 —cos L9 1+cosa

(2.18)

and

F,= —, R(+-,'(Rt )'+-
/T

1 —cos0 1+cos0—

2

F,=, , (&+2) .
n 'g'

(2.24)

(2.25)

—P, B,(x,. )
S

(2.19)

and

= —,'[g'(x)+f '(x)+g(x)] (2.20)

F,= » B,(x, ) —(1+2y+ 2 In) —2 ln sin8),

where

B,(x) = —,
'
[ Ci'(x) + si'(x) —Ci (x)cosx —si(x) sinx].

Although the procedure for determining I'2 and I,
is still a two-step one, the functions to be calcu-
lated are much simpler. Notice that for g'/g' and
8 fixed A(P') in this approximation is a function
only of P', the energy available for the production
of neutral vector mesons.

Next, consider the case in which R is large.
This will occur, for example, i.f the coupling is
small. In this ca,se g will be very small so that the
x,. will be small as well. We can therefore use the
small-argument expansions for Ci, si, cos, and
sin. Equation (2.15) becomes

where

(2.21) 2,. In(E, /m)+ 8lnsin8 —4
4R+(~/ )2PE,/m. (2.26)
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while (2.19) and (2.21) give

+ 4 ln ln —4 ln'sin8

log+ [p, ~2m Z(P')]
)(

0
0
~ o

and

E.
+ (y+ In) —1) 2P ln t + 81n sin& —4

m

(2.27)

F,=, —(4't+ —Q )5

(2.28).

In this case we have a one-step procedure since
(2.26) gives a va, lue for $ directly. Upon substitu-
tion we obtain

0.2 0.6 1.0

where

e a &"Og'/4w')[4R+(~/2), E,./mD" '

p [(2p/A)~/»A-&]

(2.29)

FIG. 1. log&0[pe 2~ D(P )] vs g for E& = E2 = Em,
E3=E4=egm with e-=100, 0 =90, 'and g /x =1. The
solid line represents the exact saddle-point method.
Open circles represent the small-R appr'oximation.
Solid points represent the large-R approximation.

2 —
EA=, 2g ln ~ +81nsin8 —44g', . m

(2.30)
h(P') can be parametrized by

(2.33)
and

B=,~g ln'( —ln( )
+ 4 ln ln —4 ln'sin8

(2.31)

We have written (2.29) in that particular form be-
cause the bracket in the denominator is just the
first term in the asymptotic expansion for I'(A).
If we substitute the small-y expansion for K(y) di-
rectly into (2.3) then we do, in fact, obtain

(2.32)

In Fig. 1 we plot h(P') using all three methosis
outlined in this section. We present the result for
the process pp P+ X so that P' = E, + E, —E3 E4.
The c.m. energy is fixed at E, = E, = em with
e =100, while the c.m. scattering angle is (9=90'.
We take p tobe the p mass andg'/v'=1. The
function is plotted against the variable q =E,/E,
= E,/E, . Note that r,' is close to xr = 2Pr/v s.

With Fig. 1 we see that the small-A method is
quite accurate for -g —1 while the large-R approxi-
mation is good for smalI q. Although the approxi-
mations used in obt:aining L(P') are not valid at
g =0 or 1, the shape of Fig. 1 and similar calcula-
tions carried out at other energies indicate that

(P'!p) Z' r+, , —,Z B(x), (2.34)

where

xB,(x) = —(1 —x[Ci(x)sinx- si(x)cosx]]
8

= —[1—xf(x)] .
8

(2.35)

III. EVALUATION OF A(P)

In Sec. II we obtained an approximation to h(P)
based on the assumptions that the final-state pro-

This is the form realized'by the more primitive
forms of the bremsstrahlung model and leads
[with (1.6)] to a single-particle inclusive distribu-
tion similar to those of the parton model. As in
some simpler bremsstrahlung formulations, ' n in
(2.33) increases slowly with energy.

To conclude this section we give the expression
for the associated vector-meson multiplicity as
determined from (1.9). Because of the constraint
(2.1) the final protons are strongly correlated and
the expression is valid for the single-proton dis-
tribution. Using has determined from (2.15),
(2.19), and (2.21) we obtain

(Q = --,' +F, —(P'/p. )& + (P%II )
F,$
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tons were strongly correlated and that they were
emitted back to back in the center-of-mass frame.
In this section we shall drop the first assumption
and weaken the second. In particular, we shall as-
sume that the proton lines are coplanar and that
there exists a frame in which all protons are rela-
tivistic andp, =-p„p, =-p, . This is a reasonable
assumption since we expect each vector meson to
be emitted roughly in the direction of motion of the
emitting proton. These assumptions can be written

P~ P2 =a,
(3.1)

p3 =b,p

where these relations hold in the "collinear
frame. "

The procedure for evaluating (1.7) is basically
the same as in Sec. II. We change variables to
y = px+i$ in that equation to obtain

1
(&)=

(2 ).
Pd'y exp i(y —i$) —+K((y —i$)/g)
p.

&(pl~) L+&(-~ &I&)

(27ip,)' d'yexp~iy +e'yi(-i)/n) -y, ye-, e'e K)-i$/p)I .(3 2)

where 8 = 8/Bt'„. K is now a function of the four-vector ( and is defined in Appendix A by (A2) with (A38)
and (A39).

In evaluating the derivative of K we shall use the fact that G(z) is slowly varying and therefore we shall
ignore its derivatives. We shall also anticipate ourselves by assuming that $„ is dominated by $, so that
the argument of G is z, &

—-cos8,
&

and not a complicated function of g. Then working in the collinear frame
with the scattering angle 6 we find

K(- ig/p) =, y+ ln ' —ln sin8 + ——In
g'

( p, 5 . ' w' 1+cos8 1 —cos8 p,. ~ $
4+2 E 6 2

ln
2 ' m

4g

(3 3)

and

K(-&t/ii) =
& g ' 1+2y —21nsin8+2ln47'',. p,.

-p, p p, i.(p ') eii, ('') (3.4)

yi) ii/n)=, P ' ', 4B, ' —2y —2)n ' +2)ne)np —) n. g n )n '
)i

(3 6)

The functions B» are defined in (2.16), (2.20), and (2.22).
The simplest choice for the expansion point is

~ =(&, o, o, o).
With this choice we have

g 2 r' 1 —cos8 1+cos8K(—i$/g) = —, (y+ In( —ln sin8)'+ ——ln ln 1
6 2

(3.6)

(3.7)

which is the same as the result of Sec. II. We also have

0 E;gK8(-i(/p, ) =, ~ 1+2y+21n) —21nsin8 —4B, (3.8)

and

2 pQ 8 t- E&"8 K(-it'/p) = » P~ ~ 4B, ' —2y —21n$+21ns'n8 —1 (3.9)
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With (3.1) the spatial derivatives in (3.8) are

O'B(-iblb)=, 2 B, '
)

—B(,' ) +b B( , )
—B(,' )

while the time derivative is the same as in Sec. II:

(3.10)

& K(-i$/p) =, 1+2y+21n) —21nsin9-g B,o g
m

The second derivatives are
I

(3.11)

8 S K(-ig/g) =, 2
Z' B2 ' —(1+2y+21n) —21nsin9) (3.12)

As in Sec. II,

bb IC( —/bib)=, bB()-B()b.B)—B()t( (3.13)

and

A „„, A&"&'K(- i]/p, ) = a'a'+ ~ t'5', (3.14)

where

A, = » 2B, ' +2B, ' —(1+2y+21n) —2lnsin8)
m

A, = » 2B, ' +2B, ' —(1+.2y+ 2 ln) —2 ln sine)
m

(3.16)

The advantage of the choice (3.6) for $ is now clear. If E, =E, or, E,=E, then (3.13) is very small. Even
if these conditions are not satisfied we still expect (3.13) to be much smaller than (3.12) and (3.14). We
therefore ignore this term and write (3.2) in the separable form

&(P )
(2m')'

d'@exp -iV —+VK(-ig/q) --,'(y V)'K(-ik/i )~,2
I

(3.16)

A(po)6(p )e -(b./2) r & r

detA
(3.17)

when A is the two-dimensional matrix (3.14), P
is the component of P normal to a and b, and r
is the projection of the vector P/p. + VK(- i$/p)
in the g —b plane. We easily find

where rK is the function discussed in Sec. II. We
now fix $ to be the saddle point of Sec. II.

The integral in the direction normal to g and b

gives a trivial 5 function and we find

( )= ~(P')6(P, ) e-" "e "2 "'-
p. 'sin0 (zA, )'~' (2A,)'~' (3.21)

A, =E,+, , g 2I,.B,(x,. ), ,

(3.22)

,
in the collinear frame. This approximation is ex-
pected to be very good for r, '&= A, , rb' «Ab since
in this case we are quite close to a saddle point in
the spatial integration. Notice that. we can use
(2.21) to write the A as

detA = —,'A, Ab sin'0

and

2 2-1 a b2rA:r=
A

+
a b

where

r =ar, +orb .
We therefore have

(3.18)
I

(3.19)

(3.20)
(3.23)

We can easily see the physical significance of
the. last two fa,ctors of (3.21). For both the large-
and small-R- approximations of Sec. II we see that
if A is not too small

21ne 2p, g2 In@
2 P 0

where e is some characteristic energy. A, and



GRAND PARTITION FUNCT'ION OF
I

HADRONIC BREMSSTRAHLUNG

'()(f

4

(0)

2 KJ + 1

4

3:

4

(d)

4

(b)

ting proton then the collinear system is the c.m.
system for the elastic scattering process described
by M,. The collinear scattering angle 8 is just th6
c.m. scattering angle for that subprocess. In the

. next section we shall obtain an estimate for the
momenta of the protons participating in the sub-
process.

The expression (3.21) for the grand partition
function is useful if we wish to describe two-pro-
ton distributions. In most cases, however, we
shall want to integrate over one or both of the
final proton momenta. Our expression is not well
suited to such applications owing to its complexity.
Fortunately, we can make some simplifications

. which can aid in these integrations.
Suppose first that any observed vector mesons

are found at large angles. In this case they are
predominantly associated with the outgoing proton
lines, and we. can safely write

r.= —(8, —8,) —,B('),—8, ( '), (3.24)

FIG. 2. {a) Elastic scattering at 90 in the c.m. frame.
{b) Scattering in the c.m. frame with vector meson
emitted off line 1. {c)Transformation to collinear sys-
tem. This restores 90' scattering but gives ~p& ~

& ~p2[.
{d) Emission of vector meson off line 3 in p 3 direction
preserves angles but gives (p3(&) p4).

A, grow slightly less rapidly than (P')', the square
of the energy available for vector-meson produc-
tion, and fall inversely with g'. Consider elastic
pp scattering at 90 in the c.m. frame. In this
case there is no-energy available for vector-me-
son production. As the process becomes inelastic,
releasing energy for vector-meson production,
a vector'meson may be produced off p, for ex-
@mple as in Fig. 2. This will be produced near
the direction p, . In order to conserve momentum,

p, and p, are no longer emitted at 90'but have
components in the p, direction. In the collinear
system p', andp4 will again be emitted at 90 but

p, +p„and hence r„will be rionzero. The width
of the r, distribution, which is proportional to~, will therefore grow with energy. The in-
crease is slightly less than linear owing ta multi-
ple emission of vector mesons. As g' increases
the probability of multiple emission increases and
the width of the distribution tends to decrease.

If vector mesons are emitted from p, arid p, then
a similar broadening of the rb distribution will re-
sult. In that case the scattering angle remains un-
changed, so that p, and p, will still. be collinear,
but p, +p, will become nonzero.

It is not difficul't to see that if the vector mesons
are produced exactly in the direction of the emit-

so that the second factor of (3.21) peaks at E, =E,
With the estimate (3.23) we find

/

E,$ 2p, g'E
lnEm=mm P' (3.25)

I

Unless the collinear frame is very far from the
c.m. frame of the incoming protons, E, and E, are
comparable to or larger than P'/2. If g'/7) '- 1, a
reasonable phenomenological value, then (3.25) is
not small for the incoming protons. (i=1,2). This
means that the function B„(E,$/m) and B„(E,g/m)
which occur throughout the derivations of ( and
b, (P') are slowly varying. If we fix the c.m. ener-
gy of the incoming protons then any changes of Ey
and E, must be in opposite directions since EyE2
=E'. Since the B„functions are slowly varying
for the incoming variables we expect g, L(P'),
A, , and Ab to be nearly constant as functions of
E —E.

On both experimental and theoretical grounds we
expect M, to be a slowly varying function of its
c.m. energy but rapidly varying with respect to
momentum transfer. These internal variables are
discussed in the next section, but here we need
only mention that the momentum transfer depends
only weakly on E, and E,. We therefore expect a
weak dependence on E, —E, for M, .

For fixed c.m. energy we therefore expect most
of the E, —E, dependence of (1.6) to be concentrated
in the second factor of (3.21). This factor is a
Gaussian of unit ar'ea in the variable r, . Since we
intend to integrate we can replace this factor by
6(x,) Changing th.e variable in the 5 function to
(E, —E,)sin8, the component of P in the ab plane
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-r~ /A~
&(P) = &(P')5'(P, )

7JAb)
(3.27)

where P~ is normal to b. Remember that this ex-
pression is suitable only for integration.

At this point we have almost returned to the
formalism of Sec. II. If the Ga, ussian peak in (3.27)
could be replaced by a 5 function then we could
use (2.2) for d(P) and identify v from rb= 0. How-
ever, there are two things which stand in the way.
First, in some cases of interest 1, and E, are not
comparable to P' so that the B~ functions are not
necessarily slowly varying. Second, M, does vary
rapidly as a function of momentum transfer and
therefore as a function of E, and E,. In short, we

cannot expect to isolate the r, dependence as a
Gaussian with unit area as we did with the r, de-
pendence.

IV. INTERNAL MOMENTA

So far we have been concerned with the function
6 appearing in (1.6). We shall now turn to the
factor lM, l' of that equation. As we mentioned in
Sec. I, the simple form of the bremsstrahlung
model takes the internal momenta, the momenta
of the protons in the scattering described by M„
to be the same as the external momenta. This is
seen in (1.1). Suppose we change our definition of
V from (1.2) to

4

V (I,) ~ 'fi~P u-n, b a,
.

~, p,. k

where au =a/ap, .u, acting to the right. The expo-
nential clearly has the property that

e ",'b ' ', P(-p,.) =F(p, q,a)e-.
(4.1)

(4.2)

The correct expression for M, is

normal to 6, we find

p. sin85((E, —&,)sin8)
1 —(g'/4v'x, )I2 —x,'g(x, ) —x,f(x, ) j

where x, =E,)/m. With the estimate (3.25) we can
see that the second term in the denominator is
much smaller than the first. We therefore neglect
it and write

formalism appearing in Appendix A is the replace-
ment

K ,(- in /p ) -. K, , ——
(bU + pq, &,". + p, q, s, ) , (4.4)

With (4.2) this means that the internal momenta

p,. are, approximately,

P, ~P, -q, k, +p. g q, & "K„.(—i$/p, ),
J

(4.7)

where k,. is the total four-momentum of observed
vector mesons emitted from the ith line.

Suppose that we demand momentum conserva-
tion for the elastic scattering described by Mp.
This condition is

go, p, =0. (4.8)

Substituting (4.7) we find

P"+ y. 8 "K(-i]/p) = 0 . (4.9)

The time component of this is just the condition
we used to determine $. The spatial components
on the left-hand side are just p, r, where the vec-
tor r is defined in Sec. III. In that section, how-
ever, we did not demand that r vanish. The condi-
tion (4.9) is an approximation obtained by neglect-
ing, among other things, second derivations of K.
Had we done the same in Sec. III then the last two
factors of (3.21) would have been 5(r,)5(~b), which
is consistent with (4.9). This suggests that a, more
accurate estimate of p,. is

p,. =p,". —g,. k~ —p. q,.p~

where 8 acts on M, a,nd 8 on Mot. Expanding (4.4) in
a Taylor series we have

K;,(-iw/p)-, K,,(-iu)/p. )

+ p, (q,. a,. +q~a~)s K,,(-iw/p)+.
(4.5)

In carrying out the saddle-point procedure for
approximating A(P) we will find, evaluating the
second term of (4.5) at the saddle point,

&(P)-&(P) pals. K;,.( &/I -)I'(n;s,"+n sg)1 .
(4.6)

M„(p„p.,p.,p,) =g" II e" (u, , ~)v„(u,. ) + p. Q q, s"K,,(-i)/p. ), (4.10)

x M, (p„,p„p„p,) . (4.3)

Since V depends upon the proton momenta we have
symmetrized to take into account all orderings of
vector mesons.

This new expression is very difficult to deal
with. We can simplify things if we ignore changes
in the p,. appearing in V. In other words, we allow
8 to act only on I, Then the only change in the

where p,'. =0 and

].p1=p2=2r &

p, =p, = —,r~b .
(4.11)

We are working in the collinear system with p and
5 defined by (3.1). The choice (4.10) conserves en-
ergy and momentum in the elastic scattering sub-
process.
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If we neglect derivatives of G(z) as we did in Sec. III and make the choice (3.6) for g then we find

E,$
p; ~p,"—q;k; —p, ll, p, +, ' ' 1+2y+2ln) —21ns'n8 —4B,

j
0(

y+In/+g *'

+ "~ ~ "'P' In[2(1-z ))jj

. where e is the collinear. scattering angle and the zi& are given by (2.7).

(4.12}

V. DISCUSSION

In Sec. II we have developed a simple approxi-
mation to the grand partition function A(P). In

later sections this approximation is refined so that
formulas on several levels of accuracy are avail-
able. Naturally, the more elementary forms of
Sec. II are more easily applied. As discussed in
Secs. III and IV, however, the elementary forms
are expected to be only roughly accurate. Never-.
theless, it is encouraging that these forms yield
results in accord with both the parton model and
the simpler bremsstrahlung formalisms.
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APPENDIX A

In this appendix we evaluate the function

g2 ' p. p. "dXe ' '(X' —1)'~'
~'-I+E '/P. '

7T ij 1 ij ij

(A7)

Remember that Pjj and E,.j are functions of p.
Our first project will be the evaluation of the A.

integral in (A7). This integral has the form
I

e-wl. (g2 1)l/2
I(A, w) = dX

1

(A8)

We do this for two reasons. First, in Sec. II we
are concerned only with this case. Second, Kjj is
a Lorentz-invariant quantity and'is a functi. on of
the Lorentz scalars x', p; x, pj 'x, and p; 'pj.
we choose the frame in which (6) is true then the
resulting K,.&

will be a function of z'/ll', E,.z/p, ,
Elz/p, and p, , p&. If we can determine K,.~ in this
special frame then the generalization to arbitrary
x should be trivial.

With x given by (A6) the angular part of the K
integration in (A4) is trivial. After a change of
variables to X =ul/p, we have

K(x) =-
(2w) 3

With (1.2) we have

d'k
e i33 y2(k—)2'

4

K(x) = Q q l,Kil, ,( ),x

(Al)

(A2)

In evaluating I2(P) we shall only need to know K(x)
for small x. We shall therefore evaluate (A8) for
~w ~

small and arbitrary A'. Notice that for w =0
the integral diverges, the divergence coming from
the large-A. region of integration. It is therefore
useful to separate Iinto

where

Kii (x)
( )3

We may rewrite this as

d'k ilk3 Pft P'l (A3)
2(o (p, k)(p, k)

'

I(A, w) =I,(A, u)+I, (A, w),
where

g8 X.

I,(A, u)= dZ x'+A'

(A9)

(A10)

where

2g' ' d'0 j„„pjP]
K.P

(A4)

contains all of the divergent behavior. The in-
tegral (A10) is well known a'nd we have

I,(A, w) =g(wA)

= -Ci(wA)coswA —si(wA)sinwA, (A11)

P;&(p) =p;(1 p)+p, (1+p)—
-=(E;;(p),4;;(p))

Let us now restrict ourselves to the case

x = (z/ p, , 0, 0, 0) .

(A5)

(A6)

where ReA&0, Resp&0.
It is easy to check that for Ress &0 &'&0

I,(A, w) is bounded by I,(A, 0). Furthermore, the
expansion of I,(A, w) about w =0 contains no term
linear in w. Finally, I,(A, O) vanishes as A'- ~.
We shall therefore make the approximation
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1 4' j./2
I,(A, w) =I, (.A, 0) = ln2A ——

— (A2)1/2 (A2 1)1/2—

(A2) 1/2 (A2 1)1/2

(A12)

2

K, , (-iw/p). = —4, g w ~
The neglected terms are

(A15)

Remember that this is a small-gg approximation.
To summarize, the function K, , is given by

K .(- iw/I2) = .—
2m

PP1 fE;dp ', '
Ii ", , w i,

(A13)

(A14)

are independent of p. For E, »m', I. ,(E, /m, w) is
small and we can write

where I(A, w) is well approximated by (A11) and
(A12) for small w.

The diagonal functions K, , are easily evaluated
since

In order to evaluate the nondiagonal functions
K,.f it is convenient to write

K, f = K,- f + Kf,:

where
2

& (-2w/P)=-
27t'

(A16)1, g 2 1/2P;'P1 iit E;1

(A17)

The leading high-energy behavior of (A17) comes
from the p -1 region of integration where P,.f

' is
small compared top,. Pf. Only I, contributes to
this behavior since (E;&2/P, &')'/2 is large. We
can extract this contribution by replacing P, , ' and
I'-„' by their p -1 expansions to obtain

2v', m'+P, . P,.(1 —p) ~) m'+P, . P~(1-p)

This can be integrated immediately to give

(A18)

(A20)

For high energi. es

Ci' zo ~ +si' zg ~ —Ci' zg
' —si' m

' . A19

Since w is assumed to be small and with the assumption that E& '/P, . p,. is not large we may use the small-
argument expansions for Ci and si to rewrite (A19) as

"- —:"(.-') —:"(')'i

(A21)P& P]
g jV

=1 —cos(9 f —=1 —z fff ~

i f
i

where 0,&
is the angle between p,. and p&. For reasons. which will become clear shortly, we rewrite (A20)

as

g' &., E ., E. w'
2

8m' ( m m 4, ~
Ci w ~ +si w ~ ——-ly+Inw ——21nI2(l-z, )])2 jf

2

, & (y+ lnw)ln2+ —,'ln'2 ——,'ln2 —21n21nI2(1- z;&)]+—,'ln'
8z'

~

(A22)

In obtaining this we have dropped terms linear in ln(E, /E, ) since these vanish in the sum (A16).
The expression (A22) contains the leading behavior of R;&(-iw/p. ). The remaining contribution is given

by (A17) and (A18). Since the p-1 region of integration is expected to give only a small contribution we
can use the small argument expansion for the function g and set m'= 0. The remaining contribution is ap-
proximately

1 ( 2 1 A' ' ' (A')' '+(A'-1)' '
dp 1 ) 1

. y+ 11120 —1112+
2 1

111
( )1/ ~2 1)1/

-y-lnw+ —,'ln (1-p)(1-z,) 1

f- (A23)
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where A'=E, , '/P, z
' with P;, ' evaluated with m' = 0. The terms proportional to y+ Inn are easily seen to

be

, (y, +Into) dp =, (y+1nw)ln2.
8p o p+1 8p

This cancels the first term in the last curly bracket of (A22). The remaining terms of (A23) may be
written

)

2 ), &/2

d p
~

—,'ln (1 —p)(1 -z&&) ~ +, In[(A')'~'+ (A' - I)'~'] —ln2
)

Let us define

x; =E,/E~=1./x,
We may write

1+X+x, 2(1)tj
where

(A24)

(A25)

(A26)

(A27)

(A28)

X' ' dl ](,
[& ) ) ] 2

X'x, , 2Z+x, ; ' '
.(l'x;, +2l +x„)' ' (X'x, , +2zz, , +x„)' '

I)

A. = (1 —p)/(1+p) .
Making the changes of variables (A28) for the last two terms of (A25) and 1 —p =2k for the first term we
find

——,
' In[2x(1 —z, ,)x,.~] . (A29)g dA, ,

8p'
ay2

I

)

The second integral in (A29) is easily seen to cancel the second and third terms in the last curly bracket
of (A22).

The first integral in (A29) can be rewritten, with the change of variables P =Ax,-&, as
".dp"—[-,'lnP+ S(P+ P-')], (A30)

where

S())+)) ')=-')z[2(1 — )] —)z2+, )z "
I

The first term of (A30) can be written

(A31)

(A32)—lnP+ ~
—InP

g dp q q
"U dp q ~ "J&dp—s(p+ p )+- —s(p+ p )+-. —s(p+ p ')

(L~, )
The second integral cancels the last term in the last curly bracket of (A22). Notice that all terms in that
bracket have now been canceled. The second term of (A30) can be written

"~&dp, , "s( dp—s(p p-') —l —s(p. p-')
p ', p

(A33)+ p
1

The last two terms give no contribution upon substitution into (A16). If we change variables to P-1/P in
the second integral we find that it cancels the third integral. We are therefore left with the first terms of
(A32) and (A33). We write these terms as (g'/16m')G(z, ~), where

' dP P+1 P+1+(P'+2Pz+1)'i'
P (P'+ 2Pz+ 1)"' P+ 1 —(P'+ 2Pz+ 1)"'

p(1- z}+ln (A34)

Adding this contribution to the surviving terms of (A22) and using (A16), we obtain our final estiniate:
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g' (1 ., E, E 1 ., E, E
K,z(-iw/p, )=,

~

— Ci' w ~ +Ci' w ~ + —si' zo +si' w4m' (2 - m m 2 m m

—(y+Inw ——,'in[2(1 —z;&)j)'+ —,'G(z, &)
—~zz (A36).

This is expected to be valid for zo small, E»m, and z,.&s1. Recall that the diagonal term K,-,. is given by
(A16).

We are not yet finished with the evaluation of K, ~ since the integral (A34) has not been evaluated. Since
we were not clever enough to do this analytically we have resorted to numerical methods.
In Fig. 3 we plot G(z) in the allowed region ~z~

& 1. The numerical results strongly suggest that

7t ] ~ Z 1 + Z
G(z) = —+ —,ln ln ——z + R(z), .

4 ' 2 2

(A36)

arbitrary x is trivial. With (A21) we see that the
necessary substitutions for going from x
= (-iw/p. , 0, 0, 0) to x,= —iw /iz are

where R is an odd function of z plotted in Fig. 4 for
0 & z ~ 1. R(z) is close to, but not exactly equal to,
z(1 —z')'~'8 = sin29/16. Note also that R(0) = R(1)
= 0. In practice, we shall need only the even part
of G(z) given by the first two terms of (A36).

As mentioned at the beginning of this Appendix,
the generalization from the special case (A6) to

wE,./m-p, . zu/m)

w' (p; w)(p, w)
2(1 —,z, ,) 2p,. p„.

pinp&8
(

z ns n 8)
(pq

' w ) (pg
' w)

With these substitutions we find

(A37)

2

K„(-zw "/p) =—,g(p,. w/m), (A38)

(A39)

where z,.&
is given by the substitution of (A37).

Before concluding this Appendix we should men-
tion that if a more accurate form is used for (1.2),
namely the replacement of p& kbyp& k —g,.p.

' in
that expression, then the only change in K(x) at
high energies is the addition of the term

2

6K(x) =, [(tan 'P)' —P tan 'P], (A40)

0-06

0.04

3.5--

0.02

1.5--

0 0.2 1.0
-1.0 —0.6 -0.2 0 0.2

Z

FIG. 3. The function G(z).

0.6 1.0

FIG. 4. The solid line represents R(z), and the dashed
line represents z(1 —z ) /8.
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where )6= p. (4m' —p. ') 't'. Using the proton and p
masses we find g(x) =- —+f(x) .d (all)

6K(x) = -0.0115g'/7)' . (A41)

The calculation leading to this addition is extreme-
ly tedious and we do not present it here. In all
work we shall ignore 5K since it changes the cross
sections only by a multiplicative factor close to
unity and adds a small constant term to the multi-
plicities.

f(x) = —+ x(y + 1nx —1 ) (B12)

For small x we can determine f and g by substi-
tuting (B4) and (B5) into (B8) and (B9). Notice that
for very small x

APPENDIX B g(x) = —(y+ lnx)+ —x .
2

(B13)

In this Appendix we shall review the properties
of some of the functions used in the text.

For large x we may use the following asymptotic
expansions:

1. Ci(x) and si(x)

The functions Ci(x) and si(x) are defined by

Ci(x) = — d t

1 2l 4I 6f
f)x) —— ) ——;+—;——i.+ '

)x x' x' x'

and

3t 5& Vt
g(x) - —) —— ———+x' x' x' x'

(B14)

(B15)

si(x) =— "d sint"t (B2) More accurate approximations to f and g are found

in Ref. 12.
With these definitions we see that

d . cosx d . sinx—Ci(x) = , —si(x) =
dx x ' dx x

The series expansions are

(B3)
3. The B&(x)

The function B,(x) is defined in the text as

B,(x) =-,'[g'(x)+f'(x)+g(x)] . (B16)

7) ~ (-1)"x'""
2 ~0 (2n+ 1)(2m+ 1)!

Ci(x) =y+lnx+ Q
(-1)"x "

(B4)

(B5)

B,(x) = 4 [(y + lnx) ' —(y + 1nx) + z'/4] (B1V)

while with (B14) and (B15) we find the asymptotic
expansion

With (B12) and (B13) we see that for very small x

00 Xt

f(x) = dt
p + (B6)

2. f(x) andg(x)

The auxiliary functions f(x) and g(x) have the in-
tegral representations"

1 1 9 1 1B (x)- — ——— —+40 ——~ ~ '
x4

The function B,(x) is defined by

B,(x) =-,'[xf(x). —2g(x)] .
For small x we have

B,(x) =,4[2(y+ lnx) —(n/2)x],

(B18)

(B19)

(B20)

g)x) fd&= (BV) while the asymptotic expan, sion is

for Rex&0. In terms of the Ci and si functions we
have

1 9
B,(x)--,' ——,+ —,— (B21)

f(x) = Ci(x)sinx- si(x)cosx

and

g(x) = -Ci(x)cosx —si(x)sinx .
From (B3) we find

f(x) = —g(x)—d

and

(BS)

(B9)

(B10)

B,(x) is related to B, by

B,(x) = —,'+x —B,(x) .

The function B,(x) is defined by

B,(x) = —,
' [2xf(x) + (x' —2)g(x)]

The small-x behavior is

B,(x) = —,
' (y+ lnx) + O(x'),

(B22)

(B23)

(B24)
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while the asymptotic behavior is

B,(x) - —,
' —3/x'+ 45/x '—

In terms of the other. B,. functions we have

d'
a, (x) =-', -x', a, (x)

(B25)

while its asymptotic expansion is

1 3 90B (x)- ———+ ——~ ~ ~ .4 4x

In terms of B,(x) we have

(B29)

1 2 d 1—a, (x)
dX X

(B28) a,(x) = ———a, (x) .1 1d
4x 2 dx (B30)

a„(x)= -[1—xf (x)].

For small x this becomes

(B27)

~ (x)=--x—-X 2r
8 16' (B28)

Finally, the function B„(x) which is used for cal-
culating multiplicities is defined by

The errors in the asymptotic expansions for B;
are of the order of the first neglected terms. If we
keep only the first two terms in those expansions
then (B18), (B21), and (B25) are accurate to better
than 10% for x~ 5, while (B30) has the same ac-
curacy for x~ 10. The small-x expansions are
better than 10% for the following values of x: (B17)
xs 0.25, (B20) xs 0.5, (B24) x s 0.4, (B28) x g 0.2.
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