
PH YSICA L RK VIE% 0 VOLUME 16, N UMBER 2 15 JU LY 1977

Loca»~tion anil ca~~~lity in relativistic tlnantnm mechanics

J. Fernando Perez~
Instituto de Fisica-Universidade de Sao Paulo, Sao Paulo, Brazil

IYan F. %llde~
Department of Physics, Queen Mary College, London, Eng)and

(Received 20 September 1976)

It is shown that in relativistic quantum mechanics there is no criterion for the strict localization of a state
in a bounded space-time region compatible with causality, translation covariance, and the spectral condition
(or positivity of energy together with Lorentz covariance).

I. INTRODUCTION

It is well known that relativity poses some prob-
lems concerning the definition of a position oper-
ator and the notion of localized states in quantum
mechanics. The work of Newton and Wigner' shows
that for free one-particle systems, a notion of
localization is uniquely determined by some natural
requirements. A rigorous discussion of these as-
pects has been made by Wightman. '

In the context of quantum field theory the prob-
lem of the characterization of localized states has
been studied, ' ' mostly in connection with the con-
sequences of the theorem of Heeh and Schlieder. ' '

The present work is motivated by a. recent paper
by Hegerfeldt" in which a notion of strict locali-
zation of particles in relativistic quantum mechan-
ics is shown to be incompatible with a causality
requirement. The aim of our discussion is to pro-
vide a twofold generalization of the statement in
Ref. 10 and to stress the fundamental role of the
spectral assumption. Namely, we show that in
any relativistic quantum theory with positive en-
ergy, any (space-time) transiationally covariant
notion of localization is incompatible with a natur-
al causality requirement. In particular, there is
no assumption about the particle structure of the
theory.

We also show that Hegerfeldt's notion of local-
ization and his causality requirement are covered
by our discussion.

The conclusion of our discussion is that either
one is forced to consider essentially localized
states in a relativistic quantum theory (as defined,
for example, by Hang and Swieca' or to admit non-
causal behavior, or to aOow the energy operator
to be unbounded both from above and from be-
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II. THE RESULTS

Our discussion will take place within the follow-
ing framework.

We suppose we are given a Hilbert space of
states, 3C, together with a strongly continuous
unitary representation U(x), x = (xo, x) e R, of the
group of space-time translations. The joint spec-
trum of the generators P = (P', p), U{x) = e'

(P x P'x'- p ~ x), is assumed to be contained in
the closed forward light cone V, = (pc R4: p'=p p
«0, p'~0}. ('Ibis property follows if we assume
positivity of the energy and relativistic covari-
ance. )

The main ingredient of our discussion is the
foQowing result.

Lemma. Let lIt) {=X, and let E be a nonempty open
set in R . If

(y, U(x) y) =0, vx cZ,
then iI) =0.

Proof. Because of the assumption on the joint
spectrum of p, it follows that the function

G(x) ={/, U(x) g)

is the boundary value of a function E(z), z =x +iy
analytic for Y {=V„ i.e.,

G(x) = lim E(x+iy)
@ED+

(sce for instance Ref. 8). By the edge-of-the-wedge
theorem' it follows that P(z) = 0, vz cc, Imz c V+,
and so G(x) = 0, vx c R .

In particular, for x =0

G(0) ={y,U(0) y) = (q, q) = 0

i.e., g =0. Q.E.D.
If 6 ( R4 we shall denote its causal complement

by 8', i.e., 8'=(yen'. (y-x)'&0, vxc8}. If
x {=R', we denote the x translation of 6 by 6 +x
=(y+x, y c8}.

A notion of (strict) localization of a system is a
criterion allowing one to tell whether a given state
is or is not localized in a given space-time region
8. If L is a notion af localization, let L(8) be the
set of states in X localized in 6.

The notion L is said to be translationally covari-
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ant if
(I) gcL(8)~U(a}gcL(8+a), vs' R 8 c:8

N„.=U(a)N, U-'(a)

and consider the following notion of localization

The notion I. is said to be causal if q~L(8)~(e, N6$) =(4, y),
together with the causality requirement

(lc)

(III) If

GAEL(8),

then there exists a&0 such that

(U(x) P, P) =0 whenever -x3&a (a may depend on g
and 8}.
Condition III could be called a kind of macroscopic
causality condition and it is obviously implied by

properties I and II.
So we have proved the following:
Theorem Z. Let L satisfy condition ID. If 6& R

is bounded, then

g c I.(8)~g =0.

III. DISCUSSION

Let us show that some notions of localization
with certain causality requirements are covered
by our discussion.

ExamPle I. Let {N6,8 c R') be a family of self-
adjoint operators in x satisfying

0 «+~@1, Ve C R (la}

Property II is a causality requirement: If a
state is in 6„ then it cannot be in 6,ce',. That
is, the transition probability between states in

L(8,) and I,(8,) should be zero if 8,c:8',.
%e are now in a position to state our results.
Theorem 1. Let L be a translationally covariant

and causal notion of localization. If 6 c R is
bounded, then

P cL(8)~g =0.
Proof. Let y eL(8). If x =(x', x) with I x'I «

and
~
x ~ &4r, where r is the radius of the base of

the smallest diamond containing 8, then (8 +x) c8',
and so by property I U(x}g e I,(8') and by property
II(g, U(x) g) =0. Since this is true for x lying in an

open set in R~, wehave, bythelemma, /=0. Q.E.D.
In the course of the proof we did not make full

use of the covariance and of the causality assump-
tions but only of the following very weak causality
requirement which is a consequence of properties
I and II

pcL(82)~(y, N6 p) =0 if 82c8i.
Then I. satisfies conditions I and II. In fact

(U(a) P,N, U(a) P) = (P, N P),

(Id)

and so condition I is fulfilled.
If p, cL(8,}, g, c.L(82), with 8,c8'„we have

from (1c) and (ld)

(y„N, ,q, ) =(q„y,) and (q„N,,y, ) =0
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(N 1/2g N 1 2/q ) -0~N y
—0

From this it follows that (P„g,}=0 because g, and

g, are eigenvectors of the self-adjoint operator N6
corresponding to different eigenvalues. Condition
II is therefore satisfied.

Fxample Z. If, in example 1, we substitute the
conditions (lb) and (ld) by the requirement that if

g e L(8), then there exists an a &0 such that for
-x &a2

(U(x) y, Nr, U(x) y) =0.
Then we obtain, as before,

(y, U(x) y}=0 if -x'&a,
that is, condition III is fulfilled.

This example corresponds to the notion of local-
ization and the causality requirement of Ref. 10.
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