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Of aB the parity-invariant Poincare-invariant Newtonian equations of motion for two particles, the only

ones that can be written in a recently ~ four-vector form are shown to have accelerations collinear with

the relative velocity.

Consider a classical mechanical system of two

particles {n = 1, 2) described by positions I„, vel-
ocities v„=dx„/dt, . and Newtonian equations of
motion that give accelerations as functions of the
positions and velocities at one time,

d v„/dt =f„(x,v„v, ) .
These equations are made invariant for time trans-
lations by letting f„not depend explicitly on time, for
space translations by letting f„depend on the positions
only through the relative position x =x, —x„and for
rotations by letting f„be a rotational vector func-
tion of x, v„v,. Then Poincarh invariance, i.e.,
Lorentz invariance, requires only that the func-
tions fn satisfy the coupled nonlinear equations

2 3

Sx„,fx+f„xx=Q Q .,sfx/s ., sf /sx )-
( s„,,x}xg( „,,sf-x/sx„. ,

Q (u„,„s&„/sx„,„+(„.„s(„/su„,„}=0,
tf -0

where n' = 2, 1 for n = 1,2.' '
Here we show that of all the Newtonian equations

of motion (1) for two particles that are Poincare
invariant in the sense of Eqs. (2), and also parity
invariant, the only ones that can be written in the
four-vector form according to Eqs. (3)-(6) have
accelerations collinear with the relative velocity,
which means the velocities do not change direction
in any center-of-mass frame (where the velecities
are collinear) In. contrast, parity-invariant Poin-
care-invariant Newtonian equations of motion for
bvo identical particles are known to exist for prac-
tically any reasonable dynamics specified in the
center-of-mass frame. '

From Eq. (5} it follows that u„' is constant, which
means that

+f;ref&/»;i } (2)

for k,j =1,2, 3 with n'=2, 1 for n =1,2."
Four-vector space-time coordinates x„=(t„,x„)

and velocities u„=dx„/dq. have been used to write
equations of motion in the manifestly covariant
form

du„/dT = $„(x u„us, ) (3)

with E„a Lorentz four-vector function of x
=x,-x„u»u, .' ' For parity-invariant Poincare-
invariant equations of motion it is assumed that

E„=c„x+b„~u, +b„2u2 (4)

u ~ E =0 (5)

with g„,b„» bn2 functions of the parity-invariant
Lorentz scalars x', x u„x.u„u, .u, .' ' (We will
not actually require Lorentz scalars; parity-in-
variant rotational scalars would be all right. ) It is
also assumed that

is constant, so we have

dv/dt„(x[1- (dx„/dt„) ]' '.
Thus without loss of generality we can let y be
proper time for each yarticle. Then

u„, =dt„/d7 = (I —v ') ' '
u„=dx„/d7 =(1-v„') 't'v„,

u =u —u2 ~ 2 2
n n no

From Eqs. (4) and (5) it follows that

a„x un-b„n+bnn, u, u =0,

g„=a„x+(a„x ~ u„+b„„u| u2) u„+b„„,u„, ,
where again n' =2, 1 for n =1,2."' From Eqs.
(7) and (8) we have

du„/dv =(1-v„') 'dv„/dt„+v„du„, /d7. ,

(7)

(8)
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d v„ /dt„= (1 v—„')(du„/dr —v„du„o /dr)

= (1-v„')(]„-v„(„,),
which, from Eq. (9), we find to be

dv„/dt„=(l-v„') [a„x+(a„x u„+b„„iu, u, )u„+b„„,u„, —(a„x u„+b ~u, u, )u„,v„-b„„.u„.ov„]

=(1-v„')[a„x+b,u„„(v„,-v„)j

at f~ =tz.5'8 We can let t, = t, because Eqs. (6) and

(10) imply that („and d v„/dt„are not changed if
we change the point on the worM line at which we
take values for the position and velocity of particle
n'. Thus, we obtain Newtonian equations of motion
(1) with f„of the form

f„=A„x+B„(v„-v„,) (12)

with pg'=2, 1 for pg=1, 2.
For parity-invariant Poincare-invariant New-

tonian equations of motion we take A„,B„to be
functions of the parity-invariant rotational scalars
P, x v„x ~ v„v,', 0,', v, ~ v, . (We do not need the
more restrictive assumption that a„,b, are func-
tions of the parity-invariant Lorentz scalars. ) For
f„of the form (12), the Lorentz-invariance equa-
tions (2) have terms involving just the nine tensors
x~x„x~v», etc. , so from the coefficients of these
tensors we get nine separate scalar equations.
The key is that there is no 5» term as there is in
general when the coefficients of v„and v„, in f„are
not the same. Furthermore, Eqs. (6) and (10) im-
ply that

(v„gsf~/sx„. g +f„.,&f /sv„. g) =0

for j = 1,2, 3 with n' = 2, 1 for n = 1, 2, so Eqs. (2)
reduce to

2v f +f
2

vmlvmr~ ~ ~~'mr ~ gy &v~ ~

From the coefficients of x,v . in Eqs. (14) we get

A„=-sB„/sx ~ v, -aB„/sx v,

and from the coefficients of x,v„& we get

0=68„/Bx v, +sB„/sx ~ v, .
Therefore A„=O and f„ is collinear with v, —v,.

It is not necessary to assume that the Lorentz
invariance of Newtonian equations of motion is the
manifest invariance of four-vector forms. We
have shown that writing Newtonian equations of
motion in the manifestly invariant form of Eqs.
(3)-(6) implies restrictions that are in fact un-
necessary and physically unreasonable.

&Permanent address.
$1976-77.
~D. G. Currie, Phys. Rev. 142, 817 (1966).
R. N. Hill, J. Math. Phys. 8, 201 (1967).

3J. G. %ray, Phys. Rev. D 1, 2212 (1970).
L. Bel, A. Salas, and J.M. Sknchez-Ron, Phys. Rev.

D 7, 1099 (1973).
5L. Bel and J. Martin, Phys. Rev. D 8, 4347 (1973).
GL. Bel and J. Martin, Phys. Rev. D 9, 2760 (1974).
'J. M. 86nchez-Ron, J. Phys. A 9, 1877 (1976).
R. Lapiedra and L. Mas, Phys. Rev. D 13, 2805 (1976).
Y. F. Jordan, Phys. Rev. D 11, 2807 (19?5).


