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In an experiment in the Fermilab 30-inch deuterium bubble chamber, we have determined the pd and
m d charged-particle multiplicity distributions. We use corrected odd-prong distributions plus a no-cascade
model to extract the pn and n+n multiplicity distributions, and indicate how a cascade model could alter the
distributions. We examine the relations between pn and pp, and m n and m p, multiplicity distributions.
For each pair, a relation is found. involving quantities that give the probability, at each multiplicity, that a
struck proton remains a proton. These quantities are evaluated and compared with expectations.

I. INTRODUCTION

Experiments in deuterium bubble chambers yield
directly hadron-deuteron charged-particle multi-
plicity distributions. Such distributions provide
useful information for studies of hadron-nucleus
interactions. In addition, if some assumptions are
made about hadron-deuteron interactions, then
hadron-neutron multiplicity distributions can be
extracted from the deuterium experiments. These
hadron-neutron distributions may provide valuable
new information on the nature of hadron-hadron
interactions. Alternatively, if the hadron-neutron
distributions, or so~e of their properties, are
known from some source other than deuterium ex-
periments, then a comparison can test the assump-
tions made about hadron-deuteron interactions.

In this paper, we report on multiplicity distrib-
utions from a deuterium bubble-chamber experi-
ment with a tagged 100-GeV/c incident beam that
consisted mainly of.protons and positive pions.
The present distributions supersede those in an
earlier brief publication'; there is a 25% increase
in statistics, and some possible experimental
biases have been checked in detail. We extract
hadron-neutron multiplicity distributions from our
odd-prong deuterium distributions, and discuss
the assumptions involved in the extraction. We
then look at the relations between m+n and m p dis-
tributions and between pn and pp distributions. We
examine how weIl the hadron-neutron distributions
can be predicted from knowledge of hadron-proton
interactions, and we see what new information our

distributions can yield.
Multiplicity distributions have been reported

from other high-energy (~20 GeV/c) deuterium
experiments' ' at incident momenta of 21 GeV/c
(tt d), 195 GeV/c (pd and tt'd), 200 GeV/c (pd),
205 GeV/c (tt d), and 200 GeV/c (pd). These ex-
periments all report "effective" hadron-neutron
distributions obtained from odd-prong events, or
odd-prong plus backward-spectator events, as-
suming a spectator model. However, because con-
siderable rescattering occurs (in-15o/o of events),
an assumption about the rescattering mechanism
has to be made in order to arrive at hadron-free-
neutron distributions. Assumptions made have in-
cluded a no-cascade model, 4 an intermediate cas-
cade model, ' and an extreme cascade model. ' The
two m d experiments" make assumptions about the
relations between tt n and tt'p distributions (more
than just charge symmetry is required), and then
use their "effective" m g distributions plus m+p

data to argue against an extreme cascade model.
In the present paper we will assume a no-cascade
model, but will indicate how some cascading could
affect the results. It turns out that, at the present
level of statistics, the physics results are relative-
ly insensitive to the no-cascade assumption. Our
study of rescattering, published elsewhere, ' argued
against ari extreme cascade model but could not
rule out some cascading. The relations between
hadron-neutron and hadron-proton multiplicity
distributions, which we study in dete. il, are men-
tioned only in Ref. 3 and in our own earlier pub-
lication. '
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Throughout this paper, "multiplicity" refers to
charged-particle multiplicity unless explicitly
stated otherwise.

II. MULTIPLICITY DISTRIBUTIONS

TABLE I. Odd-prong multiplicities. "Raw events"
includes uncountable events, assigned as explained in
text. "Corrected events" has been corrected for proton
visibility factor, missed Dalitz pairs, and missed close
vees, p conversions, and secondary interactions.

Raw
events

pd
Corrected

events

7r'd

Raw Corrected
events events

3
5
7
9

11
13
15
17
19
21
23

410
492
420
289
168

82
33
10

4.
2
1

469 + 24
550+26
458 +24
307+ 19
173+15
81+11
30 +7
8+4
4+2
2+1
1+1

174
215
197
121

87
46
22

3
1
1
0

201 +16
242+ 17
216+16
127 6 13
91+11
45+7
22+5
2+2
1+1
1+1
0

The data come from the analysis of 26 000 pic-
tures of the Fermilab 30-in. deuterium-filled
bubble chamber exposed to a secondary beam of
100-GeV/c positive particles produced at 6 mr by
the 300-GeV/c primary extracted proton beam.
The beam composition was approximately 57%
proton, 39% m', 2%%u~ g', and 2%%uo K', as determined
by a Cerenkov counter in the beam. This counter,
along with three sets of proportional wire cham-
bers, formed a tagging system' which allowed the
determination of the mass of each beam track and
its location in the bubble chamber.

The film was scanned twice for all interactions
with three or more outgoing prongs produced by
beamlike tracks in a fiducial volume 47 cm long.
The resulting scan efficiency was (9941)%%uo, in-

dependent of multiplicity. The number of prongs
was counted on each event on each scan; the prong
count included any short visible stubs. Odd-prong
events, in which there is presumably an unobserv-
ably short proton or deuteron track, constituted
29Pz of the events. All events with prong-count
discrepancies between the two scans were ex-
amined by a physicist or a third scanner, who

made the fin. al prong-count decision. About 2. 7%%uo

of the events were assigned to an uncountable cate-
gory; mdst such events had a secondary interac-
tion close to the primary vertex. , Since it is im-
portant to separate odd-prong events from even-

prong events, the uncountable events included some
events that had an uncertainty of only one in the
prong count.

The multiplicity distributions of the uncountable
events were estimated as follows: Each such event
was given a minimum and maximum primary-ver-
tex prong count at the scan table. Then each event
was allowed to contribute to every multiplicity be-
bveen its minimum and its maximum according to
the multiplicity distribution of the countable events,
with a total contribution of one per event. The re-
sulting mean assigned prong count of the uncount-
able events was S.1. For comparison, an alterna-
tive method was tried, in which the uncountable
events were randomly assigned to be odd-prong or
even-prong events in the ratio of 29%%uo to 71k//~; then
each odd-prong (even-prong) event was assigned to
a random odd-prong (even-prong) count between its
mjnimum and its maximum. It was found that
adoption of this alternative method would have
made only very small changes to the final results;
for example, the final mean multiplicities (count-
able plus uncountable events) would have increased
by 0.01 (odd prongs) or 0.005 (even prongs).

The raw multiplicity distributions, after assign-
ment. of uncountable events, are given in Tables I
and II. Fractions resulting from the uncountabble
events have been rounded off. For the pd and n'd
numbers in Table II, both odd- and even-prong
events are included, with one added to each odd-
prong count to account for the presumed unob-
served slow proton or deuteron.

Ip deuterium experiments it is customary to
assume implicitly that the probability of seeing a
very short proton track in the bubble chamber is
independent of multiplicity. That is, the odd-prong
multiplicity distribution is assumed to be the same
as that for events in which the spectator proton
has a range less than a specific value (for example,
-2 mm). We have examined this point in detail,
using a sample bf measured events in which all
slow (momentum P &1500 MeV/c) tracks were mea-
sured on all odd-prong events and on even-prong
events with a stopping dark track. Thus, we can
compare the multiplicity distributions of odd-prong
events and of even-prong events with a slow (P
&140 MeV/c) proton. We have made small correc-
tions for deuteron final-state events and for the
very small fraction (-0.3%%uo) of proton target events
that after Fermi motion smearing will have a slow
(P &140 MeV/q) proton. We assume that, after
making these corrections, we are dealing with in-
teractions on only the neutron in the deuteron, and
hence tha, t the multiplicity distribution is indepen-
dent of the spectator-proton momentum, at least

Total 1911 2083 867 948
for spectator momenta &140 MeV/c. We find that
the data are consistent with the detectability of
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TABI E II. Deuteron multiplicities, even- and odd-prong events. The prong count for odd-
prong events is increased by one; deuteron final-state events have not been removed. "Raw
events" includes uncountable events, assigned as explained in text. "Corrected events" has
been corrected for missed Dalitz pairs and missed close vees, p conversions, and secondary
interactions.

'

Raw
events

pd

Corrected
events

Cross
section

(mb)
Raw

events
Corrected

events

Cross
section

(mb)

4
6
8

10
12
14
16
18
20
22
24

Total

1549
1719
1442
959
554
262
134

35
10

2
1

6667

1576+41
1732+43
1439+40

943 +33
538 + 25
248 + 18
126+ 13
29+7
9+3
2+1
1+1

6643

12..81+0.58
14.08 + 0.63
11.70 + 0.54
7.67 + 0.39
4.37 + 0.26
2.02 a 0.16
1.02 + 0.11
0.24 +0.06
0.07 a 0.02
0.02 + 0.01
0.01+ 0.01

54.00 + 2.00

660
735
672
412
268
129

52
16
6
2

2953

676+ 27
742 + 28
672 + 28
402 +22
262 + 18
121+ 13
48+8
14+ 5
6+3
2+1
1+ 1

2946

7.57 + 0.48
8.31+ 0.51
7.53+ 0.48
4.50 +0.33
2.93 +0.25
1.36 + 0.16
0.54 +0.09
0.16+ 0.06
0.07 + 0.03
0.02 +0.01
0.01+ 0.01

33.00+1.60

protons being independent of multiplicity for p
= 120-140 MeV/c, but not for p& 120 MeV/c. A

good fit is obtained to the hypothesis that below
120 MeV/c the detectability varies linearly with
multiplicity. Specifically, the data fitted the rela-
tion M„» kc(1 bN) M„-„where M„„,is the num-
ber of N-prong events (N even) with a detected
proton of momentum less than 120 MeV/c, M„,
is the number of (N 1)-pro—ng eventS, and k and 5
are independent of N, with nonzero 5 implying
multiplicity-dependent detectability. The result
is a correction factor of 1.144 [1-(0.006+0.001)N]
to our odd-prong multiplicity distributions. The
arbitrary factor of 1.144 i@ such that 21- and 22.-
prong number-s are unchanged. Thus, at each odd-

prong multiplicity less than 21, the number of
events is increased at the expense of the next high-
er even-prong event numbers, the increase being
proportionately largest at Ã = 3.

In addition to the above proton visibility correc-
tion, we have made corrections to the raw data
for unobserved Dali' pairs and for missed vees,
y conversions, and secondary interactions close to
the primary vertex. The small. changes in the
mean multiplicities (N) and in the dispersions D
(both for N ~ 3) produced by each of these correc-
tions are given in Table III. The corrected mul-
tiplicity'distributions are given in Tables I and II,
with errors that include statistical errors apd
errors in the corrections applied. Numbers of

TABLE III. Changes in multiplicity means (N) and dispersions D produced by corrections.
The quantity' entered in the table is corrected value minus uncorrected value.

Correction

.Odd- and Odd- and
Odd-prong even-prong Odd-prong even-prong

events - events events events

Slow-proton visibility (x),
D

-0:;07
-0.03

O 0 0

~ ~ ~

-0,07
-0.02

Missed Dalitz pairs

Close vees, j

(X) 0 05
D -0.02

(X), -P.01
D -0,01

-0.05
-0.02

-0.01
-0.01

-0.()6
-0.03

-0.02
0.00

—0.06
-0.02

-0.01
-0.01

Close secondaries (x)
D

-0.02
-0.02

-0.01
-0.01

-0.01
-0.01

-0.01
0.00
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events are converted to cross sections. using the
sensitivities of 8.13+0.30 p, b per event for pd and
11.20+0.54 p, b per event for m'd, which follow from
our measured cross sections for N~3 of 54.0~2.0
mb (pd) and 33.0+1.6 mb (n'd)

TABLE IV. Deuteron breakup events with meson pro-
duction: low-order moments for all charged particles
and for shower (velocity P &0.7) particles. An estimated
contribution from N= 1 and 2 events is included.

III. DEUTERON MULTIPLICITIES AND MOMENTS

We have previously' estimated the cross sections
and multiplicity distribution's of deuteron final-
state (or, coherent deuteron) events, that is,
events of the type pd-dX and m'd-dX. We also
estimated the probability that a deuteron breakup
event with meson production has charge multiplicity
Ã =2. We have used these estimates plus our pres-
ent data to obtain multiplicity distributions for
deuteron breakup events with meson production.
The low-order moments of these distributions are
given in Table IV.

In experiments with heavy nuclei, ' the mean
charged-particle multiplicities reported generally
exclude slow particles. We have taken slow to
mean velocity P &0.7, and have made use of our
sample of measured events 'to arrive at shower

(P &0.7) particle multiplicity distributions. The
resulting low-order moments for shower particles
are given in Table IV. The quantity R, which gives
the ratio of the mean shower-particle multiplicity
in deuterium to that in hydrogen, is then 1.046
+0.022 for incident protons and 1.036+0.025 for
incident m+. (We have taken pp and m'p mean
shower-particle multiplicities to be 6.04+0.05 and
6.31+0.09, respectively. )" " These values of R
agree with the values of 1.048 (incident protons) and
1.035 (incident v') predicted by the formula& =0.5
+0.5 p, which fits heavier-nuclei data"'4 (here p

is the average nucleus thickness in units of the
mean free path of the incident particle).

AO charged
particles

Shower
particles
(P».7)

(N) 7.05 + 0.11 7.29 +0.12
D 3.43 + 0.05 3.42 +0.07

f, 4.70 +0.42 4.41 ~0.53

(X) 6.32 ~0.12 6.54~ 0.13
D 3.53+0.05 3.50 +0.07

f2 6,15+0.44 5.71+0.55

TABLE V. Inelastic hadron-neutron topological cross
s ections.

impulse approximation is valid. If we assume
further that rescattering (see below) and screening
are multiplicity-independent, then we can use Eq.
(A13) and our data to obtain hadron-neutron top-
ological cross sections. For the pyg inelastic cross
section, we use the measured pn total cross sec-
tion, " and assume that the ratios of elastic to total
cross sections" "for pp and for pz are equal.
For the m+e cross section, charge symmetry allows
us to use measured m p cross sections. ""We
take, for the quantities f and f, in Eq. (A13), values
of 0.64+0.04 and 0.54+0.06, respectively, corre-
sponding to a visibility cutoff of -2 mm. For o (/gd

-dX) in Eq.' (A13) we use our earlier estimates. '
The resulting topological cross sections are given
in Table V. The W =1 estimates are explained in
Secs. V and VI below [see Eqs. (16) and (7)].

The Pd-dX reactions contribute primarily to
Ã ~ 6 multiplicities. Therefore, the result of
using Eq. (A13) rather than simply assuming that

IV, RELATION BETWEEN ODD-PRONG

AND FREE-NEUTRON MULTIPLICITY DISTRIBUTIONS r(pn) (mb) 0(7t'n) (mb)

In a spectator model of high-energy interactions
with deuterons, odd-prong events arise primarily
from interactions with the neutron in the deuteron,
with the proton in the deuteron remaining as a
spectator. Then the odd-prong multiplicity dis-
tributions are related to free-neutron multiplicity
distributions. Three effects that can contribute to
differences between these two distributions are
coherent deuteron interactions (i.e. , kd-dX),
symmetry requirements on the final-state wave
function, "and rescattering.

In the Appendix, we derive expressions that
relate odd-prong and free-neutron multiplicity
distributions, taking into account coherent deuter-
on interactions and wave-function symmetry re-
quirements. The derivation assumes that the

1
3
5
7
9

11
13
15
17
19
21
23

Total '

2.81 +0.50
6.17 + 0.37
7.73 + 0.37
6.53 + 0.34
4.38 + 0.27
2.47 + 0.21
1.15+0.16
0.43 + 0.10
0.11+ 0.06
0.06 + 0.03
0.03 +0.01
0.01 + 0.01

31.88 + 0.44

1.17.+ 0.25
3.88 + 0.38
5.00+ 0.36
4.55 + 0.34
2.69 + 0.28
1,93 + 0.23
0.95 +0.15
0.47 + 0.11
0.04 + 0.04
0.02 + 0.02
0.02 + 0.02
0.00

20.72 + 0.15

Estimated as (0.088 +0.015) (7;„,j (Pn).
"EStimated aS (0.056+0.012) ojne](7t'n).
'From Refs. 16-18; see text.
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TABLE VI. Low-order moments of the hadron-neu-
tron distributions with no-cascade and extreme cascade
models. See text for definitions.

6.0

Extreme Extreme
No cascade cascade No cascade cascade 4Q-

(N) 6.20 + 0.11 6.37 + 0.12 6.67 t 0.13 6.70 k 0.14
D 3.38 y 0.07 3.47 y 0.08 3.38 y 0,09 3.42 y 0.09
f~ 5.25+ 0.51 5.66+ 0.55 4.89 +0,59 5.03 + 0.60

3.0-

2.0 -
);

8Q-
I

I
1 I

) pn

$ pp

60-

40—

3.0—
II

2.0—

1.0-

0
I

4
I I

8
I

l2

X
X ~

l6 20

FlG. 1. The pn inelastic topological cross sections
0~ versus charged-particle multiplicity ~. Also shown
are the 100-GeV/c pp topological cross sections, from
Refs. 10—12 (we take a simple average of the three ex-
periments, after normalizing each to the total inelastic
cross section obtained from Refs. 17 and 18).

odd-prong cross sections are proportional to free-
neutron cross sections is to reduce slightly the
pf ~5 contributions to the free-neutron cross sec-
tions. Thus the means of the distributions in Table
V exceed the means of the corrected odd-prong
distributions by 0.0V and 0.09 for incident proton
and m+, respectively, both for M~3. It is perhaps
amusing that in this experiment the corrections to
the mean free-neutron multiplicities produced by
the proton visibility factor and by the o(hd-dX)
term in Eq. (A13) almost exactly cancel.

The assumption that rescattering is multiplicity-
independent may be called a no-cascade assump-

I.Q—

X

8 l2 I6 20

FlG. 2. The ~'n inelastic topological cross sections
0~ versus charged-particle multiplicity N. Also shown
are the 100-GeV/c m"p topological cross sections, from
Ref. 20 (normalized to the total inelastic cross section
obtained from Refs. 17 and 18).

tion. Both heavy-nuclei experiments' "and deu-
teron rescattering studies"' suggest that this
assumption, which we will adopt, is quite reason-
able. For example, the observation that the frac-
tion of md events in which rescattering occurs is
constant, within errors, over the incident mo-
mentum interval 20-200 GeV/c, while the mean
np multiplicity increases from 4.6 to 8.0, supports
a no-cascade model. However, we will indicate
how our results would be affected if a cascade
model was correct. In an extreme casCade model,
the probability of a rescatter on the second nucleon
in the deuteron is equal to pN'„hwere N', is the
multiplicity (charged plus neutral) of the interac-
tion on the first nucleon, and P is given by Il „/

'(N', ), which is 0.020 for Pd and 0.014 for m+d.

Here I' „ is the fraction of events with rescatter-
ing, and we assume that such events will be even-
prong events Then c.orrection factors of (1
+0.023N) for pd, and (1+0.017N} for n'd, are re-
quired to arrive at the free-neutron multiplicity
distributions. The resulting multiplicity distribu-
tion moments are compared with the no-cascade
moments in Table VI. A less extreme cascade
model could have the probability of a rescatter on
the second nucleon equal to n +P'¹„with a, &0 and
0&P' &F„/(N', ), leading to a distribution intermedi-
ate between the no-cascade and extreme cascade
distributions (taking P' to be zero corresponds to
our no-.cascade assumption). Thus we see that the
meari multiplicity (N) could be increased by up to
0.17 (pn) or 0.13 (n'n) units if a cascade model was
correct. These increases are of the same magni-
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TABLE VII. Low-order moments of 100-GeVfr hadron-nucleon multiplicity distributions.
%e take a simple average of the values from the three pp experiments (Refs. 10-12), and
from the two ~'p experiments (Refs. 11, 12). The 7r p values are from Ref. 20.

(N)
D

fg

6.20+ 0.11
3.38+0.07
5.25 + 0.51

6.39 +0.05
3.22 + 0.03
3.97 + 0.18

6.57 + 0.13
3.38+0.09
4.89+0.59

6.71+0.09
3.24 +0.05
3.84 +0.36

6.80 + 0.08
3.15 + 0.04
3.14+0.30

tude as the corresponding statistical errors.
For the remainder of this paper, we will assume

that the distributions in Table V are the multiplicity
distributions for hadrons on free neutrons. The
distributions are displayed in Fig. 1 and Fig. 2 for '

pn and v+n, respectively, together with 100-GeV/c
pp and m p distributions. ' "'" The low-order
moments are compared with those for 100-GeV/c
pp an/ mp distributions in Table VII. Relations be-
tween target-proton and target-neutron multiplicity
distributions are examined in the following two
sections.

V. RELATION BETWEEN n p AND n n MULTIPLICITY
DISTRIBUTIONS

In an earlier paper' we gave a relation between
w+n and m p multiplicity distributions based on
charge symmetry. Here we pursue that topic in
greater detail. We first derive the relation be-
tween the distributions, stating explicitly the as-
sumptions being made. Next we employ this re-
lation to estimate the one-prong m+n cross section,
and then to calculate some properties of n p in-
teractions using our m+n distributions and published
m p distributions.

If only one nucleon plus pions result from a pion-

nucleon interaction, we can write (to avoid confu-
sion, N is consistently .even in the fallowing)

o(v+n N+ 1) =o(w'n p +N) +o(m+n n +N +1),

where &, &+1 refer to numbers of charged parti-
cles excluding those explicitly stated. Then, by
applying charge'symmetry, we have

o (v+n -N + 1) =o (m p -n +N) +o (np —p '+N + 1),

which can be rewritten

o(v"n-N+1) =(1—Y~)o(p p-N)

+Y„„o(m P-N+2),
where

N

o(m P-P +N —1)
o(m p-N) (4)

It is straightforward to extend these equations to
include kaon pairs, hyperon-kaon pairs, and bary-
on-antibaryon pairs. We find that Eq. (3) still
holds if we modify slightly the physical interpre-
tation of the F~ and if we make a few reasonable
assumptions. Thus we modify Eq. (4) as follows:

o(m P P+N —1) +o(v P Y K++N-1) +o(w p-Y K++N-2)
o(m p-N) (4')

which can be rewritten

Y„=&P) +&YK')„. (4")

Here Y and Y' refer to hyperons and &p)„and
&YK')„are, respectively, the average numbers
per N-prong ir p interaction of (nonproduced)
protons and hyperon-positive-kaon pairs. The
assumptions made, besides that of charge sym-
metry, are the following: (a} in association with
a specified nucleon plus N charged pions, the
probability of a K+K (pp }pair occurring is equal
to that for a K'K' (nn) pair; (b) in association with
a specified nucleon plus N charged pions, the

probability of a YpK+ (YpK ) trio occurring is
equal to that for a YnKo (YnKO) trio; (c) the prob-
ability of producing three or more strange parti-
cles is negligible; and (d) the probability of pro-
ducing two or more antibaryons is negligible.

Equation (4') shows that 0 ~Y„~1and that Ya = 0.
Equation (3) then shows that we should expect the
n'n topological cross sections to be interleaved
between those for m p. Further, if values of g„
were available from m p data, we could predict
the v'n multiplicity distribution and so check our
method of extracting this distribution from a deu-
terium experiment. However, values of 7„are not



CHARGED-PART IC LE MU LTIP LICIT Y D ISTRIB UT ION S IN. . .

available, because in bubble-chamber experiments
protons are not distinguishable from pions at mo-
menta above 1.4 GeV/c. Therefore, we use our
m+ri distributions together with m p distributions to
determine the values of Y~.

The following expression for Y~ follows from Eq.
(3).

g(& p-~N) -g(&+n-oN+1)
g(~ p-N)

. (5)

where g(mp-~, N) is the cross section for produc-
ing N or more charged particles in an. inelastic
v p interaction, and similarly for o(m n-~N+1). .

The mean value of Y~ is given by

(1„)= gg(tt-p-N) y„/g.,„„(m-p)
N=O

=0.5(&N&, , -&»„„)+0.5, (6)

where g;„„(n p) is the v p inelastic cross section.
To apply Eqs. (5) and (6) to our data, we must

assume a value for the inelastic one-prong cross
section, o (n+n-1), or equivalently via Eq, (3) a
value for Y,. From published cross sections"
for two-prong n p inelastic interactions at 150
GeV/c we find Y', (150 GeV/c) =0.61+0.03 (we note
that these cross seetiohs do include assumptions
about protons with momenta above 1.4 GeV/c).
Further, the values for Y„, N~4, derived below
are -0.5-0.6. Therefore we make the assumption

g(m+n-1) =(0.6+0.1)g(tt p-2). (7)

Equation (7) corresponds to 1', =0.6+0.1, to the
extent that o(tt p-0) is negligible.

The resulting values for Y„and (1'„) from our
tt n multiplicity distribution plus the 100-GeV/c
m p distributions, -are given in-.Tabid VOI. We
see that the Y„values are consistent with being
independent of N or with a slow decrease with in-
creasing N. The latter is expected in a simple
two-component model of high-energy interactions',
where the diffraction component has Y„&0.5 and
the nondiffraction component has Y„=0.5.

Some remarks should be made on the relation
studied above between the m+ri and t p multiplicity
distributions. Firstly, Eq. (3), with no restriction
on the Y„values, is valid without invoking charge
symmetry; the Y~ can be considered to be defined
by Eq. (5). The result of invoking charge sym-
metry, plus the additional assumptions mentioned,
is to give a physical significance to Y„, and then
to place limits on allowed. Y„values. Secondly,
Eq. (3) enables us to express any property of the
w ~ distribution in terms of the Y~ and the w p
distribution; Eq. (6) i6 an example. Another ex-
ample is the following expression for the dispersion .

D:

TABLE VIII. I z values calculated from 100-GeV/c
~'n and 7t p multiplicity distributions.

2
4

10
12
I4
16

0.60+ 0.10'
0.65 +0.09
0.65 + 0.08
0.66+ 0.09
0.50 + 0.12
0.49 + 0.14
0.40+ 0.21
0.85 + 0.41

(r„&= o.61~o.o8

~Assumed value (see text).

VI. RELATION BETWEEN pp AND pn MULTIPLICITY . ;

DISTRIBUTIONS

A relation between pp and pn multiplicity dis-
tributions similar to the above one for ip arid vari

cannot be derived from charge symmetry. How-
ever, relations analogous to Eqs. (3) and (4) do
follow if one simple assumption is-made. The
assumption is that the cross section for two or-
dered initial-state nucleons to yield two ordered
final-state nucleons plus N additional charged
particles depends only on h'ow many nucleons (0,
1, or 2) have flipped charge state and on Ã. The
following relations are thus assumed:

g(pn pn+N) =o(pp-pp+N),

g(pn -np +N) '=g (pp -nn +N),

g(pn-nn+N) =g(pp-np+N),

g(Pn-PP +N) =g(PP Pn +N), -

(9)

(10)

(11)

(12)

where the first written nucleon in a pair is the one
with the larger laboratory momentum. Equation
(12) also follows from Eq. (11) plus charge sym-
metry.

Equations (9)-(12), and hence the original as-

D„,„'=D, ,'+4[&N), ,&l'„) -&Nl'„)„,
+(1'„)(1-(l'„))]. (S)

Equation (8) shows that if Y„ is either a, constant
or a decreasing function of N, then D, „&D, ~, in

agreement with the data. Thus, any similarities
or differences between the two distributions can
be thought of as resulting from the Y~ values,
which tell how often a struck proton yields a pro-
ton or a YK+ pair rather than a neutron or a YK
pair. Similarities need not be thought of as sup-
porting ideas of universal properties of multi-
plicity distributions, and differences need not be
thought of as undermining such ideas.
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TABLE 1X. Xz values, calculated from 100-GeV/c
pn and pp multiplicity distributions.

2
4
6
8

10
12
14
16

0.60 + 0.10
0.57 + 0.07
0.60 + 0.06
0.64 + 0.07
0.62 + 0.08
0.58 + 0.11
0.57 + 0.17
0.45 + 0.29

&x &
= o.6o ~0.06

~Assumed value (see text).

o(pn pY'K'+-N) =o(pp-pY-K'+N) . (9")

Then Eq. (14) must be rewritten, analogously to
Eq. (4'), to include YK+, and we finally have

X~ = 0.5[(p)„+(YK')„], (15)

where (p)„and (I'K')„are, respectively, the aver-
age numbers per N-prong pp interaction of (non-
produced) protons and YK+ pairs. Thus X„ is
similar to Y~ in the pion-nucleon case, and in a
model with vertex independence we would expect

Values of X„are not available from pp experi-
ment. However, an estimate of (X„) can be ob-
tained from pp data as follows. The quantity do/dX
for the reaction pp-pX at 100 GeV/c has been
measured~' in the x range 1.0 to 0.5 (here x is the
Feynman scaling Variable). The results show that
do/dx has little or no x dependence in the range
0.9 to 0.5. Also, we know from symmetry that
do/dx must have zero slope at x ~0. Therefore

sumption, follow from vertex independence and
charge symmetry, plus assumptions about K+&
and K'K', and pp and nn, pairs similar to those
needed in the pion-nucleon case.

Given Eqs. (9)-(12), it is straightforward to
derive the following relations. :

o(pn N+1}=(1-X„)o(pp N}

+X„,ao(pp N +2),

14&(pp -pp +N —2) +&(pp np +N —1)
o(PP -N}

To take account of kaon-hyperon pairs, where
the hyperon is assumed to be a A or a Z, the origi-
nal assumption. can be simply extended so that Eqs.
(9)-(12}remain true if any final-state p (n) is re-
placed by a YK' (YK') pair. For example

o(pn Y K+n+N) =o(pp Y K+p+N),

we assume that the average do/dg value in the
range 0.5 to 0.0 equals that in the range 0.82 to
0.5, and we integrate over all x to arrive at a val-
ue for (p) of 1.07~0.03. To obtain (YK'), we take
(YK) =1.5((A) -g)), where A includes go, and
take (YK') =0.5(YK). Then pp data"'4 yield (YK+)
=0.07. Thus we finally have (X„)=0.57+0.02,
where the error includes an estimated 50% un-
certainty in (YK').

As in the vn case, we can use our pn multiplicity
data along with pp multiplicities"'" to solve for
X„, with equations exactly analogous to Eqs. (5)
and (6), once we have a value for o(pn- I prong).
We assume that Xa = Y~, and then Eq. (13}yields

o(pn-1) =(o.6~o 1)o(pp-2) ~ (16)

Th'e resulting values of X„and (X„) are given in
Table'IX. We see that (X~) agrees with the esti-
mate from pp data and with (Y„). The X„values,
similarly to Y„, are consistent with a constant or
slowly falling value as Ã increases, again in agree-
ment with a simple two-component model.

It is possible that the agreement between the (X„)
values from the pp data and from the pp and pn
multiplicity distributions is fortuitous. This is
because assumptions have been made in obtaining
(X„) from the pp data, in extracting the pn multi-
plicity distribution from pd data, and in estimating
o(pn-1}. With regard to the last of these, we note
that a change of 0.1 in the value of X, would change
our (X„) value by 0.04. However, if we set aside
this fortuitous possibility, then the agreement
between the (X„)values supports the assumptions
made in Eqs. (9)-(12) and their extensions. The
agreement between the X~ values and the Y~ values
also supports these assumptions. Then, analogous-
ly to the incident-pion case above, any similar-
ities or differences between the pn and pp multi-
plicity distributions can be thought of as resulting
from how often a struck proton yields a proton or
3. YÃ+ pair.

VII. CONCLUSIONS

The main results and conclusions from this work
are as follows.

We have determined charged-particle multi-
plicity distributions for pd and n.+d interactions.
The mean multiplicities for shower particles (i.e.,
those with velocity P &0.7) agree with the predic-
tions of a formula that describes heavier-nuclei
mean shower multiplicities.

From corrected odd-prong distributions, plus a
no-cascade assumption and one-prong estimates,
we have obtained inelastic pm and m+n charged-
particle multiplicity distributions. We have made
small corrections for a multiplicity-dependent
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APPENDIX

Here we derive approximate expressions that
relate odd-prong hadron-deuteron cross sections
with hadron-neutron cross sections. We assume
that the impulse approximation is valid.

We assume that at small values of the momentum
transfer q, where the deuteron form factor S(q) is
non-negligible, the hadron-nucleon cross section
is spin- and isospin-independent. Then relations
derived by Dean" within the impulse approxima-
tion become

(hd-bpp) = (hn-bp), (A1)

dO'
~ ~

d0' do'

dQ ' dQ
(hd-b'pn, b'd) = (hp-b'p) + (hn-b'n)

dQ

x [1+S(q)], (A2)

where lg i.s the incident hadron, and the final-state
b'pn excludes b'd. Equation (A2) is exactly anal-

slow proton visibility and for coherent deuteron
events and wave-function symmei, ", y effects. The
mean charged-particle multiplicities are 6.20+0.11
(pn) and 6.57+0.13 (n+n)

We have related n+n and 71 p charged-particle
multiplicity distributions via a set of quantities
Y„(N =charge multiplicity), where Y'„equals the
average number of (nonproduced) protons plus
hyperon-charged-kaon pairs per N-prong n p in-
elastic interaction. From the m+n and w p multi-
plicity distributions, we evaluate the Y». We find
that 7„has at most a small N dependence, and

that(Y„) =0.61+0.08.
We have related pn and pp multiplicity distribu-

tions via a set of quantities X„, after making an
assumption that is suggested by vertex-indepen-
dence arguments. Here X~ equals one half the
average number of (nonproduced) protons plus
hyperon-charged-kaon pairs per N-prong pp in-
elastic interaction. From pn and pp multiplicity
distributions, we find values of X~ that show little
N dependence, with. (X„)=0.60+0.06, in agreement
with (Y„) and with an estimate of (X„) from pp-pX
and pp-PX data.

x 2S (q/2) . (A3)

Hence for the deuteron breakup reaction we have

(hd-b'pn) = (hp-b'p) + (hn-b'n)

x [1+S(q) —2S'(q/2)] . (A4)

We now assume a proton-spectator (p,) contribution
to the reaction as follows:

„(ad-bp, p) = „„(an-bp), (A5)

(ad-b'p, n) = (hn-b'n)

x[l+S(q) —2S (q/2)]. (A6)

Summing over all the states b and 5' that contain
N —1 and N charged particles, respectively (N odd},
yields [by our earlier assumptions (do/dQ)(hn-bp)
is zero when S(q} is non-negligible]

(hd-p, +N) = (hn-N)

x [1+S(q) —2S (q/2)] . (A7)

Integrating Eq. (A7) over all angles leads to

o(hd-p, +N) =c(hn-N) +(A -B),

A = dQS q hn-N,

(A8)

(A9)

B = dn 2S'(q/2) (an-N) .
dQ

From Eq. (A3) it follows that

B =0.5o'(hd-d +N) .

(A10)

We evaluate the quantity A/B in the approxima-
tion that (do/dQ)(hn-N) has a much slower q de-
pendence than S(q), and using for S(q) the sum of
three Gaussians. " WefindA/B=0. 31. Hence we
have the result

o'(hd-p, +N) =c(hn N) —0.35m(hd-d +N) .
(A11)

Iff is the probability that the proton spectator is
invisible (f -0.7), and f„ is the probability that the
final-state deuteron in the reaction 5d-dX is in-
visible (f~ -0.5), with both f and f~ assumed to be

ogous to the scattering differential cross section
derived by Franco and Glauber" if double scatter-
ing terms are neglected.

By analogy with expressions" for pd elastic
scattering (see also Ref. 26), we obtain (with our
approximations)

d(X do' dg
dQ dQ

(ad-b'd) = (ap-b p) + (hn-b n)
dQ
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N-independent, then we have (we assume no con-
tribution to odd-prong events from neutron spec-
tator events)

o(hd-N) =fo(hd P, +N) +f„v(hd-d +N)

=fo(hn-N) +(f, —0.35f) o(hd-d+N),

which can be rewritten as

fo (hn-N) =g(hd-N) —(f„-0.35f ) g(hd-d +N) .
(A12)

Screening and rescattering, which we have ne-
glected above, will destroy the equality in Eq.

(A12). However, to the extent that screeiiing and
rescattering produce fractional depletions in (p,
+N) and (d+N) final states that are equal and in-
dependent of N, then the right-hand side of Eq.
(A12) will give the N dependence of o (hn). In that
case we have

' g(hn-N) =K [o(hd-N)

—(f~ —0.35f) o(hd-d +N)], (A13)

where K is a normalization factor such that the
sum over all N values yields the total&n inelastic
cross section.
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