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We investigate the structure of the energy spectrum of an isospin-1/2 Dirac particle in the field of the

SU(2) magnetic monopole of 't Hooft and Polyakov. We show that aside from the zero-energy mode, which

is always present, there are at most a finite number of bound states. To clarify the interaction of the

fermion with the various components of the monopole field, we consid r two different extrapolations of the

background field to limiting forms. The corresponding Dirac equations turn out to be exactly soluble. In the

first limiting model, only the Higgs field is retained, and the Dirac equation is found to be equivalent to the

nonrelativistic Coulomb problem. The second model is just the point monopole, and our problem is equivalent

to a doublet of massive Dirac particles interacting with an Abelian magnetic monopole. This classical

problem admits a simple treatment in the context of non-Abelian gauge theories; we present its solution in

this formulation; we point out the hitherto unnoticed fact that the Hamiltonian is not self-adjoint on the

customary domain of nonsingular wave functions and we study its self-adjoint extensions and bound states.

I. INTRODUCTION

Dirac equations in the background field of classi-
cal solutions to non-Abelian gauge theories have
been investigated in a number of different ex-
amples. ' They exhibit an interesting mathemati-
cal property with intriguing physical consequences.
Whenever the background field has "interesting
topological characteristics" a. zero-energy mode
has been found to be invariably imposed on the
corresponding Dirac equation. If, moreover, this
zero-energy mode is nondegenerate, the coupling
of the background non-Abelian gauge fields to the
fermionic field leads to the assignment of a fer-
mion number of & to their classical solutions,
suitably interpreted in the quantum theory.

In this paper we shall be concerned with isospin-
or fermion fields in the presence of an SU(2) mag-
netic monopole. The zero-energy modes of the
associated Dirac equation have been investigated
by Jackiw and Rebbi. ' The finite-mass monopole
background field of 't Hooft' and Polyakov' leads
to a nondegenerate mode. A more in-depth anal-
ysis of this phenomenon, however, or the possi-
bility of use of these models in calculations of
other effects, necessitates an investigation of the
entire spectrum and not only of the zero-energy
solutions. We would like to know, in particular,
whether the rest of the bound-state spectrum is
discrete or whether it exhibits any pathological
features. ' Questions of this sort we undertake to
answer in this work.

A suitable formalism, including a partial-wave
analysis, for our problem has been given by
Jackiw and Rebbi. ' It is parametrized by two
functions A(r) and C(r), giving the strength of the
gauge and the Higgs fields, respectively. These
functions can be obtained by numerical integra-

tion of ordinary differential equations deduced
from the SU(2) gauge field equations. ' However,
they are not known in closed form. At least partly
for this reason, the problem with A(x) and 4(r)
corresponding to a finite-mass monopole cannot
be attacked directly. Our approach is rather to
deform these functions to concrete expressions,
which, it will turn out, lead to exactly soluble Di-
rac equations. These limiting cases are then of
interest in themselves, quite aside from the fact
that they give us information about how fermions
interact with the various components of the non-
Abelian monopole. The qualitative conclusions
that we draw from this information we subsequent-
ly substantiate by a direct rigorous study of the
original problem.

In the first limit, only the Higgs field part is
retained in the potential. This choice is the sim-
plest o'ne containing all the topological structure
of the monopole solutions. In this case we find
that the problem is exactly soluble in terms of
the nonrelativistic Coulomb problem. The Ham-
iltonian does not exhibit any unusual features and
the zero-energy mode is nondegenerate as usual.
We discuss this model in Sec. III.

The other limit we consider is actually another
monopole solution of any SU(2) gauge theory
coupled to a triplet of Higgs fields, with only one
additional &-function source for the gauge fields.
This limiting ca,se is also equivalent to the ordin-
ary Abelian monopole solution of the Maxwell the-
ory for a point magnetic charge, which has been
studied extensively in the literature. As a solu-
tion of a non-Abelian gauge field theory it has a
certain model-independent character, in that it
depends only on a certain combination of the
parameters characterizing the Higgs field (mass,
self-coupling). The Dirac Hamiltonian in this field
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has the singular feature that it is not essentially
self-adjoint on the customary domain of infinitely
differentiable functions of compact support. Only
one self-adjoint extension will be found to possess
a zero-energy mode, and, moreover, we get the
interesting result that the latter is doubly degen-
erate, unlike the general case. The analysis of
these phenomena is the main subject of Sec. IV.

In the last section we comment on what we learn
from these examples about the more general case
and then proceed to derive upper bounds on the
number of bound states for each partial wave.
We conclude that the total number of bound states
is finite and that therefore the bound-state spec-
trum is discrete.

As a preparation for the discussion we sum-
marize, in See. II, the monopole solutions rele-
vant to our calculations and me claxify their rela-
tion to our model potentials for the Dirac equa-
tion. We review briefly the Jaekiw-Rebbi formal-
ism, which will be used extensively throughout
the rest of this paper, and we discuss the zero-
enex'gy solution found by these authors.

II. REVIEW QF MONOPOLE SOLUTIONS AND FORMALISM

The class of models me shall be concerned with
is described by a Lagrangian Z =2~+2~, con-
sisting of a bosonic term and a fermionic term.
The former term describes a spontaneously bro-
ken SU(2) gauge-invariant system of a triplet (iso-
vector) of scalar fields coupled minimally to a
triplet of veetox gauge fields, in Minkowski space
of three space and one time dimensions":

gs = —~ F,""F,„„+g (D„4),(D"4),

(2.1)

A (r)
(2.6)

(2.V)

In terms of the two functions A(r) and 4(r) the
Lagrangian (1) becomes

2 dA 3 2 2g--A - ——,A,
' ——A'

dr r dr

d@ 1 2 2g~pg g ~~ ~ ~ @ ~ Ac)
2 dr r' r

tx'ansformations on the Fermi fields.
The fact that the Fermi fields appear only quad-

ratically in the Lagrangian implies that their ef-
fects in classical solutions come into play in an
ox'der in g higher than the lowest. Our approach
will be, therefore, to first find solutions of the
problem Z = ZB and then consider the equations
governing the fermions in the background field of
these solut:ions, ignoring the feedback. It mill then
turn out that the static (zero-energy) solution to
the Dirac equation is such that it gives no contri-
bution as a source of the gauge and Higgs fields,
and therefore it forms, together mith the back-
ground fields, an exact solution of the coupled sys-
tem 2=1~+A~. This, however, does not occur
in the case of nonzero-energy solutions to the Di-
x'ac equations.

%e nom outline the mell-known results on classi-
cs.l solutions of the systems (1), and in the light
of these solutions we describe the models that we
study in detail in the following sections. 't Hooft'
and Polyakov' have deduced the existence of solu-
tions with magnetic charge by making the spher-
ically symmetric ansatz

g""= 8~&" 8"A,"+g& A."A"
a a a abc b c & (2.2)

g 'A'e' ——,V(g'~ e ~') (2.8)

(2.3)

(2.4)

(D"4),= s"4, +go,~,A~ 4, .
U( ) C ~') is required to have a minimum at a non-
zero value of its argument, say E'. For the fer-
mionic part we pick a model already considered
by Jaekim and Rebbi' as one of thei. r examples:
a doublet (isospinor) of Dirac fields gauge invari-
antly coupled to A," and 4,:

I~=if„y"(D„g)„-Ggl„v' g 4, ,

which leads to the equations of motion

2 d, dA, 2 dA 2 d 6 6gr' —— + —,—(rA) ——,A ——A'r Cr dr r dr r dr r r

-2g'A' —C —+2g'A =0, (2.9)
2g
r

1 d 2d4 2 4g——@ ——ACdr dr

2g 'A'e 2v (g '~e ~')+=o, (2.1o)
(D"0)„=s"0, -igr' A,"0 (2.5)

and ~a= 2o', where o' are the Pauli matrices. G
is a dimensionless constant. The &' obviously
play the role of the generators of global gauge

and boundary conditions

(
2dAr' +2' =0,

r«
(2.11)
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(2.12)

Single-valuedness of 4, and 4,' at the origin furth-
er requires that C(0) =A(0) =0. The system (9)
and (10) has a unique smooth solution satisfying
these conditions. At infinity this solution has the
behavior

(2.13)

(2.14)

In Sec. IV we study the DlrRc equRtlon with tI1e ex-
act forms (13) and (14) used for A(x) and C(r).
Note that (13) and (14) satisfy Eqs. (9) and (10) ex-
actly. However, they violate the boundary con-
ditions (11) and (12). In fact, they correspond to
a 6-function source for the gauge fields at the ori-
gin.

Next we note that (13) and (14) become exact in

R certain limit for the parameters defining the po-
tential U( jC ~'). This limit is given by E . It
is deduced quite easily from (9), which tells us
that (13) becomes approximately correct at a dis-
tance I f

lorn

the orlgln. Thus) tIle DlrRc
equation we will be considering in Sec. IV can be
viewed as a certain kind of limit of equations with
meaningful potentials as E-~ while p, = GEj2 is
kept constant.

The model that we study in Sec. III has no in-
terpretation as a limit of realistic models. It cor-
responds to a particular case of the ansatz (6)-(7):
that with A(x) =-0 and 4(r) —= constant. The asymp-
totic behavior of the 4 field, however, gives all
the topological information' contained in the fields,
and the latter seems to be the cause of the inter-
esting phenomena associated with the Dirac equa-
tion. Clearly, this model is the simplest extra-
polation of the asymptotic behavior of 4, to all
space. The abnormally rotated vacuum, which
was used by 't Hooft' and Polyakov only as a
boundary condition at infinity, is now introduced
at all points of space, and one may expect high
symmetry in phenomena associated with such R

configuration. We will in fact see that in the case
of the Dirac equation we do obtain nontrivial sym-
metry, as much as is associated with the Coulomb
problem.

As a preparation for the analysis of Secs. III
and IV we now outline the formalism of Jackiw and
Rebbi' for dealing with the problem (4). The Dirac
equation deduced from (4) after substitution of (6)
and (7) for the potential is

The indices n, m correspond to isospin and take
the values 1,2. o' are the Pauli matrices. The
y matrices are given by y& = Pn& where

Finally p, = GC/2 and will be a constant in Secs,
III and IV.

The Hamiltonian in (l5) commutes with the sum
of ordinary angular momentum (orbital and spin)
and isospin. To take advantage of this conserva-
tion law one proceeds with the following transfor-
mation. Separate P into upper and lower compo-
nents, as is usually done with the Dirac equation:

Each of the tfr' has four components, P;, where
i,I= 1, 2, corresponding to spin and isospin, re-
spectively. Now we can define taro scalar and two
vector fields, uniquely related to g' by the linear
relation

&~in=(& 6&m+g 'o&n)o~ .

The possibility of expressing the problem in terms
of scalar and vector functi. ons is a manifestation
of the fact that the true spin of our Dirac particle
is not ~ but rather 0 or 1: The generator of rota-
tions, which commutes with the Hamiltonian (15),
is not L+ S but rather L+ S+ T, the sum of orbital
and spin angular momenta and isospin; S+ T then
plays the role of the true spin. ' Substitutions of
(16) in (15) now leads to the following system of
equations:

(D' Af) g'+iD'xg'=iEg', (2.17a)

(D'+At) g'=iEg', (2.17b)

where D = V 2 pt'. %e will be using both this fol m
of our Dirac equation and a partial-wave analysis
of it. The latter is performed by expanding g' and
g' into scalar and vector spherical harmonics:

where j= [J(J+ I) ] '~', L = - ir x i, the ordinary
orbital angular momentum operator, and F«(Q)
are the ordinary spherical harmonics. Substitution
of (18) in (17) gives the following system of equa-
tions:
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(D2 —o)G~ --C~= EP'2, all d

(D'+ o)PG~ ——Bp~ = —EGG~, all 2J

(2.19a)

(2.19c)

In terms of g'(r) and g'(r),

g (r) =0, g'(r) =0,
(2.22)

g'(r) =c )( exp] dr'[A(r') 2-Ge(r')] &.

Finally, in terms of the original spinors,

(2.19d)

where D' = dldr+ 1lr + )1 and o = 1lr +A(r)
Finally we remark that the the transformations

(16) and (18) on the field variables are unitary.
The inner product of two spinors g"~ and P"' in the
different representations is given by

(q(1) y(2))

dory ([t) (1)2)eP(]t)( 2)2)

d3r'() ((g (1)2)eP(g(24) + (g(()2)eP, (g(2)2))

[(P (()P~) 4(P (2)2) ~ (G (1)P) !P(G (2)P)

p;. =G exp[I pr'[r)( ') —]Gp( 'l][) (x. px)

x {S',S —S(S'),

where S' (S ) is the positive- (negative-) eigenval-
ue eigenvector of 0'.

From {23)we can easily check the fact mentioned
earlier in this section, that although the Dirac
equation was solved in a background-field approach„
it happens to form together with the giveIl mono-
pole solution of the pure bosonic part of the sys-
tem, an exact solution of the coupled boson-fer-
mion problem. In fact, the fermionic sources in
the field equations for the gauge and Higgs fields
respectively are given by

~J J3+ p JJ ++JJgy

~JJ' + ~J'J + CJ'J3+ 3 3

IIJJ3- P J J3 ~JJ»
(2.20)

~JJ - ~JJ CJ'J' '
3 3 3

The inner product in this representation is given by

(y (1)
q (2))

00

[(11(()2 ) Pe(11(2)P ) + (ii(1)P ) e)(11(2)2 )
w 0

J, J3

~ (ie(1)P ) 4(Z'(2)2 ) (ie(()2 ) eP(ie(2) ) ]

This representation diagonalizes the model of Sec.
IV. It is also the correct one for deriving upper
bounds on the number of bound states of each par-
tial wave —a task which is undertaken in Sec. V.

The zero enert, y mod-e of the Dirae eq2(ation We.
first exhibit the form of the unique zero-energy
eigenstate of the Dirac equation. ' In terms of the
harmonic analysis it is given by

Yet another representation to be used in Secs. IV
and V is an algebraic combination of the harmonic
components, defined by

Both vanish when the zero-energy eigenstate given
above is substituted for P, merely on account of
the fact that only the upper component of g is non-
vanishing.

It is easy to see that nonzero-energy bound

states have both upper and lower components and
do not satisfy the coupled equations in the self-con-
sistent way the zero-energy mode does. Thus, the
latter is interpreted as forming part of the soli-
ton, and the Dirac equation (15) describes the fer-
mionie part of its collective exeitations. This soli-
ton will retain its meaning and identity as a particle
when an external field is introduced only if the spec-
trurQ of exeitations is discrete in its neighborhood.
In the last section we will show that this is indeed the
case.

In this section we analyze completely the first of
our two models, the simplest configuration of
background fields with nonvanishing Kronecker in-
dex. ' In (2.6) and (2.7) we choose

G;,(r)=creep, ' P '[X(r') ——,'Ge(r')]I,
(ao

G.o{r)= Poo= ~oo= &oo= 0

(2.21)

where E is a constant such that U'(E') =0. We show



CONSTANTINE j. CALLIAS

that the Dirac equation (2.15) is reduced completely
to solving two very familiar problems: the nonrel-
ativistic Schrodinger equations for a spinless par-
ticle in a Coulomb field, and the nonrelativistic
free Schrodinger equation. The bound states are
labeled exactly like the bound states of the Coulomb
problem; the spectrum is

(3 2)

and each eigenvalue has the familiar n' degeneracy.
Our question about the discreteness of the bound-
state spectrum is obviously answered in the af-
firmative in this model.

Using the formalism of the preceding section, me
proceed to give the equations that lead to (3.2), as
mell as useful forms for the components of the
Dirac spinor for both the bound-state and the con-
tinuous spectrum. The form (2.17) of our Dirac
equation reduces to

D'g'+iD' x g'=iEg, (3.Sa)

Dk, gk iEg7 (3.3b)

while the system of Eqs. (19) becomes

(3.4a)

It is easy to obtain them. Taking the cross product
of D' with (3.3b) and using successively the iden-
tities

[5'x(D'x g)].= (D'D')g +D' (D~g) (3.7)

(3.8)

and (3.5), we obtain

-& g'+ —~(~ g') =(E' —V')g'. (3.9)

~2 ~ ffk P6 (E2 p 2)fly1 d 2
dB' j' ~ 2j

h' dh dh r' r'

Rather than working with (3.4), we can obtain a
useful harmonic analysis of the problem dixectly
from (3.6) and (3.9). Using the decomposition(2. 18)
in these equations me obtain

1 d 2dG j 2p.
+ —,G' +—G'= (E' p')G',r' dr dh

(3.10a)

1 d dP j+2 ~ 2j 2p,+, P~ ——2B' +—P~
dr dr

= (E' p') P ', (3.10b)

D'+ — P'- —B = —EG',1
r

pt

(3.4b)

(3.4c)
r' + ~ C'= (E' p, ')C'.1 d dC' j'

r dr dh h

(3.10c)

(3.10d)

(3.4d)

We have dropped the subscript J, since we will be
working with single partial waves. We first make
some manipulations on (3.3} to get our simplest
results. Dotting (S.Sa) with D' and using (3.3b)
and the identity

Equations (3.10b) and (3.10c) are mutually coupled,
but the fact that (3.10a) and (3.10b) are completely
decoupled mill suffice in order to solve for all
eight fields P', O', C', B* in terms of standard
functions. First, we examine the bound states, to
prove the statement about the spectrum (3.2).
Equation (3.10d) implies that Cz= 0 for a bound
state, while from (3.10a} we see that GJ -—0. The
system (3.4) is then satisfied consistently if

—D 'D = —V 6—+p (3.5)

1, 1 G' all JJ g, r Jy

%'e recognize this as the familiar Coulomb prob-
lem. Equation (3.6) tells us that for a bound state
g = 0 (assuming that p & 0) a.nd gives the spectrum
(3.2). We remark that the latter includes the zero-
energy mode (n= 1).

Of course we do not know whether the entire set
of values (3.2) is included in the spectrum or
whether each eigenvalue has the familiar degener-
acy of the Coulomb problem until we have found
what equations the remaining functions g, satisfy.

Next me point out hom, not only the bound-state
wave functions, but the entire spectral representa-
tion of the problem as well ean be determined in
terms. of our ample knowledge about the Schrodin-
ger equation for a Coulomb potential and for a free
pa.tiile. . Very similarly to the case of bound states,
G J and C~J are determined from (3.10a) and (3.10d).
Equations (3.4a) and (3.4d) then give P~~ and B'~ in
terms of G J and CJ:
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P~= — D» — GJ ——CJ,1 1, j
J E & J & J

IV. ANOTHER LIMIT: THE ABELIAN MAGNETIC

MONOPOLE IN THE SPHERICALLY SYMMETRIC GAUGE

DG ——C =EP J&0 (4.2a)

We now turn to our second example, the one for
which the potentials in (2.15) are given by

A(r) = ——,1

(4.1)
4(r) =E.

The Dirac equation for this potential, when ex-
pressed in the unitary gauge, corresponds simply
to the problem of an isospin doublet of fermions of
mass u/2 and charge +e in the field of an ordinary
Abelian monopole of charge g, where eg= 2.' The
latter is a classical problem which was studied a
long time ago, independently by Banderet and Har-
ish-Chandra. ' Their result is that there are no

bound states if the wave function is restricted to be
nonsingular everywhere.

We shall show, however, that for J=O the eigen-
value problem is meaningless until we have re-
laxed the requirement that the wave function be
nonsingular at r=0. This can be done in a one-pa-
rameter family of ways. For certain ranges of the
parameters there will be a bound state. In the
language of unbounded operator theory, the Ham-
iltonian is symmetric but not self-adjoint on the
customary domain, and it has a one-parameter
family of self-adjoint extensions. "

In subsection (a) below we state the solution of
the eigenvalue problem for J& 0. In (b) we analyze
the questions of self-adjointness pertaining to the
J= 0 partial wave.

The separation of the problem into radial and an-
gular parts was given in Sec. II. We rewrite Eqs.
(2.19) in the form that they take in the particular
case (4.1):

This is the charge symmetry. " It will be used in
subsection (b) below to restrict the self-adjoint ex-
tensions of the Hamiltonian.

(a) J&0 Partial waves T. his case is straightfor-
ward and was solved some 30 years ago. ' Ques-
tions of self-adjointness do not arise. There are
no bound states, and if E is in the spectrum for
Z&0, ~E~ &

~
u ~. We give the explicit solution in

our formalism. In the representation (2.20)

(11'„.) (a„.)
JJ3+ JJ +

(4.4)

JJ3 JJ

The coefficients of Qt'„P» satisfy the linear rela-
tions

(E' - u'-)'"r;+ ur'=tEr',

(E' —u')'"r' ~ ur.'= iEr'. ,
(4.5)

where y=a or P.
(b) S wave -bound states. Now consider Eqs. (4.2)

for J= 0. They simplify to the simple-looking
problem

D G'= EP»,

O'P'= —EG .
(4.6)

on the Hilbert space defined by the norm

4 p
(4.8)

The peculiar problems alluded to before are in
relation to the choice of a suitable domain on which
the operator appearing in (4.7) acts. Call the lat-
ter operator A, acting on vectors

Define H'=rG', Q'=rP' Then (4..6) gives simply

d H'= EQ'
dr

(4.7)
Q' = EH'

O'P' —B'= EG' J& 0 (4.2b)

D B» ——P»=EC J& 1
y

(4.2c)

D»C» G» — EB» Jo 1 (4.2d)

We immediately see a symmetry of the eigenvalue
problem under the transformation S:

and note first that A can be written as a direct sum
of two operators, acting on isomorphic invariant
subspaces,

G' P» B» —C»,

P'- —G' C'- B'.t

(4.3)
Z, 01
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where both K, and K, are given by the 2 x 2 matrix
diff erential operator

0 —+ p.

(4.9)

Thus, the natural domain of definition for K is the
set of vectors g = („~~ ), where the components are
absolutely continuous square-integrable functions
with absolutely continuous first derivatives, and

satisfy t/r, (0) =$,(0) =0. It is easy to see tha, t K,
with this domain, is not self-adjoint, although a
simple integration by parts would lead one to be-
lieve that it is. The reason is that the adjoint K*,
although it is defined by the same differential op-
erator (4.9), acts on a, domain D(K~) which is dif-
ferent, in fact larger, than D(K): D(K~) consists
of the same kind of vectors g = ( t&) as D(K), but
with no boundary condition at the origin. To see
this recall that D(K") is defined as the set of all
vectors Q such that there exists a vector K*/ with

(P, Kg) =(K Q, P) for all g&D(K), and the state-
ments above satisfy this definition since, by sim-
ple integration by parts,

(@,K|(I) (K*/, p) = $,(0)$,(0) —p, (0)|b,(0) . (4.10)

This is 0, without any conditions on P, (0), P,(0),
because the conditions on $,(0) and (It,(0) are very
strong. Thus, it is clear that in order to make K
self-adjoint we should extend its domain, by re-
laxing the latter conditions on g so that (4.10) im-
poses the same conditions on Q. These modifica-
tions are already dictated to us by (4.10). Fixing

Q, we find that, of necessity, for all t( c D(K~),

P,(0)+ ag, (0) = 0, (4.11)

where a is a constant. Picking P =tt} we find that
a is allowed to be real or ~. Equation (4.10) then
implies the same conditions on arbitrary P.

Thus, the operator K„defined as the differen-
tial operator (4.9) acting on the domain specified
by (4.11), is self-adjoint. The necessity of picking
a domain on which the Hamiltonian is self -adj oint
has long been understood in quantum mechanics,
and so we concentrate on the class of domains

but may differ in the domain on which they act. To
preserve the charge symmetry (4.3), we are forced
to pick identical domains for K, and K,. It suffices
then to study the operator K. A will have the same
eigenvalues as K, with twice the multiplicity. We
proceed to discuss the domain D(K) of K.

Frorq. the definition of H' and Q' we see that con-
tinuity of G' and P' demands the boundary condi-
tions at the origin:

H'(0) = Q'(0) = 0

2a p.
a g2+] (4.12)

In particular, for a=0, and only for that value of
a, we get a nondegenerate zero-energy mode for
the corresponding self-adjoint extension of (4.9).
If p, &0, we get results equivalent to (4.12); we
have in this case ~a

~

& 1, but (4.12) is invariant
under g- -p, a- -I/a.

Thus, there appears to be a most natural choice
of domain out of (4.11). It is that which gives
zero as the unique bound-state energy. For a
monopole (p & 0) the appropriate extension is K„
corresponding to the boundary condition $,(0) = 0.
For the antimonopole, we are forced to pick out
K„; the boundary condition is tt), (0) = 0 in this case.
We note in passing that these boundary conditions
imply that tj,(r) = 0 and P,(r) = 0 everywhere re-
spectively. But there is an important remark to
be made. Although we picked out these particular
self-adjoint extensions just in order to preserve
the existence of a zero-energy mode shared by the
family of Dirac equations of which (4.2) is a limit-
ing case, there appears a discontinuous behavior
in passing to the limit: The zero-energy mode ac-
quires a degeneracy. This is due to the fact that
the eigenvalues of (4.6) have twice the degeneracy
of the eigenvalues of K."

This intuitive, although no less rigorous, treat-
ment of the self-adjoint extensions of K can be
understood in the more abstract context of the the-
ory of deficiency subspaces. " The fact that D(K)
is so small makes D(K*) so large that the entire
complex plane is included in the spectrum of K*.
The dimensions of the deficiency subspaces
Ker(K*+i) measure how large D(K*) is or, al-
ternatively, how small D(K) is. (KerA denotes the
kernel of the operator A, the set of vectors P such
that A( = 0.) In our case, Ker(K*+i) is generated
by a single vector:

The self-adjoint extensions of K are well known
to be in one-to-one correspondence with the iso-
metrics of Ker(K* —i) onto Ker(K~+i). In our

given by (4.11). We are then faced with thedilemma
of picking the most physical one out of an infinite
range of possibilities. An analysis of the associat-
ed spectra, which we shall give momentarily, will
point to the answer to this question.

All of the operators K, exhibit a continuous spec-
trum for ~E~ &

~
p~. It is also trivial to compute

the bound-state energies. We state the results:
If p. & 0, there exists a nondegenerate bound state
for ~a

~

& 1 with energy
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case such an isometry is given by

u: P I-e g. , QcR.
The corresponding self-adjoint extension K of K
is described as follows:

D(K ) = Q+ P(g. + u (.) l g c D(K), P c cj,
K (P+P($ +u g ))=Kg+ipg —iPu, g .

It can be checked that K as defined here is equiv-
alent to our previous definition of K, where a and
a are related by

1
a= — cot~0.

v2 —1

Thus, the theory of deficiency subspaces explains
why we found a one-parameter family of self-ad-
joint extensions.

We give the resulting spectral analysis of the
problem (4.6) under the condition of self-adjoint-
ness of the Hamiltonian as analyzed above. As
with the J& 0 partial waves, we express the re-
sult in the representation (2.20). For the S waves,
TIpp II I 0 I There is a one -parameter
family of possibilities corresponding to the x= 0
boundary conditions

[r1'(r) ]„,+ a [rll'(r) ]„,= 0,
where a is an arbitrary real number or ~. The
bound-state energy is given by (4.12) and the cor-
responding two-dimensional eigenspace is

F+(r) o e (g E2 ) r-r'
f1+(r) o [i/ (i/2 K2)1/2]e (i E & r

'yE

There is a continuous spectrum for l& l
-

l
l/ l.

The corresponding wave functions are

] (~2 fi 2)l/2~ n ] (E ~2)l/2~~'' r''

of deficiency subspaces summarized above the
self-adjoint extensions are in one-to-one corre-
spondence with SU(2), the set of isometrics of
Ker(A* i) on-to Ker(A~+i).

V. THE FINITE-MASS MONOPOLE BACKGROUND FIELD

We already remarked that it is impossible to
solve the general Dirac equation (2.15} exactly,
but we can study the qualitative features of the
spectrum. This is our task in this section. The
models that we studied in the preceding sections
provide us with sufficient information to be able
to make a reasonable guess even before going into
the precise arguments to be given below. We have
seen that the divergence of the spherically sym-
metric Higgs field gave rise to an infinite number
of bound states, and the introduction of the A(r)
= —1lr potential wiped them all out completely,
leaving only the zero-energy eigenvalue. When
now the Higgs field is modified near the origin to
smoothly approach the value 0 at r= 0, we expect
that the spectrum will remain qualitatively the
same, and only the position of the eigenvalues
will be altered slightly. In fact, in terms of the
correspondence proved in Sec. III, such a modifi-
cation of the Higgs field would be equivalent to re-
placing the point center of the Coulomb field by a
finite charge distribution. As to the effect of the
A(r) field, we expect that, if A(r) = —llr only out-
side a finite radius, while it goes to zero smoothly
at the origin, all but a finite number of the bound
states created by the Higgs field will be wiped out.
We can support this assertion by proving that it
holds in the case of the S waves. For J=O, Eqs.
(2.19) can be reduced to a single Schrodinger equa-
tion for G'.

2
—

d 2+ (&'+ o' —2po) (rG') =(E' —I/. ')(rG'). (5.1)

fl'(r) = ([~+i(&'- u')"']o e'" "'
yg

[ ~
~ (K2 i/2)1/2] P e I'ts ll ) t')

where n „P, satisfy

o. , + P, + —( [u + i (F.' —p') '"]n,
+ [~ —i(E' —

I
')"] P, 'f = o

Lastly, we remark that had we not required that
the self-adjoint extensions preserve the charge
symmetry we would have obtained a larger family
of them, parametrized by SU(2) rather than U(1).
For if A represents the operator in (4.7} with the
boundary condition of vanishing wave function at
the origin, it can easily be seen that Ker(A*+i)
are two-dimensional; then according to the theory

0 vanishes exponentially outside a finite radius a.
Using the well-known upper bound on the number
of bound states of the lth partial wave of a Schro-
dinger equation in a potential V,

"
n)&

2l + 1 4 p'(+)go
r dr

I
1'(r)

I (5.2)

we easily see that the number of bound states of
(5.1) is finite, and bounded above by a number of
the order of p a.

We now show how bounds of this sort can also be
derived for the higher partial waves of.our Dirac
equation. Squaring the operator on the left-hand
side of (2.19) and transforming to the representa-
tion (2.20) we get the following system of equa-
tions:
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d' j(j —1 —s)+1
2+ 2dy' r + 'UI

d' j(j+1+s)+1
2+ r2 +52

d' j(j —1+s)
2+ 2 +nil

y'

d' j(j+ 1 —s)
QJ

2+ 2 +%2

~ J'J' +3+

xIIJq „
xI'~~~,

(5.3)

where s{r)= r{l/r+A{r)) and the remaining functions v', (r), nr', (r),f~»{r),g'„,(r) are given by expressions con-
taining A(r) and 4{r). The functions s(r), f~»(r) share the properties given below for s(x}:

(1) s(0) = l.
(3) s(r) -0 exponentially as r- ~. The exponential decay sets in outside the radius of the monopole,

roughly at K=E

The remaining functions, v', (r},so', (r},g~»(r) satisfy (2), while at the origin they are less singular than I!r.
In the operator in (5.3) we separate a positive term [an operator A is positive if (g, Ag) &0 for all g in

the Hilbert space]

j

@fan,

(~)

which we drop because it only decreases the number of bound states. We then use the fact that 0&s(r) & I,
to find that the operator in (5.3) is greater than the following diagonal matrix operator (an operator A is
greater than an operator B if A His positive):-

d9 r2

d' j(j +1) —&2(v 2+1)
&' r2 2

j (j —1)
g2

The potentials V;(r), W',.(r) tend to ze. ro exponen-
tially outside the radius of the monopole, while at
the origin they behave at worst like 1/r We are.
thus comparing our problem to a system of de-

coupled Schrodinger-type equations, to which we
can apply the bounds (5.3) (which hold regardless
of whether I is an integer or not). The minimax
principle then implies that the number of bound
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states of (5.3) has an upper bound of the form

(5.4)

where n( j) & 0 any n( j)-j as j-~.
From this bound we learn two things, which con-

stitute a proof of the results anticipated in the be-
ginning of this section.

(1) For large enough 4, the bound (5.4) becomes
less than 1, and therefore the corresponding par-
tial waves possess no bound states. Thus the Di-
rac equation (2.15) for the true monopole poten-
tials has only a finite number of bound states and,
in particular, the zero-energy mode is discrete.

(2) An examination of the potentials V'„W', has
shown that the integral in (5.4) tends to zero as
F ~, i.e. , as the radius of the monopole ap-
proaches zero. Thus, if the radius is sufficiently
small, the only bound state is the one at zero en-
ergy. Just as in the examples of Secs. III and IV,
we of course have a continuous spectrum for l El- I) I.

In conclusion, in this paper we have done two

things. First we have shown that fermions in the
field of the magnetic monopole of 't Hooft and

Polyakov can only be found in a finite number of
bound states. Our experience with topological sol-
itons allows us to distinguish two kinds of binding:
Topological binding, which gives rise to the zero-
energy modes, and nontopological binding, which

has been shown to arise from the interaction of
the fermion with the Higgs field. The effect of the
gauge field is to eliminate this kind of binding.

The second contribution is the exactly soluble
models that we discussed. Quite apart from their
relevance to the physical problem, these models
are sufficiently simple and already well under-
stood to provide a laboratory for investigating the
behavior of fermions in the presence of topological
magnetic monopoles. It is clear that we cannot
carry out calculations in a closed form for the
exact monopole solutions, and, on the other hand,
the models of Secs. III and IV are already ex-
pressed in terms of exhaustively known problems.

Lastly, we remark that the limiting cases we
are able to deal with in this particular case of an
isospln —2 fermion in the field of an SU(2) mono-
pole can also be studied in all variations of the
group structure of the background field or of the
isospin of the fermions. The essence of the re-
sults will be similar. In particular, we would in
this way encounter fermion-monopole systems
with eg= ~~, n integral.
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