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The problem of formulating the field theory of Dirac particles on a spatial lattice is reviewed. In one

dimension we construct free massless Dirac fields and Thirring fields and show their equivalence to'the X- Y

and asymmetric Heisenberg antiferromagnetic chains. In three dimensions we find that the simplest

construction describes an isodoublet of massless Dirac fields. We discuss the incorporation of gauge degrees of
freedom and illustrate how chiral symmetry is spontaneously broken by the interaction of gauge and fermion

fields.

I. LATTICE FERMIONS IN 1 + 1 DIMENSIONS sinl -m~l~m .
a

(1.6)

In this paper we take the first step in formulat-
ing a realistic lattice gauge theory' of hadrons;
we develop the lattice theory of fermion fields in
three-dimensional space. As an introduction we
will begin with the simpler one-dimensional case.

In conventional one-dimensional continuum the-
ory the Dirac field is a two-component spinor

and the Dirac matrices are

1 0
0 -1

1 0

The massless Dirac equation is

$$=SQB P . (1.2)

Let us introduce a lattice into one-dimensional
space as in Fig. 1.

The lattice spacing is a and the nth site has coor-
dinate

(1.3)

Now consider the discrete version of Eq. (1.2) ob-
tained by replacing 8, by a discrete difference.

In Fig. 2 the dispersion laws corresponding to
Eq. (1.2) for n = + 1 are plotted, and it is seen that
the solutions are right- and left-moving waves.

In Fig. 3 we see a similar description of Eq.
(1.4). As a-0 the frequencies go as a ' unless
l —ka, E —m —ka, or /+ n —ka. Thus the region of
finite frequency is concentrated near l=0 and
L = am. Now the waves near l = 0 are the smooth,
long-wavelength modes which we normally expect
to survive in the continuum limit. But what of the
low-energy modes near l = az? Can these be ex-
cluded from consideration? After all, in the limit
a 0 they carry- infinite momentum.

In the free field theory we can always agree to
populate only the region near l = 0 with fermions.
However, in an interacting field theory the modes
l = +7i may become excited without our permission.
In fact, the excitation of these modes may not dis-
appear with g going to zero. As an example, sup-
pose the field couples to an external potential
through the charge density g~(n)g(n). In momentum
space this is proportional to

e'"" ' ~
'Pl(I)g(l')dl dl

Thus it is as likely to excite a pair with momen-
tum +0 as with +(w/a —0). Any local coupling of g

ig(n) =
2

[P(n+ 1) —P(n —I)] . (1 4)

The dispersion laws for Eqs. (1.2) and (1.4) are
respectively

(d = Qk, -~(k&'0

—2-1 0 ~ 2

FIG. 1. A one-dimensional lattice with spacing a.
FIG. 2. Dispersion law for the continuum Dirac equa-

tion.
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continuum equation

which describes left-moving waves. However,
right-moving waves are also described in the spec-
trum of Eq. (1.10). To see this define

0'(n) = (-1)"4(n) .
The field P'(n) satisfies

(1.12)

FIG. 3. Dispersion t.aw for Eq. (1.4). s,p'(n) = ——[Q'(n+ 1) —p'(n —1)],

will in general excite the unwanted low-frequency
modes near ~.

There are two simple ways to solve the problem.
In the first method, due to Wilson, an additional
term is added to the discrete Dirac Hamiltonian
to raise the energy near er. Equation (1.4) is mod-
ified to

it/(n} = —[P(n+ 1) —P(n —1)]

and hence for long wavelengths it is right-moving.
The left- and right-moving waves are identified
with the neighborhoods of l = 0 and l = +g, respec-
tively.

The two-component character of Q can be made
manifest by defining odd and even sublattices and

treating the fields on these two sublattices as in-
dependent fields, P, (n) for n odd and P, (n) for n

even. The equation of motion for P...becomes

i, (n) =—[0,(&+1)-0,(& —1)] ~

+ ' [2$(n) —i/'(n+ 1) —t/i(n —1)], (1 7) (1.14)

where z is an arbitrary dimensionless parameter.
The dispersion law for Eq. (1.7) is shown in Fig.
4. The gap g is proportional to the parameter I(..

The second method, due to Casher and this
author, is to reduce the number of degrees of
freedom by using a single component on each site
of the lattice. Define a one-component field (Ij) on
each site. The Hamiltonian will be

tl, (n)=2 [4,(n+1) —0, (n —1)l,

which, in the continuum limit, becomes Eq. (1.2).
The usual fermion bilinears have lattice analogs

which can be classified into two groups. Bilinears
(bilinears such as |/'P will be assumed to be appro-
priately symmetrized) involving diagonal Dirac
matrices (/~ter and Pty, |/I= gP) do not mix g, and t/„

ff =—Q [P (n)P(n+ 1) —P (n+ 1)P(n)] . (1.8)

The field Q is a canonical fermion field satisfying

0'0 = 0't + 0'0
(1.15)

(1.9)
Thus they do not multiply an odd-site field with an
even-site field. In particular, we may identify

Using (1.8) and (1.9) the equation of motion for P
is found to be

(1.10)

For long wavelengths (1.10) may be replaced by the

0'0 = 0'(n) 4(n),

PP = P~(n)P(n) (n = even),

t/n/)= P (n)P(n) (n= odd) .

Equation (1.17) may be summarized as

(1.16)

(1.17}

gt/(n) = P'(n) y(n)(-1)" . (1.18)

G

FIG. 4. Dispersion law for Eq. (1.7).

The second class of bilinears involves off-diag-
onal matrices (in one dimension y, = n) and there-
fore multiplies an odd and an even field. We may
identify them with products of nearest-neighbor
fields. The two bilinears of this type are P y, P
and +,P:
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P'y, g= g,'g, + H.c. ff = —[a„(n)a„(n+ 1)+ a„(n}a,(n+ 1)] .=1 (2.3)

= P'( n)P(n+ 1)+H.c. ,

A,4= 0,'0, —0',4,
= [y'(ny(n+ 1) —H.c.](-1)' .

This Hamiltonian is familiar to solid-state physi-
cists who call it the X-7 model. The Dirac bi.-
linears may be reexpressed in terms of spins:

The Hamiltonian (1.8) has lattice shift symmetry
P(n) —P(n+m), where m is any integer: lf m is
an even integer we may interpret the shift as a
translati. on

0 v=~o. ,

P$ = p a,(-1)",
P'y, P= f[cr'(n)a (n+ 1) —H.c.] .

(2 4)

g, (n) - P, (n+ m),

g,(n)-P, (n+ m) .
But fox' m odd the fields P, and P, are inter-

changed. Since interchange of P, and P, is equi-
valent to multiplication by y, we may interpret the
odd-shift invariance as y, symmetry, In this re-
spect let us consider the effect of a mass term
mfa. According to Eq. (1.18) this is equivalent to
adding

m P (-1)"0'(n) 4(n),

'Nhich hRs ev8s-but not odd-Shift 1nvR11Rnce. Th18
of course reflects the breaking of y, invariance by
DlRsse 8.

II. LATTICE FERMIONS AND HEISENBERG CHAINS

Using these coxrespondences it is easy to con-

struct spin lattice versions of familiar one-dimen-

sional field theories. For example, the Thirring
model is defined by the interaction

&,„,=z(v4)'

= --,'ga, (n)cr, (n+ 1) . (2 ~)

This together with the free term (X-1' model)

defines the general Heisenberg antiferromagnet.

However, some c3ution must be exercised in com-

pRx'lng the long-%'avelength behRV101 of the Heisen-

berg chain with that of the Thixring model. In par-
ti.cular, both the coupling constant and the speed of

light must undergo finite renormalizations before

COmparlson 18 made.

In this section we will describe some connections
between one-dimensional fermion systems and one-
dimensional spin lattices. The connections are
only possible in one dimension, and therefore this
section is not important to the reader who wishes
to go on to three-dimensional fermion systems.

TIle t11ck of connecting one-dlDlen81ODB, l chains
of spins with one-dimensional chains of fermion
fields is due to Jordan and Wigner. Consider a
one-dimensional chain of spin-1/2 systems de-
scribed by the operators a'(n) and a,{n). The a' s
at different sites commute. Now define the canon-
icaQy anticommuting fields P(n) as follows:

%e introduce into three-dimensional space a
simple cubic lattice with sites labeled by triplets
of integers r=(x, y, z). At each site six unit vec-
toxs n„, n„&„n& &, A& &, n&„,&

are defined as in

Pig. 5.
The naive four-component Dirac equation can be

written as

P(r}=—Pn nP(r+n),
2Q

(3

where o. is the three-vector of Dirac matrices.
%e work in the representation

0'(n)= II[-fa,(m)] G-(n) .

Now consider the Hamiltonian in Eq. (1.8). Using
(2.1) tt can be reexpressed in terms of the &z vari
ables

=1 Q [&'{n)a (n+ 1)+H.c.],
deft»ng a, =a +a, a =-f(a' —a") we may

write (2.2) as FIG. 5. The six unit lattice vectors.



FIG. 6. I.abeIing of lattice Sites.

The dispersion»w f» (3.1) ts

(d= (ss„sin/„+ ssqslnlq+ &gsinfg)/ss p

x"eplRclng the continuum dlsperslon law

(3.4)

In this case the low-energy spectrum is found at
eight points of momentum spRce col responding to
the cox'ners of a cube in I space. The degeneracy
must again be removed, either by the method of
Wilson or by reducing the degrees of freedom. We
shall choose the latter method.

I et us again reduce the numbex of degrees of
freedom to one component, P(r)i per lattice site.
In the one-dimensional case the lattice was sub-
divided into odd and even sublattices and the fields
were renamed Ps and t/r, . In the present case we
&rill subdivide the lattice into four sublattices to
accommodate the four components of a conven-
tional DlrRc field. The subdlv181on 18 accomplished
by fixst labeling the corners of the unit cube as
shown in Fig. 6. The labeling is then continued
periodically through the lattice. Jn Fig. V the
planes z=O„x=O, and y=O are illustxated. Now

consider the HRD11ltonxan

[Ps(r)Q(r+n, ) -H.c.](-l)"'"

+ 3, [0'(r)4(r+n. ) —H c l

——,[e'( )e( +"„)+H...](-I)""& . (3.8)

The equation of motion following from Eq. (3.8) is

4(r) =
Z, [A(r+ n.) -4 (r —n.)](-l)*

+—[Q(r+ n„) —P(r —n„)]

+—[P(r+n, ) —Q(r —A, )](-I)~' .

3e 2e J ~ 2y

Now introducing the sublattice fields p„y„p„
0, i»naiog7 with the one-dimensional case, we
can write Eq. (3.6) a,s

4, =n, 4, +~„4,+s&,p, ,

&,4,+ &„0, s-&„P, , —

p, = h,p, + 6 sIs, +sn.,p, ,

&.k.+ &.0, —-s&,4, ,

(3 7)

where me have used the notation

&,P = [P(r+ 0,) —P(r —n, )]/2ss .
Equation (3.V) may be written in the more com-
pRCt fOx'm

/=a (3.8)

For Iong wa'tselengths Eq. (3.8) ls equivalent to
the conventional Dirac equation. However, it does
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not follow that the long wavelengths exhaust the

low-frequency spectrum of (3.8). In fact, we shall
see that by further subdividing the lattice into

eight sublattices, two complete and independent
Dirac fields can be found. We call the two result-
ing species of ferrnions u and d and will later
identify them with nonstrange quarks.

Let us further subdivide the lattice into those
sites (f 81'tes) fo1' wlllcll y ls eve11 aIld g sites fol
which y is odd. The fields are relabeled

They also satisfy the identities

D(y, x)D(y, x+ 1)= (-1)',
D(y+ 1,x+ 1)D(y, x) = {-1)""",
A(y)A(y+ 1)= (-1)'.

Now define

X(r) = (/)"'~(y)D(x, a)4(r)

(3.15)

(3.16)

P,.=f,. (y = even),

P,. = g,. (y = odd) .
Using (3.15) we find that (3.6) takes on the espe-
cially symmetric form

Next we write {3.7) in Fourter-trans«»med
variables

gf = (o.,sin/, + o„sin/„)f+ (o,sin/, )g,
ag= (n, sin/, + n„sin/„)g+ (n, sin/, )f .

/X(r) = [X(r+ 11,}+X(r 6,)]( 1}

+ [x(r+ f}„)+x(r —n„)](-I)'

+ [X(r+ n, )+ X(r —6,)](-1)". (3.1'l)

Now consider the combinations f + g =u and f -g
=d. Adding Eqs. (3.9) we find that u is a conven-
tional Dirac field for long wavelengths:

1/= (n, k, ) u. (3.10)

Qn the other hand, d is not quite a conventional
Dirac field since the y derivative term has the
wrong sign.

s,d= (a, k, + n.,k„—o.,/1, )d . (3.11)

This can be straightened out by reidentification of
the components of d. Define

d, = —d, = -(f, —g, ),
d, = -d, = (f, g,),--
d. =d, =(f3-g.}.

(3.12)

D(x y) = 2 [(-I)"+ (-I)'+ (-I)"'"'+I],
~(~)=[/"-"+( f}"- ~']/a~. (3.13)

Now d can be seen to satisfy a conventional Dirac
equation.

The long-wavelength fermions described by u and
d exhaust the finite-energy spectrum of Eq. (3.6)
when a-O. These fermions are massless and
free and therefore, in the continuum limit, the
spectrum has the isospin symmetry expected of
the nonstrange quarks. However, the shorter
wavelengths most certainly do not exhibit continu-
ous isospin symmetry. %'e shall discuss this fur-
ther in the next section.

Equation (3.6) can be written in a form in which
the symmetries are more readily seen. Define the
following functions on the lattice sites:

X(r) —(-I)"X(r+ f/. ) . (4.1)

Furthermore, applying cyclic permutations to
(4.1) gives two Ilew symmetries:

x(r) —(-1)'x(r+ f}„),

X(r) -(-I}'X(r+@.) . (4.2)

In order to identify these symmetries in the con-
ventional theory we reexpress them in terms of
u and d fields. Since Eq. (4.1) is equivalent to

Generally the symmetries of Eq. (3.17) a,re dis-
cr"ete versions of various continuous symmetries
in the conventional (continuum) theory. The phe-
nomenon of discrete lattice symmetries being
"promoted" to continuous symmetry in t e con-
tinuum limit has already been met in one dimen-
sion. In this case, the unit lattice shift was iden-
tified as a y, transformation. In the continuum
limit which describes free massless fermions this
is promoted to chiral symmetry. In the three-
dimensional case the symmetries of rotation,
isospin, and chirality will. be of this type.

The ma. nifest symmetries of Eq. (3.17) include
the following:

(1) Lattice translations by even integers. These
are interpreted as ordinary translations as they
do not mix the internal indices.

(2) Cyclic interchanges of x, y, z.
(3) Rotations about any axis by angle 11. The

remaining symmetries are more subtle.
Notice that Eq. (3.5) has the symmetry P(r)

-Q(r+f1,). In Eq. (3.17) this symmetry is some-
what hidden but it can be exposed using Eq. (3.16):

Qn the sites B and A are either 1 or -1 and there-
fore

@(r)—@ (r+ &,),
we find (with some help from Figs. 6 and 7

(4.3}
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(4 4)

or

(.;l
FIG. 8. A shift al.ong a large diagonal.

(4.9)

or the discrete singlet axial transformation. Fi-
nally the "small diagonal" shifts

x(r) —(-1)""x(r+ft, + n„) . (4.10)

and cyclic permutations are discrete isospin ro-
tations

or more compactly ~1,2, 3 & ' (4.11)

(4.5)

where q represents the isospinor (~) and r, is the
usual diagonal isospin matrix. Similarly Eqs.
(4.2) can be translated to

(4.6)

These transformations are discrete versions of
the axial isospin transformations, which together
with isospin constitute the group SU, x SU, (chiral).
Invariance under the discrete transformations is
sufficient to ensure that no mass counte~texms
develop when the fermions are allowed to interact
with a gauge field

An explicit mass term can be incorporated in the
form

It should be noted that the different isospin di-
rections in Eqs. (4.5), (4.6), and (4.11) are related
to different lattice directions. For example, the
three symmetries in (4.5} and (4.6) are shift sym-
metries in three different lattice directions [Eqs.
(4.1) and (4.2)]. In order to understand this we
must consider the symmetries of lattice rotation
by v/2.

Let us consider a rotation of z/2 about any axis.
Every lattice site r is taken to an image r'. In-
spection of Eq. (3.1V) shows that it is not invariant
under

(4.12)

In fact the transformed equation becomes

-iX' =[X'(r+ n, )+X'(r n,)](-1)"-
mQ (uu+ dd), + cyclic perm. (4.13)

which is equivalent to

m g X'(r)X(r)(-1)"'"*. (4.7}

However, by modifying the transformation law
(4.12) to

X'(r ') =D(x J)&(y, z)D(x, z)X(r), (4.14)

This term destroys all the invariances in Eqs.
(4.5) and (4.6).

Lattice shifts along the directions + A„a A„a 8,
can be compounded from (4.1) and (4.2). An ex-
ample is shown in Fig. 8, and the exact form of
the symmetry is given in Eq. (4.8):

we find that(3. 17) transforms into itself. Thus the
equations do have cubic symmetry. The only ques-
tion is whether this cubic symmetry is associated
with spatial rotations, isorotations, or something
else. To this end we must again determine how the
transformations work on u and d. Direct compu-
tation gives rotation about

x(r) —(-1)"""x(r+ n, + n, + n, ) . (4.8)

The directions +n„+n, +n, will be called the large
diagonals. The conventional form of (4.8) is

z axis: q'(r') = (exp [i,'v(r, + o,)]]q(r), -
x axis: q'(r') = (exp [i,'v(r, + o„)]]q(r-),

y axis: q'(r') = (exp [i-,' v(r, + o,)]]q(r) .
(4.15)



= g~ f f;+g,'g;)

= q} (r)qi (r)

= X'(r )x(r),

qq = 0'(r) 4 (r)(-1)"""

= X'(r)X(r}(-I}""'",

q o,q =i[(-I)'X (r)X(r+ A, ) -H. c.] .

(4.16)

(4.17)

(4.18)

The other components of q ~q are obtained by
cyclic permutation:

These transformations are discrete versions of
the continuous transformations generated by I+J,
where I = isospin and J = angular momentum. Thus
we have cubic symmetry under simultaneous ro-
tations of isospin and ordinary space. However,
separate isospin and spatial rotations are only
symmetries for 8= n. Now we can understand the
strange relation between spatial and isospin di-
rections in Eqs. (4.5), (4.6), and (4.11). In the
free-particle theory, it is obvious that the discrete
symmetries are promoted to the full continuous
symmetry of chiral U, x U, . We shall have to pro-
vide arguments that this is the case for an inter-
acting theory. For now we shall just mention that
the key to such arguments is asymptotic freedom.

We shall conclude this section by listing the cor-
respondence between various lattice bilinears and
the conventional Dirac bilinears:

volve products of operators at opposite ends of
large diagonals.

The off-diagonal isospin currents are exempli-
fied by qtv, .~,q:

q r, a„q = (-1)'[X (r}X(r+n, )+ H.c.] . (4.23)

These are operators which involve products at
opposite ends of a single link. This structural
difference between diagonal and off-diagonal coni-
ponents of q Q, 7q has its origin in the fact that
spatial and isospin rotations are not separate sym-
metries on the lattice. However, the consequences
of this asymmetry are restricted to length scales
comparable to the lattice spacing and are irrele-
vant to the long-distance behavior.

V. LATTICE GAUGE THEORY AND THE SPONTANEOUS
BREAKING OF CHIRAL SYMMETRY

In this section we will couple the fermion fields
g and d to a gauge field and derive the structure
of the ground state in the strong-coupling limit.
For simplicity we will use an Abelian gauge field
and ignore color. No diff e rences are encountered
in the more realistic non-Abelian SU, case.

We follow the methods outlined by Kogut and
Susskind (Ref. 1). The gauge field on each link
is represented by a quantity U{r, A}, which in the
Abeiian theory is just a phase factor exp(i8).
Conjugate variables E(r) n represent the electric
flux. E is conjugate to the periodic variable 9 and
has integer spectrum.

The Hamiltonian for the coupled system of fer-
mions and gauge fields is

q y,q= X r X ran, +A, +n, , (4.19)
E & UUUU

7f 77

q'y, r, q = i [(-1)"X'(r)X(r+ n, ) -H.c.],
q'n, r,q=+X'(r)X(r~A„*A, +A, )( 1)"'"

{4.21)

-QXt(r)X(F~ A„+ A, -A,)(-1)""".

(4.22}

q'z, r,q and q~o„7,q are obtained from (4.22) by
cyclic permutation. The important thing to note
is that these *'diagonal" components of q z7q in-

where the sum is over all eight large diagonals:

q'r, q = i [X'(r)X(r+ n„+ n, )

+ X'(r)X(r+ A„- A, ) -H. c.](-1)'". (4.20)

The other isospin components of g'vP are obtained
by cyclic permutation g —y —z, 1 —2- 3:

+ —] Q [X'(r)U(r, A, )X(F+A,)+H.c.](-l)'
& Unks

H»=
2

Q(XtUX+ H. c.)(-1)'1
(5.3)

+ cyclic permutation j, (5.1)

where the notations are those of Kogut and Suss-
kind (Ref. 1).

We wish to determine the ground state of (5.1}
for large g. In that limit the only important term
in H is the electrostatic term 8„=(g'/2a)Z(E n)
Thus for g» 1 the ground state 10) satisfies

E(r, n) ~0) = 0. (5.2)

Since the fermion field y does not enter JI„ the
ground state is very degenerate. Most of this de-
generacy is not associated with any symmetry of
the full Hamiltonian and is lifted in higher orders.
To see this we shall treat the kinetic term
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as a. perturbation.
I.et us call the subspace satisfying (5.2) I 0, 4')

to indicate that the electrostatic flux is zero but
that the fermion content is arbitrary and described
by C. Since the perturbation always excites a unit
of flux it is evident that

{0%IH» ~04') =0 (5.4)

for all 4 and O'. Therefore, we must go to second
order in H~ to remove the degeneracy. The sec-
ond-order energy shift is

our ground state obviously has a nonvanishing
value of

even when averaged over r.
Since the ehiral transformations are only dis-

crete in the lattice Hamiltonia, n no Goldstone bo-
sons (pions) accompany the breakdown. Presum-
ably as a-0 and the symmetries are promoted to
continuous symmetries Goldstone particles will
emerge.

— 04 H» —H» 0@" -=h(4),
1

0„ (5.5)

~ [q'(r), q(r)] [g'(r+ n}, g~(r+ n)]
2

links

(5.6)

That is, h(4} is a nearest-neighbor coupling of
the fermionic charges on adjacent sites.

Let us now consider the space of states 4 in
detail. At each site we may define a state i down)
satisfying

godown)=0. (5.7)

where h(4) is a matrix connecting states of the
fermion system. We may regard h(4') as an effec-
tive Hamiltonian for determining the fermion con-
tent of IO).

By explicit computation the form of h(%) is found
to be

Once interactions are included it is no longer
trivial to prove that the continuum limit of the
fermion field is correctly beha. ved. The purpose
of this section is to illustrate one pitfall and to
speculate on how it may be resolved. The chosen
example is more or less characteristic of the
difficulties.

Consider the quark field to be intexaeting with
an external potential V(r) The Ha. miltonian is

(6.1)

where B, is the free lattice Hamiltonian. %e shall
take V(r) to be a plane wave e""with Ifi~ v. If a
low-momentum quark with initial wave function
P(r) scatters off V(x) it undergoes the transition

A second state Iup) is defined by (the use of up
and down is not related to the use of u and d for
the two fermion species) or in k space

(6.2)

Xt ~down)= ~~u» . (5.6) y(h)- @(h+I) (6.3)

Evidently

X (up) =0

y, (up) = ~down).
(5.9)

Now the states lup) and idown) are eigenvectors
of p= [Xt, X]/2 with eigenvalues +-, . Obviously the
way to minimize h(4') is to make every link termi-
nate on a configuration lup) and I down) giving the
minimum value to p(r)p(r+8). This is accom-
plished by dividing the lattice into two sublattices
for which x+ y+ z is odd or even. On the even
sublattice we choose I down) and on the odd sub-
lattice i up) (or vice versa). The ground state is
still degenerate since the odd and even sublattices
can be interchanged. However, this degeneracy is
not lifted in higher order since it is associated
with symmetries of the Hamiltonian (unit shift or
chiral invariance). Thus we have exhibited spon-
taneous breakdown of the discrete unit shift in-
variances (4.1) and (4.2) or, better still, the chiral
transformations (4.5), (4.6), and (4.8}. In fact,

( I )5+1

a (~) = 0;(r)

or

f, (h)= —,
'

[g, (h) g, (h++», )],
g, (h) = -,' [q, (h) —q, (h+», )], (6.5)

If I is small then this is merely a shift of the mo-
mentum of the quark. Suppose instead that / is
large. For example, suppose that 3„=l,=O, l, = n'

(I -=»,). Then the transition may be described in
one of two ways. We may simply say the quark's
final momentum is large (-»). However, we may
also say that the final momentum of the quark is
small but that the internal degrees of freedom
have flipped.

To see how this second description works let us
consider the relationship between @ and (u, d) in
0 space. Evidently

f;(r) = 0;(~)
1+ (-1)'
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u, (1z+ rr, ) = d (k),

d, (k+ rr, ) =u;(k).
(6.6)

Thus when a low-energy u quark is scattered by a
field with wave number -m, it becomes a low-mo-
mentum d quark. The precise transition for ab-
sorption of momentum m„ is proportional to

(6.7)

For problems in an external field we need not

worry about this effect. For a smooth external
potential all the wave numbers k tend to zero with

a. Thus in the conventional continuum limit of an
external field the processes described in (6.7) do

not occur.
In an interacting quantum field theory the situa-

tion is less clear. Quanta may be exchanged be-
tween quarks. These quanta may have 0- m, . In
this ca,se we describe the event as a transition be-
tween low-momentum quarks with effective vertex
proportional to

where rr, = (f), rr, f))

equations (6.5) may be rewritten in terms of u and

and d:

u;(fr) f;(fr)+g;(k) = 4r(&) ~

d, =f;(fr) -g;(&)= 4(&+ rr, ) ~

In other words, the effects of high-momentum ex-
changes induce an effective quartic nonrenormaliz-
able coupling with coupling constant given by g'a
in conventional units.

There are two ways to deal with these unwanted
effects. The first is simply to counter them by
compensating terms in the original Hamiltonian.
Thus we would add the negative of (6.9) into H.
This is simple and direct, but it means that the
counterterms must be carefully evaluated. The
second way is more subtle and consists of ignor-
ing the problem altogether. However, this only
works in a asymptotically free theories. The
point here is that in these theories the continuum
limit is achieved by allowing the bare coupling g
to tend to zero. Therefore, the strength of the
induced nonrenormalizable vertex also goes to
zero. This by itself does not mean that the non-
renormalization term becomes irrelevant. Af ter
all, the Yang-Mills coupling g tends to zero but
is certainly not irrelevant to the long wavelengths.
This is because the Yang-Mills coupling excites
an "infrared instability" of the free field. On the
other hand, nonrenormalizable couplings are very
infrared stable and if they are made infinitesimal-
ly small their effect at long wavelength will typical-
ly be even smaller.

Obviously we can not pretend that this discussion
is complete. It is clear that a careful study of the
renormalization of lattice field theories is re-
quired. This is presently under investigation by
S. Elitzur.

Quanta with k™m,and k-7t, may also be ex-
changed. The total effect is of the form

—[(qo.&,q)'+ (qo,r,q)'+ (q&.&.q)') . (6.9)
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