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We present a new class of pseudoparticles in four-dimensional Euclidean non-Abelian gauge theories with

Higgs fields. These pseudoparticles, in the classical limit, have nonzero Lagrangian density at only one single

point. We discuss the topological and analytic construction of these pseudoparticles and the related fractional-

topological-charge configurations. The action of a unit-topological-charge pseudoparticle is the usual 8m'/g '.
These pseudoparticles are not field configurations, but are limiting cases of field configurations. Owing to
quantum fluctuations, their size is proportional to Pfi if A is small.

I. INTRODUCTION

In this paper we present a new class of classical
Euclidean pseudoparticles in some gauge theories
in four space-time dimensions. The theories we
consider include Higgs fields:

(1)

Our objects are determined by nontrivial topolog-
ical rnappings of the direction in space-time into
the direction of the scalar field in internal-sym-
metry space. (Given pa0, the gauge field is de-
termined by D„y- 0 as R- ~.) Such nontrivial
mappings are readily apparent if the symmetry
group is SO(4), as discussed in Ref. 1, and indeed
the configurations described in Ref. 1 are exam-
ples of our objects although SO(4) is not our exam-
ple in the present paper.

Since SO(4) = SU(2) && SU(2), we expressed the
SO(4) solution of Ref. 1 in terms of the SU(2) 's,
and found the second SU(2) to be irrelevant. Thus
our example will be to take the internal-symmetry
group to be SU(2).

Let us suppose for the moment that the scalar
field with nonzero vacuum expectation value is an
isovector. Its value at large distances is a point
on a sphere in three-dimensional space, S'. The
directions in space-time are given by points on a
sphere in four-dimensional space, S'. Thus the
topology is specified by mappings of S' into S' and

II,(S') =Z. [It is difficult to picture these mappings
because the one lower-dimensional analog, non-
trivial mappings of S' into the circle, do not exist,
II,(S') = 0.] The unit- topological- charge mapping
and from it the solution can be obtained from pro-
jective geometry. In addition, the singular half-
topological- charge configuration' can be similarly
obtained. The idea is that four-dimensional space-
time is considered as a two-complex-dimensional
space, which is projected onto the complex pro-
jective line, which can then be considered as the
real projective plane and projected back to the

sphere.
For other topological charges, and for other

representations for the scalar field, we describe
the solutions instead by a matrix technique. With
this technique we are also able to construct addi-
tional configura. tions with more than two centers,
each of fractional topological charge, and with
possibly unequal divisions of the charge between
the centers.

A scaling argument' suggests that the objects we
are describing do not exist, and in a strict sense
they do not exist as solutions of the classical equa-
tions of motion. However, for practical purposes
they exist. What we actually find is a, set of con-
figurations whose action is slightly higher than,
but arbitrarily close to, the greatest lower bound
on the action for the given topology. Our classical
object is pointlike, with vacuum at all other points,
and a particular "structure" at that point. The
true size of these objects is given by quantum ef-
fects and is simple to estimate.

II. PROJECTIVE MAPPING

In this section we assume that the Higgs field p
is an isovector under the SU(2) gauge group, and
that it ha, s vacuum expectation value p, ~ 0. The
topological properties of the solution are specified
by a mapping, R- y, , of directions in four-space
to p, , where p,.p,. = p, '. This mapping specifies
the Higgs field at large distances from the pseudo-
par tie le.

Topologically nontrivial mappings can be obtained
from projective geometry. We consider four-space
R' as a two-dimensional complex space C'. We
project this space into the complex projective line,
which in turn can be regarded as a real projective
plane. As is well known, the projective plane is
topologically identical to a sphere, which can be
obtained by a stereographic projection.

We start with a gnomonic projection, shown in
Fig. 1. Topologically, we would obtain the same
configuration projecting from any point inside the
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FIG. 1. Projective construction of the pseudoparticle
mapping $'3-S . The top half of the figure is four-di-
mensional space, R4, considered as two-dimensional
complex space C . Below the projective~plane is three-
dimensional space R . q7 is found by similar triangles;

A. +iB is scaled down by R and up by 2+0.

i(x+iy) V, +~a,
t+iz y, + p, ' (2)

where an appropriate scale change is made on the

proj ective plane.
Solving for pg p p2 p +3

sphere R = const. Anticipating a simplicity that
will result in the matrix approach, we choose our
complex coordinates to be z, =t+iz, z, =i(x+iy).
From two pairs of similar triangles in Fig. 1, we

see that the mapping is given by

FIQ. 2. Projective construction of the half-charge
analog of the pseudoparticle, similar to Fig. 1, but
using a complex stereographic projection. A+iB is
scaled down by 2R and up by 2+p.

cp~ 2 xz —pt R

&2 2(yz+xt)/R' S)„

cPs 2 z'+ t' R —1

which is the unit-topological-charge mapping of
S' onto S'.

We can obtain other topologically equivalent map-
pings by cyclic permutations of x, y, z and simul-
taneous permutations of p„p„p,. We arrange
the coefficients of p, into a matrix, where the
columns a,re arranged by whether (x, P, ), (y, P,),
or (z, C/, ) occur in the denominator of E(l. (2). This
matrix

M =
1

r2(x'+ f')/R' —1

2(xy —zt)/R'

2(xz +yf)/R'

2(*2 +zt)/R' 2( —zt)/R

2(y'+ fz)/R' 12(yz+xt)/R'—
2(yz — t)/xR' 2(z'+ f')/R' —1

(4)

is the starting point for the development in the next
section. (The subscript 1 refers to the isospin of
the Higgs field. ) 'The infinity at R =0 represents
the absence of the vacuum at the position of the
pseudopar tie le.

If we were to project C' through a point outside
the hypersphere, we would obtain a topologieally
trivial mapping. Projection through a point on the
sphere is intermediate between a pseudoparticle

and nothing. In Fig. 2, we show a stereographic
projection. Similar triangles give us

i(x+iy)
R+ t+iz

(5)
0'1+ 92
~0+ &S

Solving for p and making the cyclic permutations
we find a matrix
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X2+ Rt + t2

R(R+ t)

xy z(—R+ t)
R(R+ t)

xy+z(R+t)
R(R+ t}

y2+ Rt +t2

R(R+ t)

xz —y(r+t)
R(R+ t)

yz+x(R+t)
R(R+ t)

pressed in terms of the half angle:

cos28 = t /R,

sin —,8 =r/R .
(12)

xz +y (R + t) yz —x(R + t)
R(R+t) R(R+t)

z'+Rt+ t'
R(R+t)

Now that we have this result, we can find pseudo-
particles for any representation for the Higgs
field. We use

(6)
This matrix is infinite, and therefore cannot rep-
resent the vacuum either at R =0 or along the half-
line t = —R. It represents a half-topological-charge
object, thus the superscript &.

For isospin &, the projection is not needed, as
the representation is just two complex numbers.
Configurations for y/y„can be chosen as a column
of the matrix

M = exp(i 8t' T), (13)

where T is the vector of generators in the desired
representation, and 8 is given by Eq. (12). The
right side of Eq. (13) can be simplified by using
the equation similar to Eq. (10) for the given rep-
resentation.

Fqr isospin —,
' the condition is

] tzl 2

1/2
82 Z~*

So

T2—
4 '

M] /2 cos p0 + ix T sin g8

(14)

In the next section we will relate the matrices
My ~] &&y / 2 and discu ss the contruction of
all M~, where T is the Higgs isospin and q is the
topological charge.

III. MATRIX APPROACH

Regions of space occupied by the vacuum in a
gauge theory can be described as follows. At each
point in such regions there is a unitary matrix ill

in the representation of the gauge group to which
the Higgs field belongs. The Higgs field is given
by

= (t+ir i)/R,

which is identical to Eq. (7).
A gauge transformation is performed by multi-

plying the matrix 31 by another unitary matrix,
either on the right or on the left. Thus a config-
uration of multiple topological charge can be ob-
tained by multiplying together the matrices for the
individual single- charge pseudoparticles. The
ma, trix

(16)

q=Mep (8)

where e is any fixed unit vector. The field A'„is
given by

gA'„T'=(8 M)M ' (9)

where the T"s are the gauge group generators in
the same representation as M. The matrices de-
fined in the preceding section are examples of
such matrices.

The isovector generators of SU(2) have the prop-
erty

(T')' = T' (10)

since the eigenvalues of T' a,re 0, +1. Therefore
any unitary matrix in the isovector representation
is

exp(i88 T) =1+i sin88 T+(1—cos8)(8 T)'.

Examination of Eq. (4) shows M, to be of this form,
with 8=r, r=(x, y, z), and cos8=(t' r')/R', —
sin8=2tr/R'. This result is more simply ex-

represents two pseudoparticles, one at R = 0 and
one at 8 = R =—(r„t,).

In particular, a topological- charge-q configura-
tion concentrated at R =0 can be obtained by

M' = exp(iq 8r ' T),

and again T can be in any representation. If q is
a nonzero integer, this expression is singular at
R =0, since 6 is. Negative q's give antipseudo-
par ticles.

If q is not an integer, additional configurations
are constructed. Since these do not have integer
topological charge, they cannot be singularity-
free on a sphere surrounding R =0. The unit vec-
tor r" appearing in Eq. (17) is singular at r =0.
This singula. rity must occur in M', at least along
one of the two half lines t =+R. In fact, it occurs
at t= —R.

As an example, we can choose q = &, T = 1. Anal-
ogous to Eq. (11), we have



F. S. HF, 5YEY AID ADRIAN PATRASCIOIU

M '"=1+i sin-'ei T+(1—costa)(I""T)'

. r'T 1 —f/R
R R —f'

ir'T (r T)o=1+—+
R P. (.R + f )

*

This is the same as the matrix, EIl. (5), con-
structed by the projection method.

ConsKler a number of nonlntegel-charge

configu-

rationss placed on the line x=0, such that the sum
of their q's is an integer. The product of their
matrices is constructed, from which y and A„are
constructed. This matrix and these fields are sin-
gular on the line segment joining these„but are
regular elsewhere. Such combinations generalize
the objects described by Callan et a/. ' in that the
restriction q = —,

' is unnecessary. %'e conjecture
that the properties of such configurations are very
similar to those of the pairs of objects described
in Ref. 2.

The restriction to these combinations occurring
with the singularity line pointing in the t direction
is obviously artificial. Singularity lines made of
straight-line segments in any direction and pos-
sibly joining together (with zero q at the vertex,
if desired) are easily written down by multiplying
the appropriate matrices. Curved connections are
constructed in principle by limits of such straight-
line connections.

The problem of smearing out the singularities of
these configurations in order to obtain minimal
action is formidable.

IV. MINIMIZING THE ACTION

As we'll become clear shortly, one does not mxnx-

mize the action by attempting to solve the dynam-
ical equations. We begin by considering a scaling

A(R) ——X(R») .
A.

Under this scaling, the three terms in the action
behave as

—,
' (5„„)'d'R—con st,
~

(D +)2d4R yo

V(y)d'R-& .

Therefore, as the scale ~ is reduced, the action
is made smaller. The classical solution thus con-
sists of the fiel, ds concentrated at a point, with
vacuum everywhere else. The scale invariance of

the pure gauge pseudoparticle is removed by the
existence of the Higgs field with nonzero vacuum
expectation value (so the coefficients of &' and X'

are nonzero). Moreover, the minimum action is
just the usual pure gauge action obtained from
G„,=6„, For single topological charge, our gauge
is the usual one, 8„A'„=0, and the solution was
shown by Belavin et al. to be

+ 0

In our case, the limit R0- 0 is to be understood.
Tile fll'st. iel'lll ill tile actloIl ls tllell glI /g . (111

order to make the X' term finite, the factor in
front must be modified to go to zero faster than
1/R' for R»Ro. )

The interpretation of our object requires some
discussion, as the limiting process is not normally
a part of finding a classical solution. If the ques-
tion asked is: %hat is the solution of the classical
field equations with unit topological charge 7 or
even the weaker question: %'hat is the minimal
action for unit topological charge'P then the pre-
cise answer is that a solution or a, minimum does
not exist. Yet these questions, understood in the
precise sense, are not the physically interesting
question. This particular question would be: %hat
is the nature of the paths which are important in
the path integra. l. In this sense our object is rele-
vant.

The weighting factor in the path integral is the
exponential of the action divided by 5. The im-
portant configurations are those for which the
action is within about @ of the greatest lower bound.
Our solution is the greatest lower bound, since
the gauge action is minimal and the remainder
tends to zero as R0 approaches zero.

The actual expected size of our configuration is.
thus given by the quantum fluctuations. For ex-
ample, consider the case with the Higgs field cp0

being an isospinor. With X, as given by Eq. (21),
the term ,f ~D, p—~ d R in the action is minimized
by

A
&=(Ro+R 2)xy2~e&o

[compare this with EIl. (8)]. The action is then

The size (R,) is determined by 55=)I, from which

(R,) =-
0

The fact that our solution has this unusual nature
has one important consequence: It is not possible
to estimate the path integral by means of a Gaus-
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sian integral in the perturbed path. A possible
approximation to attempt is a Gaussian integral
expanding from the configuration whose size is
given by Eq. (24).
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