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A supersymmetric form of the two-dimensional nonlinear 0 model is described; the primary purpose is to
exp1ore further the analogy between the cr model and four-dimensional Yang-Mills theory. In the case of
three components, the theory contains an enlarged supersymmetry algebra and is equivalent to the ordinary
0 model with an additional logarithmic interaction between pseudoparticles.

INTRODUCTION

The purpose of this paper is to describe a natur-
al extension of the two-dimensional nonlinear o
model to include a supersymmetrie coupling to
fermions ~ The primary reason for studying the
tmo-dimensional 0 model is that it has many sim-
ilarities with four-dimensional gauge theories.
One motivation for incorporating supersymmetry
is a suspicion that the supersymmetric form of the
theory may be easier to understand. Another mo-
tivation is that the behavior of the 0 model mith
ferrnions may shed some light on the interaction
of fermions with four-dimensional gauge fields.

but also under the additional transformations

x"—x" +t ey" 6

6)- 6)+r,

where e is a constant Majorana spinor. These
transformations are usually called supersymmetry
transf ormations. Just as the ordinar y translations
are generated by the derivative operator, 8/sx",
the supersymmetry transformations Rre generated
by the operator

CONSTRUCTION OF THE MODEL

I mill try to describe the eonstruetion of R super-
symmetric 0 model in a self-contained way.

In the superspace approach' to supersymmetry,
we consider a spacetime described by the usual
coordinates x" but also by additional anticommuting
coordinates e . Here we will consider a tmo-di-
mensional spacetime and take 6 to be a single two-
component Majorana spinor. [By a Majorana spin-
or I mean R. two-component real spinor. The y ma-
trices I take to be y'=(', ,'), y' =(', ,'), y'=y'y', and,
the adjoint of a spinor is, Rs usual, g=iI) y'. Note
that, with these choices, $ is pure imaginary while

g is real. ]
For purposes of orientation, consider, a scalar

field P defined on the space with coordinates x", H.

If we expand this field in a power series in 6), we
find that terms cubic or higher in 8 vanish be-
cRuse 8 ls RQ Rntlcommuting splQor with OQly two
components. So the most general form is

P(x", 8 ) =A(x")+8&(x")+', 88F(x") . -
A fieM P defined on the space (x", 6„) is thus
equivalent to three ordinary fields A, (Ij, and E that
are functions of x" only.

Now me mish to construct theories that are in-
variant not only under the ordinary translation

X X +Cl

To construct supersymmetric Lagrangians, we
make use of the additional operator

The basic property of I' is that it anticommutes
mith Q

{P„,q,}=O .
The second-order operator e &P„P& (where e z
is the antisymmetric tensor) therefore commutes
with Q,

%~ &.BP Pal =o

so it is supersyrnmetric as well as Lorentz invari-
ant,

%'e may now consider as a Lagrangian density
the quantity —,'Pe BP PzQ. Because of (2), under
a supersymmetry transformation with 5P =Q~Q,
the variation of this Lagrangian density is simply
Q„(,'Pe &P„P&P) -This is a tota. l derivative, and
so vanishes when integrated over all the coordi-
nates (8 as well as x"). Therefore, the action
integral

Jt d'xd8, d8, ,'Qe sP~PSP—
is supersymmetric and Lorentz invariant.

The meaning of (3) is more transparent if one
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carries out the integration over 8, and 8, . Accord-
ing to the standard rules for fermion integration, '
the value of the integral is just the coefficient of
the quadratic term in the expansion of the integrand
in powers of 8. This is

Lagrangian nor in the constraints (6), it is possi-
ble to eliminate E and to consider the equivalent
theory defined by the action

g) + j g+ g g )2

z' d'x[(s „A)'+giy'qI+F'] .

Thus, we have constructed the supersymmetric
form of a free field theory. We have a massless
free scalar A. , a massless free spinor p, and an

auxiliary field E which in this case decouples —its
equation of motion is simply E=-0. The construc-
tion of the supersymmetric 0 model is exactly
analogous.

The usual nonlinear 0 model involves a d-com-
ponent real scalar field n' constrained to satisfy
n'n'=1. To construct a supersymmetric version
of the 0 model we simply consider a d-component
real field P' defined on the superspace (x", 6 ).
This field will have an expansion

y' = n'+ 8y'+-,'88F',
where n' and F' are real, scalar, isovector fields,
and g~ is a Majorana spinor and isovector.

%'e now impose the constraint (II)'=1, which, when
expanded in powers of 8, yields three constraints:

As before, we consider the Lagrangian density (1/
2g )P'e &P„P&Q'. After integration over the anti-
commuting coordinates, we find that the corre-
sponding action is

~( d'x[ —,'(& „n')(& „n') + ,' Pi y'q'+——,'(F ')'] . (7)
g

Exactly as for the ordinary nonlinear 0 model, the
action is that of a free field theory —but subject to
constraints (6) that induce interactions.

I will make some general comments about this
theory before moving on in the next section to dis-
cuss some special properties of the three-compo-
nent model.

The supersymmetry transformation laws are

5n' = E$',
5y' = —f (y "e)s„n'+F'e,
5F'=efPg', '

where e is a constant spinor. 4 These are found
most easily by expanding the relation 5Q = ega in

powers of 8. The conserved supersymmetry cur-
rent is 8& = (& „n')y"y~g'

Because derivatives of E appear neither in the

and the constraints

n'=1

n. )=0
This theory is renormalizable consistently with

supersymmetry, because it is possible to regular-
ize the theory by adding higher derivative terms to
the Lagrangian in a way that preserves supersym-
metry. For example, one may add to the Lagran-
gian a term (e„BP P8&)' as a regulator.

This theory is asymptotically free; in fact, one
can show that its one-loop P function coincides with
that which has been calculated for the nonlinear o
model without supersymmetr y. '

In the case of the nonlinear e model, it is known
from the very interesting exact solution for the S
matrix by Zamolodchikov that the physical parti-
cles have a nonzero mass. ' (This had been sus-
pected from the high-temperature expansion, the
asymptotic freedom, and the 1/N expansion. ) The
nonlinear 0 model possesses no symmetry that
would forbid the appearance of physical masses
(even though it is not possible to add an explicit
mass term to the Lagrangian, and it may not seem
intuitively obvious that physical masses should
appear). The supersymmetric model, however,
contains a discrete chiral symmetry g-y, g which
will forbid the appearance of masses unless it is
spontaneously broken. Alvarez' has studied the
1/'N expansion of this theory, and finds chiral-
symmetry breaking and the appearance of masses.

The most interesting fact is that it is probably
possible, using the method of Zamolodchikov, ' to
solve for the exact S matrix of this theory. An
attempt to do this is under way.

THE THREE-COMPONENT THEORY

The nonlinear 0 model is particularly interesting
in the case of three components, because it is this
case that has the most striking similarities with
four-dimensional gauge theories. Here I would like
to point out some special properties that the super-
symmetric model has when the number of compo-
nents equals three.

The first observation is that for three compo-
nents, the theor y has an enlar ged supersymmetry
algebra. In addition to the supersymmetry current
S„=~„n'y'y„g', there is a second conserved super-
symmetry current 3„=e"'n'~, n'y" y„g'. In addi-
tion, there is a conserved vector current V&
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=e "'n 'iPy„i(„and axial-vector currentA„=e„, V",
which do not have analogs for more than three
components.

Designating as Q, Q„, and K the charges corre-
sponding toS„, S„, and V„, these generate the
algebra

[q., q s)=[q. , q,) =P„r.", ,

[q. , q,)=o,
[A., q. ]=q„,
[z,q„]=-q. .

(10)

One can recognize this as the algebra of complex
supersymmetry transformations or supersymmetry
transformations with internal symmetry O(2).

One may wonder whether this enlarged symmetry
algebra is present in the quantum theory. In fact,
I do not know how to regularize the theory in a way
that preserves this algebra. Nevertheless, the
algebra is present in the renormalized quantum
theory, as we can see as follows. First of all, the
current V„ is conserved in the renormalized theory
because there is simply no operator with dimension
two and with the correct quantum numbers to be a
candidate as the anomalous divergence of V . [The
situation is analogous to that of the SU(4) nonsing-
let chiral currents in four-dimensional gauge the-
ories. Any regularization breaks the conservation
of these currents; nevertheless, the conservation
is restored in the continuum limit because there is
no operator with the correct dimension and the
correct quantum numbers to be the anomalous di-
vergence. ] Therefore the charge K is conserved,
along with the charges Q whose conservation is
preserved by regularization. It now follows from
Q =[K,Q ] that Q is also conserved, so the entire
algebra (10) is present.

The phenomenology of this theory will have to be
somewhat unusual. In the ordinary c model, the
simplest possibility consistent with the symmetry
is that there might be a multiplet of d bosons with
the quantum numbers of n'. In the supersymmetric
model for d& 3 there could be just d bosons and d
fermions with the quantum numbers of n' and g'.
But for d =3 there must be a,t least two d bosons
and two d fermions, with the quantum numbers of
the operators n', q', (nxg)', and the isospin cur-
rent (n&~„n)'+i (g&y„g)', to form a multiplet under
the symmetry. Incidentally, if a multiplet of such
particle exists, it will probably be possible to in-
terpret any one as a bound state of two others.

Although there is no anomaly in the algebra (10),
there is one for the axial-vector current A&
=e„,V'. It is easy to see that the only operator
with the correct dimension and quantum numbers
to be the anomalous divergence of A„ is the pseu-

doparticle density e"'n'e„, 8„n'B,n'. We will soon
see that such an anomaly exists.

Actually, it turns out that the only role of the
fermions for d =3 is to provide a logarithmic in-
teraction between pseudoparticles. To see this,
we can integrate explicitly over the fermions while
keeping the field n' fixed. We introduce a fixed
isovector n, =(0, 0, 1) and write n(x) as U(x)n„
where U is a spacetime-dependent rotation matrix
(which always exists and is not uniquely determined).
We also write f as U(x)g, where )(=(X', g', 0)
and g' and g' are two Majorana spinors; note that
np g 0 because n ~ g = 0. Now if we introduce the
Dirac spinor A= (li'+i g') j&2 and let A„
=e'~ n,'(U 'S „U)" then the fermionic part of the
action becomes just

, [Xiy"(s„+iA„)z+-,'(D)'] .

This is the massless Thirring model coupled to an
electromagnetic field. According to the standard
boson representation of fermions, ' it is equivalent
to the Lagrangian

v ' 1
—.(~4') +; .)i(~ 4&~'p&.

(7l' +g

where Q is a real scalar field. Also, with the
above definition of A„, one finds that e„,~ A, ispp p
equal to the pseudoparticle density e'"n'e„P„n'e, n'.
Thus, the supersymmetric 0 model for d=2 is
equivalent to the theory

1L= ~ (s„n')'+-,'(vp)'

(12)

If desired, one can integrate explicitly over p,
giving (in Euclidean space) a logarithmic inter-
action between pseudoparticles. In a fashion sim-
ilar to the discussion by Polyakov, ' one can see
that mass generation for the field Q will depend on
the behavior of the pseudoparticle system. Be-
cause of the supersymmetry, mass generation for
P is equivalent to mass generation for all the fields
in the theory.

In terms of (IF), the axial-vector current A„ is
simply & „P, and one sees from (12) that the diver-
gence of &„P is not zero but is proportional to the
pseudoparticle density. This is the axial-vector
anomaly.

In terms of the superspace formalism by which
we constructed the supersymmetric 0 model, the
existence for d = 2 of the enlarged algebra (10) is
not manifest —the existence of the charges Q is
manifest, but Q„and K appear as if by accident.
It is interesting to write the theory in such a way
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that the full symmetry algebra is manifest. From
the point of view of superspace, this can be
achieved by considering a superspace mith bosonic
coordinates x" and with tuo Majorana spinors 6)',
i =1, 2 as anticommuting coordinates. In this space
the supersymmetry generators corresponding to
Q and Q are

D = ~, +i(y" 8 )„

and the internal-s ymmetr y ge nerator, correspond-
ing to K, is R =e,, 8"s/e VJ . The differential oper-
ators

anticommute with D.
We now again consider a three-component field

P' with P'=1. However, because we have enlarged
the superspace, the most general such field will
contain many more degrees of freedom than we
wish (and it will probably be hard to construct a
physically sensible theory involving this field}.
Therefore, we wish to impose a super symmetric
constraint that will remove the extra degrees of
freedom. The necessary constraint turns out to be

(13)

this it is necessary to check the following: If (13)
and (14) are satisfied, then the expansion of P in
powers of 6)' involves only a single scalar n' and
spinor g„', and (13) and (14) imply that these fields
satisfy the equations of motion that one would de-
rive from the Lagrangian (9).

Equations (13) and (14) are rather striking, even
though it is not clear that they will be useful.
Equation (13) is a fermionic form of the pseudo-
particle equation that was introduced by Belavin
and Polyakov, ' while (14) is just a linear equation.
Equation (13) can be solved the way Belavin and
Polyakov solved the bosonic form of this equation
(or it can be solved by expanding in powers of 6),
and (14), since it is linear, can of course be
solved, but it is difficult to solve the two equations
simultaneously.

The above results are mostly formal and do not
clarify very much the nature of the theory. How-
ever, they do suggest that the solution of the
supersymmetric 0 model may be in some way sin-
gular or qualitatively different at d =3. It will be
interesting to see if this is so,

Note added. The supersymmetric model has also
been constructed, in an interesting paper, by P.
Di Vecchia and S. Ferrara. I would like to thank
R. Jackiw for pointing this out to me.

and the equation of motion turns out to be

'nspnp8 0 = 2&"eaBPN p'84' . (14)

Equations (13) and (14) together are equivalent to
the supersymmetric v model, and in this form the
full supersymmetry algebra is manifest. To verify

ACKNOWLEDGMENT

I would like to thank Orlando Alvarez for helpful
discussions. Research supported in part by the
National Science Foundation under Grant No.
PHv V5-20427.

'A. M. Polyakov, Phys. Lett. 59B, 79 (1975);A. A. Bel-
avin and A. M. Polyakov, Zh. Eksp. Teor. Fiz. Pis'ma
Bed. 22, 503 (1975) PETP Lett. 22, 245 (1975)].

~A. Salam and S. Strathdee, Nucl. Phys. B76, 477 (1974);
S. Ferra. ra, J.%ess, and B. Zumino, Phys. Lett. 51B,
239 (1974).

~F. A. Berezin, Tlute Method of Second Quantization
(Academic, New York, 1966).

4Actually, because of the conformal symmetry, this
transformation is a symmetry of the classical theory

if ~ is any solution of the free, massless Dirac equa-
tion. However, the conservation laws for nonconstant
~ will be ruined in the quantum theory by the conformal
anomaly, and we will not discuss them further.

~A. M. Polyakov, Ref. 1.
6A. B. Zamolodchikov, ITEP report in preparation.
~O. Alvarez, Harvard report (unpublished).
~S. Coleman, Phys. Hev. D ll, 2088 (1975).
~A. M. Polyakov, Nucl. Phys. B120, 429 (1977).


