
PH YSICAL REVIE% 0 VOLUME 16, N UMBER 10 15 NOVEMBER 1977

pseudoyarticle parameter for arbitrary gauge groupse

Claude %. Bernard, Norman H. Christ, Alan H. Guth, and Erick J. steinberg
Department of Physics, Columbia University, ¹wYork, New York 10027

(Received 6 July 1977)

The number of parameters entering a Euclidean Yang-Mills solution with topological charge k is
determined for a theory constructed from an arbitrary Lie group G. It is shown that 'his number is precisely
that required to specify the position, ~e, and relative group orientation of k independent solutions each
with minimum topological charge 1. Such minimal single-pseudoparticle solutions can be obtained by
embedding the familiar SU& pseudoparticle of Belavin et al. into the general Lie group.

I. INTRODUCTION

A considerable amount of information is now
known about self-dual solutions'"~ to the Euclidean,
Yang-Mills field equations. Qf particular interest
is the recent application of the Atiyah-Singer in-
dex theorem which determines the number of pa-
rameters entering the general solution with given
topological charge k.'"' For SU, the number of
parameters, Bk —3, can be readily interpreted as
resulting from the combination of k "elementary"
SU, pseudoparticle solutions with topological
charge 1—each with a particular size, space-time
location, and SU, orientation.

In this paper we ask whether a similar interpre-
tation is possible for self-dual solutions in a Yang-
Mills theory with arbitra. ry gauge group G. This
question is answered in three steps: First, it is
observed that a solution with minimum topological
charge (normalized to k = 1) can be obtained by a
particular embedding of the SU, solution of Bela-
vin, Polyakov, Schwartz, and Tyupkin' into the
general gauge group G. Second, for a solution
with arbitrary k, we apply the Atiyah-Singer' in-
dex theorem to determine the number of param-
etexs on which such a solution depends. Finally,
we show that this number can be interpreted as
that required to describe the scale, position, and
group orientation of k examples of the SU, em-
bedding found in the first step. Thus it may well
be possible to view an arbitrary self-dual Yang-
Mills solution, even for a general Lie group, as
an appropriate combination of familiar SU, pseudo-
particles.

%e begin by considering a Yang-Mills theory
with simple gauge group G (Ref. 9) of dimension
d(G) and with action

8= ~ (E'„„)'d~x,

Repeated group indices are summed from 1 to d(G),

and the structure constants f,» are chosen com-
pletely antisymmetric —for SU„ f,»= e,». The
topological charge k is defined as

&' I"' dg

where the dual of E„„is
1

Eve= &~pvpe~pc

For the case of SU„a self-dual solution with
topological charge k depending on 5k parameters
has been given by 't Hooft'0:

y 2

A', (~) = q„'„s„ln 1+ Q,
/=1

The singularities of this solution at the points x„
. . . ,x„are not physical and can be removed by a
gauge transformation. Since all non-Abelian
groups contain SU, as a subgroup, these SU, solu-
tions can be used to generate self-dual solutions
with various topological charges for a Yang-Mills
theory with an arbitrary group. More can be
learned about the space of self-dual solutions by
considering small fluctuations A„'+ 6A„' about a
particular solution A„' and asking that the resulting
field strength continue to be self-dual. If expanded
to first order in &A„, this requirement ean be
written

6F „=61

The gauge-eoval'lant derlvatlve D depends on the
initial solution A„and is defined by

In addition, one must require that the modified so-
lution A„'+ &A~ represents a new solution and not
simply a gauge transformation

Mt = 5a'f,.„A'. s, 5A'= (D, 5A)* -(1.9)

of the original A„. This can be done by requiring



that &4„' be orthogonal to all functions of the form
(1.9), i.e. ,

(1.10)

for all functions 6AI(x). If integration by parts in

Eq. (1.10) is allowed, this orthogonality require-
ment is equivalent to the usual background field
gauge condition

For the ease of SU„ the analysis of small fluc-
tuations about the solution (1.5) has been ap-
proached in three different ways. First, Jaekiw
and Rebbi' have found 8k —3 solutions to Eq. (1.6)
which are not gauge transformations of A„'. Sec-
ond, Schwartz' and Atiyah, Hitchin and Singer'
transform the SU, Ya,ng-Mills theory to the four-
dimensional sphere 8', apply the Atiyah-Singer
index theory to the simultaneous linear differen-
tlRI equat10ns (1.6) Rlld (l.11) Rlld sllow 'tllRt tl181'8

Rx'6 px'ecisely Bk —3 parameters appearing iQ the
general solution. Third, Brown, Carlitz, and
Lee colllblne eqllRtlons (l.6) RIll (1.11)~

wl'Itlllg

them as a single spinor equation. They then em-
ploy a variant of a method suggested by Coleman"
to show directly that in Euclidean space, E, Eqs.
(1.6) and (1.11) possess exactly Bk simultaneous
solutions. This result does agree with the 8 ap-
plication of the Atiyah-Singer theorem. On S~ the
integration by parts relating Eq. (1.11) and the
colldltloII (l.10) is RlwRys pel'nllt'ted so illat 111 tile
backgxound gauge on 8 all gauge freedom is elim-
inated, Howevery oQ + there 18 a thx'66-pRx'RDl-

eter family of gauge transformations which gen-
erate a &AI satisfying Eq. (1.11). Thus, as Brown
et al. observe, there are only 8k —3 physical
modes for E .

I et us Qow coQsidex' self-duRl 8olutioQS for Rn

axbitxary simple compact Lie group G. Just as in
the SU, case, each such solution (in a nonsingular
gauge) approaches a direction-dependent gauge
transformation at infinity

limA„(x) =g(x) s„g '(x) (1.12)

with x„=x„/(x')'~'. Hence to each solution there
corresponds a mapping of directions in four di-
Inellslolls (1.8. , the three-dimensional Spllel'8 8 )
into the gauge group. These mappings fall natural-
ly into equivalence classes, with elements in each
class being continuously deformable into one
anothex'. The topological charge k i.s determined
by the equivRlence clR88 to which the QlRppillg be-
longs. The group of a.ll such equivalence classes,
II,(G), has been thoroughly analyzed in the math-
ematical literature. In particular, the familiar
result 'tllRt II3(SU2) Is 18011101'plllc to the 111'tegel's

is valid for' any simple Lie group. Furthermore,
there 18 R particular minimal embedd1ng of SU2

into an arbitra. ry simple I ie group 6 such that
each equivalence class of mappings in II,(G) con-
tR1118 representatives obtRined by mappIQg 8 Into
that particular SU~ subgroup. " Thus each topo-
logically distinct set of boundary conditions (1.12)
fox' RQ arbitrary simple gx'oup 6 cRQ be obtained

by embedding 0118 of tile SU1 sollltlolls (1,5), tl'Rlls-

formed to a regular gauge, into G. %'e have nor-
malized the definition (1.3) of the topological
charge so that for an arbitrary field configuration
in 6, A takes on the value of the corxesponding
topologleally equivalent SU2 embedding.

The rema1nder of this pRpex' ls Rx'x'Rnged Rs fol-
lows. In See. II we analyze a general embedding
of the SU, pseudopa, rtiele of Belavin et a/. in an
axbitrary simple Li.e group G. We show that the
minimum topological charge k for such an em-
bedding is obtained when one uses an SU, subgroup
of G generated by Z, E, and [E,E ], where
0'. is a root of maximum length. These k= I solu-
tions correspond to the minimal SU, embeddings
referred to in the paragraph above.

In See. III the Atiyah-Singer index theorem is
introduced. This theorem relates the index 8,

(1.13)

of the simultaneous equations (1.6) and (1.11) to the
topological charge k. Here h is the number of
linearly independent solutions to the equation

h' is the number of linearly independent simultan-
eous solutions of Eqs. (1.6) and (1.11), and II'= 0
for 8'. Following Schwartz, ' we do not evaluate
8 dix'ectly but instead use its linear dependence on
k and explicit evaluation of ho and h' for 0 = 0 and
1 to determine it in genex'al. The result is a form-
ula determining h' —h' as a function of k.

Throughout this section and the remainder of the
paper we are specifically discussing the Yang-
Mills equations on the four-dimensional sphere.
This eliminates the problem of surface terms and
is necessary for' the validity of the index theorem.
It is well known that the conformal invariance of
the Yang-Mills equations ensux es that when any
solution on 8' is stereographically projected onto
Euclidean space it will a,iso solve the Euclidean
space equations. Conversely, all known Yang-
MiBs solutions in Euclidean space are sufficiently
regular at infinity that, when appropriately gauge
transformed, they ca,n be mapped onto 8'.

Thus we have a formula for h' -h', where the
vRlue of k depends on the particular configurR-
tion A„'(x). Two configurations with the same val-
ue of k may have dIfferent values of O'. In Sec. IV



TABLE I. The rank, quadratic Casimir operator C(G), dimension d(G), and the quantities
M(G) and I(G,k) are listed for all simple compact Lie groups. The number of parameters nec-
essary to describe a configUration of topological charge k is given by N(G,k) = 4C(G)k —d(G)
if f8 —M(G) and H(G k') =I{G 0 ) if k & M(G) . For any group I{G 1) =5. {Note that 803= 8U2
805 ——8p4, 806 ——8U4 and 804 'Is not simple) .

Group

we show that if a configuration has a certain regu-
larity property, then its value of h leads to a val-
ue of h' which gives the true number of parameters
N(G, k) necessary to specify the general self-dual
solution of topological charge k. Furthermore, we
show how to calculate these values of h . In Table
1 we display our final results for N(G, k) for all
simple compact groups G. Finally in Sec. V it is
shown that the number of parameters we have ob-
tained is precisely equal to the number necessary
to describe the positions, scales, and relative
group orientations of k independent pseudoparti-
cles.

n. THE Ml&IMPEL SU, EMeEDDrNG

In this section we explain how to embed the SU,
pseudoparticle into an arbitrary, compact, simple
Lie group to give the minimum topological charge

(2.1)

Here the E„'„are the components of the field
strength F„„:

(2.2)

The T, form a basis for the Lie algebra Q of the
compact simple group G, and will be chosen to be-
long to the adjoint representation. The basis vec-
tors T& are chosen orthonormal with respect to the
Cartan invariant inner product

j.
(2.3)

whe~e C(G) is a normalization constant that will be
specified later. (Recall that it is for such a choice
of basis that the structure constants f,» become

or

[J'„J']=sz', [J',7 ]=J'
with (2.5)

we can easily obtain a pseudoparticle solution in
G,

(2.6)

where F,'„', 1 ~i ~ 3 are the SU, components of the
single-pseudoparticle solution obtained by setting
0=1 in Eq. (1.5). The topological charge 0 of the
solution (2.6) is simply the length of any one of the
matrices J'

tr(Z &') (no sum on i).1
(2.7)

Our problem then is to find an SU, subalgebra
{7'),1 ~i ~ 3 of 8, whose generators 4' have mini-
mum length.

Let us first recall some properties of the root
diagram of a simple Lie algebra 8.'"" %e choose
a regular Abelian subalgebra H of Q which contains
the maximum number of commuting generators.
The dimension of H is called the rank r of S. %e
choose our basis T, so that the first x elements,

completely Rntisymmetric. )
Given three matrices [Z'), 1 ~i ~ 3 in the adjoint

representation of G which obey the commutation re-
1Rtions of angular momenta

(2.4)
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(o')'=1 (2.10)

With this choice of normalization, the constant
C(G) of Eq. (2.3),

C(C) = tr(T, ') = — g tr(T, )'

g(G)

Q T2 (2.11)

becomes the usual quadx'atic Casimir operator fox

the adjoint repx'esentation of G.
%'6 can now determine the embedding of SU, in

6 wh1ch has the minimum topological chRlge. Sup-
pose we have any embedding fZ'}, 1 ~i ~ 3 obeying
Eq. (2.4). It is always possible to pick a regular
Abelian subalgebra H so that it contains any given
elenlent Gf O; ln pRx'ticulRr we cRD choose + so
that 4' is an element of H. Thus we have

written as k„1«j «r form a basis for H. Next,
raising and lowering operators, F-„, are construc-
ted out of the remaining elements of Q, The action
of the E on h, can be represented by a x'oot dia-
gr'Rm whic11 ls R vector dlRgrRDl ln R spRce Gf

d1nlension 'v. Tile vectox"8 Rl 6 1Rbeled by & Rnd

their components ~, are the amounts by which E
changes Q). Thus we hRve D

A A

[h, , h»]= 0, (2.8)
fh», Z ]= o,E. .

The 8 with sultRble normalization obey

[EN»E- ]=Q O»h»

(2.&)

[E. Eel= iv.aE"»

The cons'tRnt X
&

= 0 whenever & + p 18 Dot another
root vector. Hoot vectors for all the compact sim-
ple Lie groups are listed by Racah.

Vfe conclude these preliminaries by discussing
the normalization of the inner product (2.3) and
hence of the bRsls T . T116 normalization of the T ~

ls fixed by the requirement that the Inaximal
length of any root vector is one. Thus for such a
X'00t 0

(2.14)P P,h, , Pf'.E. =Pf'„E..

Equation (2.8) and the linear independence of the
E now yield

1=2 «o»= l p I lol cos'

whenever f' &0, where 8 is the angle between o
and P. To minimize lP l

we should, according to
Eq. (2.15), choose P parallel to a root vector, u',
of maximum length (l c»'j =1) and then choose f'
=0 for all other 0,'. Thus if + is a root vector of
maximum length, w'e have a minimum SU~ sub-
group given by

(2.15)

&'=g o»'h

Consequently the genelatox'8 «/& of this subgx'oup
also have length j. Rnd the minimal SU~ pseudopar-
ticle constructed from them, Eq. (2.6), will have
topological chRrge k = 1.

A IIllnlIDRl SU, subgx oup obtRiDed ln this manner
xs 6Rslly described fox' the ser'168 SU„y Sp2~~ Rnd

SQ„. For SU„and SP,„, it is just the obvious "up-
per-left-hand-corner" embedding of the two-di-
mensional representation of SU, = Sp, into the n-di-
mensional repx esentation of SU„or the 2n-dimen-
sional representation of Sp,„. For SQ„, n ~ 5, a
minimal SU, subgroup is obtained by embedding
the four-dimensional representation of SQ, into the
n-dimensional repx esentation of SQ„and then using
one of the factors SO, =SU, X SU, . (The more ob-
vious subgroup obtained by embedding the three-
dimengional representation of SQ, gives a 7' whose
length is the ~2 times that obtained by this method.

The embedding (2.16) has a, simple properly that
will be extremely useful to us later on. First note
that if we let the generators J'' of any SU, subgroup
act on all the genex"atox's of the group T, by

[4', T,]=I »,T„ (2.1V)

then the matrices L,'~ fox'm a representation of SU, .
Now by (2.8) for the particular subalgebra (2.16)
we have

J'= Q P,h, (2.12)

for some set of coefficients P,. Rnd seek an em-
bedding with a 8' whose length lP l

—= (Z»»8»')'»' is
a minimum. It follows that J, and 0 have the form

Z =gf:E., (2.13)

where f' and f ax'e two sets of coefficients. Thug
one of tile co11111111ta't»oil 1'elatlo»ls (2.5) becolIles

[J,h~]=0,

[~', E„]=m.E.,

lm. l
-1.

(2.18)
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= —,
' [5+d(G) —s(G) ], (2.20)

which will be referred to in Sec. III. The value of
C(G) for each of the simple Lie groups is listed in
Table I.

III. APPLICATION OF THE INDEX THEOREM

We now apply the Atiyah-Singer index theorem'
to our problem. Since the index theorem is valid
only on compact manifolds, it cannot be applied di-
rectly to the Yang-Mills theory in Euclidean space.
However, as explained in Sec. I, the conformal in-
variance of the Yang-Mills action makes it possible
to project the theory onto the four-dimensional hy-
persphere, where the index theorem is applicable.
Throughout this section we will understand the
theory to be in this projected form.

Given a self-dual field strength F „arising from
a vector potential A„, we wish to investigate in-
finitesimal variations 6A„which preserve to first
order the self-duality of F„„. The condition that
the first-order change in F„„beself-dual may be
written as

(D, 5A) 8
-=fl 8~ "(D„5A„D„5A }= 0, (3.1)

where D, 6A„, defined in Eq. (1.8), is the gauge-
covariant derivative using the unperturbed A„, and
II ~"" is a projection matrix which picks out the
anti-self-dual part of a tensor. Among the solu-
tions to Eq. (3.1) are those arising from infinitesi-
mal gauge transformations of the unperturbed A„;
these are of the form

(Do&A)„—= D &A. (3.2)

Two solutions of Eq. (3.1) are gauge equiva, lent if
they differ by a field of the form of Eq. (3.2). Our
problem is to find the number of linearly indepen-
dent gauge-inequivalent solutions of Eq. (3.1).

A convenient device for formulating our problem
and for applying the index theorem is the sequence
of mappings'

P -M -M '-M -PD D D
(3.3)

M', M', and M' are the spaces of scalar, vector,
and anti-self-dual antisymmetric rank-two ten-
sors, respectively, all transforming under the ad-

This inequality implies that when the generators
of the group are arranged into standard angular
momentum representations under the action of J',
these representations can have only j= 0, 2, or 1
and that the only j= 1 piece consists of the original
generators J'. Further, if p(G) is defined as the
number of generators which belong to doublets and
s(G) the number which are singlets, then Eq. (2.11)
and Eq. (2.18) imply the relation

C(G) = tr( J,') = 2+ 4p(G)

kernel D&

image D, ,
(3.4)

whose dimension we shall denote by h'. In parti-
cular, H' consists of the classes of gauge-equiv-
alent solutions to Eq. (3.1}; its dimension, h', is
precisely the quantity in which we are interested.

Since the image of D, is the field which is identi-
cally zero, H' is just the space of scalar fields in
the adjoint representation with vanishing covariant
derivative. This space may be simply described
in terms of the holonomy group of the vector po-
tential A„. (The holonomy group at a point x, is
defined as follows: Given a vector potential, the
operation of parallel transport along a closed path
beginning and ending at x, determines an element
of the group G. The holonomy group at x, is the
subgroup of G obtained by considering all possible
paths. For a connected manifold, the holonomy
groups at different points are easily seen to be iso-
morphic. ) Since the fields in H have vanishing co-
variant derivative, they are unchanged by parallel
transport about a closed path and thus at every
point are left unchanged by the holonomy group
Conversely, any element left unchanged by the
holonomy group at a point x, determines, by paral-
lel transport, an element at every point, thus giv-
ing a well-defined field @(x) with vanishing covar-
iant derivative. Thus Iz' is equal to the dimension
of the subspace of the adjoint representation which
is left unchanged by the holonomy group; this is
equal to the dimension of the largest subgroup of
G commuting with the holonomy group.

Since the kernel of D, is all of M', h' is equal to
the dimension of the subspace of M' orthogonal to
the image of D, . But this subspace is just the ker-
nel of D,*, where D~~ is the adjoint of D„so h' is
the number of linearly independent solutions to
D,*T=0. Any tensor field satisfying this equation
also satisfies D,D,*T=0; in Appendix 8, we show
that on a sphere (with the usual metric) D,D» is a
positive-definite operator, so h'= 0.

We now define an elliptic differential operator 5),
which takes ordered pairs of scalar and anti-self-

joint representation of the group G. D, takes 0
to the scalar field which is identically 0, D, and

D, are the differential operators defined by Eqs.
(3.1) and (3.2), and D, takes all of M' to 0. At each
step in the sequence, the image of D, , is contained
in the kernel of D, (The only nontrivial case is
the application of DgDp to a scalar field. This van-
ishes because a gauge transformation cannot change
the self-duality of F,„.) We may define equivalence
classes of elements in the kernel of D,. by defining
two elements to be equivalent if they differ by an
element in the image of D, , These equivalence
classes form a vector space



dual tensor fields to vector fields, by

{u(S,T)}„=(a,S)„+(a;T)„. (3 5)

It should be noted that this result can also be ob-
tained by using the method of Brown et aE.' on E~.

Using some linear algebra, one ean show that its
index, defined by

8($) = dim(kernel 8) —dim(kernel S*), (3.6)

is related to the h' defined above by

8(n) = ao a'+a'. (3.7)

8(X&) =uk +b (3 3)

The constants a and b can be calculated by purely
topological methods; instead, we shall obtain them

by analytically determining 8(X)) for k = 0 and
a= s."

For k= 0, any self-dual configuration must have
zero action, and therefore E„„=O. The holonomy
group then consists of only the unit element, so
h' is equal to the dimension of the group, d(G).
Since there are no solutions to Eq. (3.1) other than
infinitesimal gauge transformations, h'=0, and so
8(S) = d(G).

For an example with 0= 1 we embed the one-
pseudoparticle solution of Belavin et al. ' into the
group G via the minimal SU, subgroup described
in Sec. II. It was shown in Sec. II that with respect
to this subgroup the generators of G belong to one
triplet (the generators of the SU, itself), ~ P(G)
doublets, and s(G) singlets; clearly h' is equal to
s(G). We can obtain h' by a simple extension of
't Hooft's analysis" of the fluctuations about an
SU, pseudopartiele. For the SU, case 't Hooft
found eight modes corresponding to solutions of
Eq. (3.1). Three of these correspond to gauge
transformations, so only the remaining five, cor-
responding to translations and dilatation, contri-
bute to h'. Extending the analysis to vector fields
belonging to doublets yields two modes per doublet,
but both correspond to gauge transformations (see
Appendix C). For singlet vector fields there are no
modes. Thus for any group we obtain h'= 5, and
8(X) ) = s(G} —5. The constants in Eq. (3.8) are now
determined; using Eq. (3.7), we obtain

h' = [5+d(G) —s(G) ]k —[d(G) —h'].

Using Eq. (2.20) we may rewrite this as

h' = 4C(G)k —d(G}+h . (3.10)

{Keep in mind that fOr a hypersphere, the case in
which we are interested, h'= 0.) On the other hand,
the Atiyah-Singer index theorem gives an expres-
sion for 8(&) in terms of the topological charge k,
the topological invariants of the manifold on which
-the fields are defined, and constants which depend
on the group G. For a four-dimensional manifold,
this expression will have the form

IV. DETERMINATION OF ho

Given a group 6 and a value of the topological
charge k, our goal is to find the dimension N(G, k)
of the manifold of self-dual configurations (modulo
the action of the gauge group). " In this section we
will show how to use the results of Sec. III, along
with some knowledge of the structure of the Li.e
groups, to determine N(G, }t).

Given any initial self-dual configuration, the in-
dex theorem allows us to calculate h', the number
of linearly independent gauge-inequivalent solu-
tions to the infinitesimal variation problem. On the
right-hand side of Eq. (3.10), however, appears the
quantity h, the dimension of the largest subgroup
of 6 which commutes with the holonomy group of
the initial configuration. Two different configura-
tions with the same value of k may have different
values of h . Thus, the central problem is to find
the a.ppropriate value of h' such that h'= N(G, k).

%e begin by establishing some facts about the
holonomy group. Given a configuration of Yang-
Mills fields, let G'(x) denote the holonomy group
associated with the point x. Given two points x and

y, G'(x) and G'{y) are equivalent in the following
sense: There is an element g„,F t" which generates
an isomorphism between the two groups of the form
g„=g„„g,g„', where g„r=G'(x) andg, r=G'(y). (g„,
can be taken as the element of 6 defined by parallel
transport along some fixed path between the two
points. ) We now show that it is possible to choose
a gauge in which G'(x) is identical for all points x,
and in which''„(x} has nonzero values only within
the holonomy group. Qn R' one imposes the fol-
lowing gauge conditions:

A.,'= 0 everywhere,

A,'=0 if x, =0,

A,'=0 if x, =x, =0,

44=0 if x, =x,=x,=0.

(4.1)

These conditions can be achieved (one at a time)
by performing gauge transformations which are de-
termined by simple first-ordex differential equa-
tions. (S' can be covered by two overlapping co-
ordinate systems, and within each system one ean
impose the above gauge conditions. ) In this gauge
an arbitrary point x can be connected to the origin
by a path along which A„dx" = 0, and hence paral-
lel transport is trivial. Thus, G'(x) = G'(x = 0) —= G'.
One then chooses a bas1s for the I le algebra Q such
that G' is generated by the first m generators,
where m = dim(G'). Then E'„„(x)= 0 unless f ~ rn,
since G' contains the transformations obtained by
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parallel transport around infinitesimal loops. Fi-
nally, one notes that these gauge conditions allow
one to express A'(x) in terms of integrals which
are linear in F'„. Thus,

A' (x) = 0 unless i - m. (4.2)

N(G, k) = 4C(G) k —d(G) + L(G, k). (4.3)

[Since N(G, k) has a well-defined value, the above
relation implies that h' has the same value for all
regular configurations. ]

We are now prepared to derive N(G, k) for all
compact simple Lie groups G. We begin with the

Within the manifold of self-dual configurations,
we will call a particular configuration "regular"
if it is contained in an open region of configurations
which all have equivalent holonomy groups. By a
gauge transformation, it is possible to write this
entire family of configurations in a form consistent
with Eq. (4.2). We will see that such regular con-
figurations are exactly the ones which give us the
desired value for h', and hence h'.

Suppose we consider a regular initial configura-
tion with a given value of k. Using the index theo-
rem, we found in Sec. III that k'=4C(G)k —d(G)+h'.
These infinitesimal variations can then be iterated
to obtain a family of self-dual solutions with h' pa-
rameters, with the initial configuration taken as
the origin of parameter space. If h'= 0, such an
iteration exists to all orders and the series has
a nonzero radius of convergence. "" Since the ini-
tial configuration is regular, there exists a region
about the origin of parameter space in which all the
configurations can be written to obey Eq. (4.2).
Within this region, it is clear that the configura-
tions are gauge inequivalent. Recall that the in-
finitesimal variation problem was formulated tb
remove at the outset the possibility of equivalence

by infinitesimal gauge transformations. One must,
however, also consider the possibility that there
is a class of finite gauge transformations which

leave the initial configuration invariant, but which

lead to an equivalence among the infinitesimal var-
iations. With our choice of gauge, the class of

gauge transformations which leave the initial con-
figuration invariant is simply the h'-parameter
class of global gauge transformations which com-
mute with O'. These gauge transformations, how-

ever, also leave invariant any configuration obey-
ing Eq. (4.2), and thus the gauge inequivalence of
the family of configurations is established. Thus,
we have constructed a local manifold of dimension
k'. (If the initial configuration were not regular,
only the argument about gauge inequivalence would

break down. ) If we let L(G, k) be the value of k'
corresponding to a regular configuration of topo-
logical change k, then

series G= SU„.
Our proof will be based on mathematical induc-

tion, so we begin by stating the answer:

4k'+1 if k ~ gn,
N(SU„, k) =

4nk —(n' —1) if k ~ 2n.
(4.4)

N(SU„, k) = 4nk —(n' —1) + L(SU„,k). (4.5)

Since any SU, configuration can be embedded into
an SU„ theory, it follows that

N(SU„, k) ~ N(SU„„k) . (4.6)

The problem will then be solved by proving one
more relation:

N(SU„, k) =N(SU„„k) if L(SU„,k) e 0. (4 7)

To prove Eq. (4.7), imagine constructing a family
of self-dual configurations with the same holonomy

group G'. Then L(SU„,k) &0 implies that there is
at least one generator &, which commutes with G'.
One can diagonalize r, (in the fundamental repre-
sentation). Suppose that each repeated eigenvalue X„
i=1, . . . , r, occurs with multiplicity p, ; let s be the
number of unrepeated eigenvalues. Then

s+Q P(=n& P(&n.

If G" is defined as the group generated by all ele-
ments of 9 which commute with &„ then

(4 6)

G'cG"=SU~ x ~ ~ ~ x SU~ x(U, )~"-'. (4.9)
1 r

One can then write the entire family of configura-
tions in a gauge satisfying Eq. (4.2), and one can
further choose a basis for Q in which the gener-
ators of the subgroups SU~, . . . , SU~ occur as ele-
ments. Each configuration then decomposes into
a superposition of r mutually independent Yang-
Mills configurations. (Self-duality implies that the
U, fields must vanish. ) Within each subgroup SU~

5

the configuration will have a topological charge k&,

with k=2 k;. It follows that

N(SU„& k) ~ Q N(SUq, kq).
5

Regardless of the values of the k, 's and p, 's, the
above inequality will hold if the right-hand side is
replaced by its maximum possible value. It is a

(4.10)

[The lower expression is simply 4C(G)k —d(G). The
upper expression is the maximum value of the low-
er expression for fixed k. The crossover point is
the va. lue of n for which this maximum occurs. ]
One first verifies the solution for SU, : Clearly
L(SU„k) =0, since there are no non-Abelian proper
subgroups. We now assume that the formula holds
for SU„. . . , SU „and consider the case of SU„.

By Eq (4 3)
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straightforward exercise to verify from Eq. (4.4)
that this maximum value is N(SU„„k). Equation
(4.7} is then obtained by recalling the inequality
(4.6).

One can now carry out the induction in two steps
First, suppose k ~ &n. Then

N(SU„, k) ) 4nk —{n' —1)& N(SU„„k). (4.11}

This contradicts Eq. (4.7), so one must have

L(SU„,k) =0. Then suppose k& an. It follows that

(n' —1)&N(SU„„k). (4.12)

Equations (4.5), (4.6), and (4.12) imply that
L(SU„,k)&0, and then Eq. (4.7) determines
N(SU„, k). Thus, the induction hypothesis has been
shown for SU„.

For the other groups, the answer can again be
stated and then proved by induction:

fI{G,k) if k(M(G),

)4C(G)k —d(G) if k ~ M(G),
(4.13)

where all of the quantities on the right are listed
in Table I.

The proof of Eq. (4.13) for the symplectic groups
follows the same pattern as the proof given for the
unitary groups. The induction begins at Sp, = SU,.
Equation (4.9) must of course be revised. Here the
analysis is facilitated by using the root diagrams
rather than the fundamental representations and
choosing a 1 egular subalgebra containing w, ." For
Sp,„one can show that

G' cSU, x Sp„x {fl,)""-~-',

where

(4.14)

(4.15)

G' c:SUp x SO2 „x( U|)"' (4.17)

There is one further complication: When the SU~
root diagram is looked at within the root diagram
of Sp,„, its maximum root length is only 1/W2.
This means that a given configuration, when viewed
in the Sp,„theory, will have some k=ksu+ks~-
However, when the SU~ fields are viewed as a con-
figuration in an SU~ theory, they have topological
charge k'= 2ks„. This fact is necessary to show
that

N(Sp, „,k) =N(sp, „„k)if L{sp,„,k) & 0. (4.16)

The proof for the orthogonal groups is then a
straightforward exercise. The induction begins at
SO, —= Sp, for the odd orthogonal groups, and SO,
=—SU, for the even orthogonal groups. For SO~„
one can show that

where again (4.15) holds. For SO,„one can show

G' c- SU, x SO,„x(U }""-o-. (4.18)

where (4.15) also holds. Using these relations,
one can show' that for n ~ 8

N(SO„, k) = N(SO„„k) if L(SO„,k) & 0. (4.19)

N(G„k) ~ N(SU2, k),

N(F4, k) ~ N(SU„k).

(4.21)

(4.22)

{One must of course check that the above embed-
dings do not involve a rescaling of the topological
charge. ) Equation (4.9) may be replaced by the
general statement that if L{G,k) 40, then G' is con-
tianed in a group 6" which, apart from U, factors,
must have a rank which is less than the rank of |.
The decomposition of G" may involve a rescaling
of topological charge, but general arguments
guarantee that such a rescaling must always be in
the same direction as it was for the symplectic
groups. In these cases such a rescaling has no ef-
fect on the derivation.

V. CONCLUSION

A self-dual configuration of topological charge
k is often thought of as a kind of nonlinear super-
position of k single pseudoparticles. (In Appendix
A we discuss two examples which support this hy-
pothesis. ) This superposition interpretation makes
a definite prediction for the number of parameters
in the general solution: For each pseudoparticle
there should be one scale parameter, four position
parameters, and some number of parameters to
specify the relative orientation of the pseuhoparti-
cle in group space. We now show that the number
of pa.ra, meters which we have calculated is in
agreement with this interpretation.

To clarify the basis for this agreement, we sum-
marize some of the logic used in Sec. III. Using
the Atiyah-Singer index theorem, one asserts that

h'= -ak —5+ h'. (5.1)

For k= 0 one knows that ki = 0, ho= d(G). For k= 1
one must show that there exists an embedding of
the elementary SU, pseudoparticle into the group
6 for which h'= 5. Using the basis for the Lie al-
gebra adopted in Sec. II, the value of A,

' for this

For n=v the right-hand side of the above equation
is replaced by N{SU„k).

Only the exceptional groups remain, and fortu. -
nately it is necessary to know only a few facts to
determine the answer. Using the fact that D, { E,
cE,eE„Eq. (4.6) may be replaced by

N(E„k)»- N(E„k) N(E„k) -N(D„k). (4.20)

Since SU, is always a subgroup,
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embedding is simply equal to the number s(G) of
singlet generators (those which commute with the

8& used in the embedding). These two cases de-
termine the constants a and b, leading to

k' = [5+ d(G) —s(G) ]k —[d(G) —k'] . (5.2}
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As discussed in Sec. IV, h', the number of solu-
tions to the linearized equations, is equal to the
number of parameters in the general solution,
N(G, k), provided we a.re expanding about a regular
initial configuration, in which case k'= I (G, k).

The terms in Eq. (5.2) can be easily recognized
if such a configuration is viewed as a superposi-
tion of k, SU, pseudoparticles. Since s(G) is the
number of independent generators which commute
with an arbitrary minimal SU, embedding (Z,J,
1 ~i ~ 3, the quantity d(G) —s(G) in Eq. (5.2) is
precisely the number of parameters necessary to
specify the orientation of the J& within the group G.

Thus, the first term on the right-hand side of
Eq. (5.2) is just the number of parameters re-
quired to fix the scale, position, and group orien-
tation (relative to a fixed basis} of each pseudo-
particle. The second term simply subtracts out
the number of nontrivial global gauge transforma-
tions of the entire configuration —thus, only the
relative group orientations are counted.

In fact the value of the second term in Eq. (5.2),
d(G) -L,(G, k), determined explicitly in Sec. IV, is
also correctly given by the hypothesis that the so-
lution is made up of k, SU, pseudoparticles. Con-
sider a subgroup G„of G generated by k minimal
embeddings of SU, . Again, such a subgroup G~

might be called regular if it commutes with the
minimum number of independent generators of G.
A simple rewording of the arguments ln Sec. Vf

shows that the number of independent generators
which commute with such a regular subgroup G~

is the same quantity I (G, k) appearing above. Con-
sequently d(G} —f.(G, k) is also the number of pa-
rameters entering a global gauge transformation
which rotates a regular embedding of k minimal
SU, subgroups.

Thus the superposition interpretation is in pre-
cise agreement with the number of parameters
necessary to describe a self-dual configuration
of any topological charge k, in any gauge group G.
This agreement certainly suggests that it may be
possible to parametrize the general configuration
of topological charge k by the variables appropriate
to this superposition interpretation.

APPENDIX A

%'e will now describe two examples which illus-
trate the hypothesis that a self-dual evolution with
k&1 can be viewed as a combination of k= 1, SU,
pseudoparticles. Ne first consider the one family
of SU, multipseudoparticle solutions which is com-
pletely known' —the k= 2 solution obtained by con-
formal transformation of Eq. (1.5):

A„'(x) = -i}t„a„in g, 'Al)

Consider the configuration in which the separa-
tions ~x, -x,

~
are comparab. le and the ratios &,/&,

and A.,/Xo are very small. With this choice of pa-
rameters the solution (Al) looks much like two
isolated pseudoparticles located at points x, and

x,. In particular, for x very near x„ i.e. ,

Xl Xl X0
Xq

the argument of the logarithm becomes

(A2)

which approximates a k= 1 solution at x, with scale
(X,/&, ) ~x, -x, ~. On the other hand, for x outside
two small regions about x, and x„ i, e. ,

X -X] && —X -X0

the argument of the logari. thm is approximately
the single term X,'/(x -x,)' which corresponds to
a pure gauge transformation

with

( )
x —x() —i(x —x()) ' 0'

[(x -x,)']'~' (A4)

If we perform the inverse of that gauge transfor-
mation, the solution looks precisely like the super-
position of two k=1 pseudoparticles of the type
(1.5) at the positions x„with scales l(.,'=
= (&,/&, ) ~x, -x,

~
but each with a different SU,

orientation

2

f=l

(A5)
The terms omitted from the right-hand side of Eq.
(A5) are smaller than those retained by at least a,

factor of X,./k, for i = 1 or 2.
A complementary test of this interpretation of

self-dual solutions with k& 1 can be found by gen-
erating such solutions from nonminimal embed-
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dings of SU, into larger groups. Consider for ex-
ample SU„generated by the standard eight ma-
trices X, ,

where 0', 1 ~i ~ 3 are the Pauli matrices, u= e'"
and

[X,, Xq ] = 2if, (A6)
1 i

+— 0
vZ v2

with f&» normalized according to our convention.
Since f,» vanishes when only two of its indices
lie between one and three and since f,»=+I we
can immediately construct an SU, solution using
the k= 1, SU, solution of Eq. (1.5),

0 1

v2 V2

(A13)

(A7)

A,"= —2p' „s„ln(1+ X'!x'),
where

1 5 2 2
pgv ~if vy pp v ~ivy pwv ~wv y

p', „=0 fori 42, 5, or 7.

(A8)

(A9)

Because of the factor 2 in Eq. (A8), this solution
has topological charge 4.

We now observe" that this k=4, SU, solution can
be written as a simple superposition of four min-
imal solutions of the type (A7) with various gauge
orientations:

P A "X'= g P r,'A*, .
5 ~1 l~l 4~&

Here the four sets of three matrices ~,' obey the
SU, commutation relations

(A10)

t &to &I 1= 2i6&»T

and are given by

(A11)

j
-q'„S„ln(1+X /x'), 1~i ~3

'&0, 3

which, from Eq. (1.3), must also have topological
charge 1. The three matrices X', X', and X' also
form an SU, subalgebra but with f», ——2. Thus a.

second SU, solution"" can be written

is a matrix which diagonalizes X'.

APPENDIX B

In Sec. III it was stated that D,D,* is a positive-
definite operator on the four-dimensional hyper-
sphere; in this appendix we prove this statement.
In a curved space we may write (D, denotes the
generally covariant and gauge covariant derivative)

(v oO s= o os-o os — ~ )v v,
Vg

Vg
(Bl)

Intergrating by parts to find the effect of D,* on an
anti-self-dual tensor T„„,we obtain

(D,*T) = —2 Dg T (B2)

+ 2R„B„~T + Fq„7 „—F8„T . (B3)

Because F„„is assumed to be self-dual, the last
two terms cancel. The Riemann tensor R„~„„may
be decomposed as"

1

ugvX 2(guPQX guPgv g8v uo+Ak uv)

Combining Eqs. (B1) and (B2), and using the anti-
self-duality of T „, we find after some manipulation

(-.- '&

(oo o

u 'a'u
7'2~=M ' 0 M,

(o oo)
0 0 0

7'3=M 0 M

0 0 0

7.,'=M-' 0

(A12)
(D,D,*T) „=-g 8D DST„„—3RT „. (B5)

Since -g ~D D~ is a positive operator, and R is
everywhere negative on the hypersphere, D,D,* is
positive-definite.

APPENDIX C

The small oscillations about the SU, one-pseudo-
particle solution have been investigated by 't

,' R( guv gm —gu„—gs„)+ C, s„), . (B4)

The tensor C„~„~ is called the Weyl, or conformal,
tensor and vanishes whenever it is possible to
choose a coordinate system in which g„„is pro-
portional to a constant matrix throughout the mani-
fold. Since the sphere has this property, we may
set C ~„~=0 and substitute Eq. (B4) into Eq. (B3),
obtaining
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Hooft. " Working in a background gauge, he
showed that for either scalar, spinor, or vector
fieMs the normal modes are eigenmodes of the
operator

8 3 8
3R= — ———+ 2 Q + T'Lsr r Br r'

('iver

)

4~' -, 16
(1~r2)2 (1+ r2)2

where L„L„S„andS, axe orbital and spin an-
gular momentum operatox's for the tmo SU, com-
ponents of SO~ and T ls the lsosp1n operator. TIle
orbital angular momenta satisfy L,' = L,' —= L '. For
scalars, S, =S,=O, while (s„s,) is (~, 0) and (0, 2)
for right- and left-handed spinors and (2, ~) for
vectors Th. e multiplicity of a, mode is (2j, +1)
x(2j, +1), where J, = L, +S,+ T and S,= L, + S,.

This analysis may be used to study the small os-
cillations about self-dual solutions in a theory
with a larger gauge group, 6, which is obtained
by embedding the SU, one-pseudoparticle solu-
tion. The generators of t" can be classified into
multiplets according to their transformation prop-
erties under the SU, of the embedding. In particu-
lar, if the minimal SU, is used, there mill be one
triplet, with the remaining generators belonging

&~ -gx' 7

(1+ 2)1/2 (C2)

with v an arbitrary isospinor. Thus, when viewed
in terms of the gauge group G, these modes cor-
respond to gauge transformations and do not con-
tribute to O'. Finally, for t= 0 there are no nor-
malizable solutions of ~=0.

to doublets and singlets; thus me must consider
vector field small oscillations with t= 1, &, or 0.

The modes which preserve the self-duality of
E„„areprecisely those with zero eigenvalue.
Thus, to calculate h' for the k= 1 configuration
considered in Sec. III, me must determine the
number of such modes, excluding those which cor-
respond to gauge transformations. The t= j. modes
are just those considered by 't Hooft; there are
eight modes mith zero eigenvalue, of which three
correspond to gauge transformations. The t= &

case follows immediately from 't Hooft's result
for right-handed spinors. [Since Eq. (C1) does
not involve S„ the vector and right-handed spinor
eigenvalues are the same, except for their multi-
plicity. ] These modes have j, = f, =l, =0, j,=s,
= ~, so there are tmo modes per doublet. How-
ever, these modes may be mxitten in the form
D„6A, where &A is an isospinor given by
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