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We use Feynman perturbation techniques to analyze a classical process: the conversion of gravitational
waves into electromagnetic waves (and vice versa) under the "catalytic" action of a static electromagnetic
background field. Closed-form differential cross sections are presented for conversion in the Coulomb field of
a point charge, electric and magnetic dipole fields, and uniform electrostatic and magnetostatic fields. Using
the model calculation of conversion in a Coulomb field, we discuss the problems we must face when

calculating non-gauge-invariant quantities, as is frequently done in literature. The cross sections are
extremely small, but may lead to observable effects if allowed to act on astrophysical distance and time
scales. The calculations also provide additional insight into the physics of electromagnetic detectors of
gravitational waves.

I. INTRODUCTION

The principle of equivalence in general relativity
theory dictates that gravity couple to the energy-
momentum tensor of all fields. Past research in
general relativity theory has emphasized the coup-
ling of gravity to heavy objects (stars, galaxies,
the universe, Weber bars, and the like), since the
cumulative effect of a large mass tends to offset
the extreme smallness of the gravitational coup-
ling constant. Less effort has been spent on in-
vestigating the interaction of gravitons with other
elementary particles, such as the photon. ' In
certain extreme astrophysical situations (pulsars,
quasars, collapsing stars, active galactic nuclei,
and early universe), however, intense gravitational
and/or electromagnetic fields exist, and we may
not discard a priori the interaction between grav-
itons and photons.

In particular, recent work indicates that in any
spacetime permeated by an electromagnetic back-
ground, a nontrivial coupling exists between elec-
tromagnetic and gravitational perturbations.
Whereas the total energy in these perturbations is
conserved, photon and graviton numbers individual-
ly are not. This implies the existence of conver-
sion cross sections, expressing the fact that a
static electromagnetic field may serve as a cata-
lyst for converting electromagnetic waves into
gravitational waves and vice versa.

It was hoped that the electromagnetic-gravita-
tional resonance near a Reissner-Nordstrom
(charged, nonrotating) black hole would have ob-
servationally detectable consequences. Insight
into the details of electromagnetic-gravitational
resonance has been provided by Gerlach, ' who

originally found the coupled electromagnetic-grav-
itational perturbation equations in the WKB limit.
The Newman-Penrose formalism was used by
Chitre et al.' to separate the wave equations for

mixed gravitational and electromagnetic pertur-
bations. However, numerical studies"' have shown
that the electrogravitational interconversion can
become efficient only when the charge-to-mass
ratio Q/M of the black hole is near unity (in geo-
metrized units, i.e. , G=c=l). Black holes with
such an extreme Q!M ratio are unlikely to exist.
Nevertheless, the problem of coupled electromag-
netic and gravitational perturbations in the vici-
nity of a Reissner-Nordstrom black hole remains
interesting in principle, and Matzner' has recently
calculated the conversion cross sections in the
long-wavelength limit foI quadrupole waves.

We shall not address ourselves to the exact
strong-field problem, which requires the use of
the full mathematical apparatus of general rela-
tivity theory. Rather, we study the simplified case
of Minkowski spacetime permeated by various
static electromagnetic backgrounds. This simp-
lification makes the problem mathematically tract-
able, without excluding the essential physical fea-
tures. Although the conversion efficiencies are
extremely small, they may lead to observable ef-
fects if allowed to act on sufficiently long distance
and time scales.

Conversion scattering may also play a role in the
laboratory generation' and detection" of high-
frequency gravitational waves ("Hertz-type" ex-
periment). In the laboratory we may compensate
for the smallness of the effects by exploiting the
resonance and coherence of the electromagnetic
wave and the gravitational wave. It appears that
the most promising approach would be to use an
electromagnetic resonator to generate coherently
a gravitational wave with a precise frequency and
phase. This gravitational wave would subsequent-
ly be detected by a second electromagnetic reson-
ator with a set of natural frequencies which are
matched to the gravitational wave. Resonant re-
ception occurs when the frequency of the gravi-
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tational wave is equal to the difference of two el-
ectromagnetic natural frequencies.

It has also been suggested that electromagnetic
resonators be used to detect high-frequency gravi-
tational noise, which has been predicted by Grish-
chuk. " The lack of coherence, however, will
make the latter experiment even more difficult than
a pure laboratory Hertz-type experiment.

Electrogravitational conversion was known to
Whittaker" as early as 1947. Gertsenshtein, "
however, was the first to actually calculate a con-
version efficiency. In 1961 he used Einstein's
linearized theory to consider the resonance of an
electromagnetic wave and a gravitational wave in
a strong uniform magnetostatic field. Weber and
Hinds" investigated similar conversion processes
by employing the Hamiltonian formulation of gen-
eral relativity theory. The problem of the elec-
tromagnetic response of a capacitor to an inci-
dent gravitational wave has been investigated by
Lupanov. ' We take special note of a series of
papers by an Italian research group, "" in which
various conversion mechanisms are studied. goth
a Lagrangian-based quantum theory of gravity and
classical general relativity theory are used. Their
conclusions include possible astrophysical conse-
quences and suggestions for gravitational-wave
experiments. Papini and Valluri' used a Lagran-
gian-based quantum theory of gravity to study the
role of conversion scattering in pulsars. Ginzburg
and Tsytovich" recently calculated conversion
cross sections by using the formal analogy between
conversion scattering and dielectric wave-induced
transition radiation.

This paper is the second in a series advocating
the reassessment of the quantum approach in the
investigation of the role of gravitation in astro-
physics. " Using Feynman perturbation techniques
we have derived conversion cross sections in
closed form and have analyzed in detail their de-
pendence on the polarization of the incident wave.
Many of our results have been obtained before by
the use of some other method. The reader is in-
vited to compare the ease with which results can
be obtained by the Feynman perturbation technique
as opposed to the calculations hitherto used.

The paper is in eight sections. Section II sum-
marizes the relevant Feynman rules. Section III

\

treats interactions with a nonspinning test charge.
InSecs. IV and V we calculate conversion cross
sections in magnetic and electric dipole fields.
Sections VI and VII are devoted to conversion in
uniform magnetostatic and electrostatic fields.
Finally, in Sec. VIII we discuss our results in
the light of previous investigations and make re-
marks about some inaccuracies in the literature.

In the following we shall use natural units (G =

b=c=l) and a metric g s with signature+2. Semi-
colons denote covariant derivatives and commas
denote partial derivatives. Greek indices take
values from 0 to 3, Latin indices from 1 to 3.
We shall also use the abbreviation:

0 5 a b Qpbp

where a (b) is the spatial part of a (b).

II. THE FEYNMAN RULES

i: = (q'-"[(8, +ieA, )g*][(8„-ieA„)g]

+M P*$ + —,ries@"sF „F j. (2.1)

Here P is the scalar field, M is the scalar field's
mass and e is its charge in Lorentz-Heaviside
(rationalized) units (for an electronic charge e'/
4e=+). A, is the Maxwell 4-potential, and F,„
is the electromagnetic field tensor computed from
A by

E„„=A„„—A„„. (2.2)

Through minimal substitution we obta. in from (2.1)
the corresponding manifestly covariant Lagrangian
density in a curved background":

i' =-v'-g/g '"[(8,+ieA, )g~][(8„—ieA„)g]

+M 4~4+b, u™gsF F s) (2.3)

An infinitesimal variation of g* in the action
3 = f Zd'x yields the following field equation for
po

[(8 —ieA ) V —gg~ "(8„—ieA„)]P —M'g =0.
v' —g

(2.4)

Similarly, varying the action 8 with respect to
A. provides a set of Maxwell equations

F"". =ej"
sV

where the conserved current j" is defined as

j' = ig'"[$( 8+ieA„)g* —g*(8„—ieA„)g].

The other Maxwell equations

(2.5)

(2.6)

(2.7)

follow from (2.2).
Following Feynman" and Gupta" we define the

gravitational field as the deviation from Minkowski
space-time:

ggms=g s=q~s 2xp~s (2.8)

We review here the Feynman rules which will
be relevant for our purposes. The Lagrangian den-
sity describing the interaction of a charged massive
scalar field (e.g. , a pion) and a photon field in a
Minkowski background is
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where the gravitations. l coupling constant && =&j 8&&.

The indices of the trace-reversed metric pertur-
bation 5 ~ are lowered with the Minkowski metric
&I 6

——diag(-1, 1,1,1). The contravariant compon-
ents of the metric and the determinant factor are
now expressed as infinite series in X,

g"=&I"-2~(K & - —,'&I &'k}+O(&'} (2.9a)

v'-g =(-det )(g )()' '=(-det [[9»&'(()' '
= 1 —&&K+ O(&&2), (2.9b)

where the trace of the metric perturbation is de-
noted by h =)&». Substituting (2.8) and (2.9) into
the Lagrangian density (2.3) we find that we may
break up the Lagrangian density into three pieces:

(c) ) (b) (c) (d)
FIG. 1. The Feynman vertices. The solid lines rep-

resent scalar quanta, the dashed lines represent pho-
tons, the wavy lines represent gravitons.

T,„,q('k, "'k, ~k)

(2.12d)

+2, +2„
&s = (&I""4-,*.4,.+M'0'0), (2.10a)

(2.10b) S/& = 5/,. + i(2&&)'&&'(Q p; Zp~) T/;, - (2.13)

The transition matrix elements above have been
normalized by the definition

(2.11a)

L&sm(k) ill I/

gv k —ie ' (2.11b)

where E is a small real positive number.
The Lagrangian density S~ describes the mutual

interaction of the scalar, photon, and graviton
fields and yields the Feynman vertex functions
(see Fig. 1):

(a) the scalar-particle- scalar- particle- photon
vertex

2&= fed&"-"(A&, g „&P» —A&, P"„&g)

+2XK&'"(g"&„g „&+~&I „M2$»$)

+2ie&&h""(A& P „&$» —A& P"„&g)

+&&(K"&I"8—'K&I"q" )F„-„F,+O(e' &&')

(2.10c)

where we have used the notation A&„B„&= ,'(A B-
+A„B„).Zz and 2, describe how the free mass-
ive scalar and photon fields propagate in Minkow-
ski space. From (2.10a) and (2.10b), we can de-
duce the propagators for the massive scalar field
and the photon field in momentum space

where S&,. is the scattering matrix element

III. EXCHANGE COMPTON SCATTERING

We are now in a position to work out the cross
sections for the conversion of gravitational waves
into electromagnetic waves in the electrostatic
field of a charged scalar particle.

Let the initial and final 4-momenta of the scalar
particle be 'p =('E, 'p) and 'p =('E, 'p), and those
of the incident graviton and scattered photon ~k

=('&o, 'I&) and "k=("&d,"k), respectively. The pol-
arizations of the graviton and photon are denoted
by e"" and E~. The lowest-order diagrams for
exchange Compton scattering are shown in Fig.
2. Figures 2(a) and 2(b) are the pion-pole terms,
and Fig. 2(c) is the seagull term familiar from
meson theory. The t-pole term, exhibited in Pig.
2(d) is a unique feature of gravitation. It arises
from the fact that the gravitational wave interacts
not only with the mass of the particle, but also
with the energy associated with its long-range elec-
trostatic field.

A straightforward application of the Feynman
rules summarized in Sec. II yields for the indiv-
idual contributions of the separate graphs

T„('p, 'p, "k) = e('p+'p)„ (2.12a)

(b) the scalar- particle- sea lar-particle- graviton
vertex

T„„('P,'P, 'k) =2X('P&, 'P„&+-,'M'&), „), (2.12b)

(c) the scalar-particle-scalar-particle-graviton-
photon vertex

T„„„('P,'P, 'k, "k) = -2e&&('P + 'P) &, &I,„„(2.12c)

(d} the graviton-photon-photon vertex

(o) (t)) (c) (d)

FIG. 2. Feynman graphs for exchange Compton scat-
tering (graviton —photon) by a charged spin-0 meson.
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T =2Xe('p e'"'p + ,'M-'e)'p ~ e4'('p'k) '

T, = 2-Xe('p ~e"'p„+-,' M'e)'p ~ e*('p ~ "k) ',
T = 2-Xe e'"('P+'P) e4'

T4= X-elk e ""k„('p+'p) *@4'—e~"('p+'p) e„*,~k ~ "k

—e ""k e„""k~ ('p+ p)+e~""k ('p+'p)(g v) (v v)

+ ,'e['—k~ "k('p+'p) ~ e*—'k e*"k ('p+'p)j)('k ~ "k)

(3.1a)

(3.1b)

(3.1c)

(3.1d)

Here

e=e ".
To obtain the above, we have used

(3.2)

e"'k, 'P, =-e""k, 'k „f) (i f)y

~k ~ ~k =M("&u —~~),

"k ('p +'p) =-M("(u+'~).

(3.7c)

(3.7d)

(3.7e)

lpo lp —2po 2p

~k k="k "k=0
'k e "= k e"'="k E" =0.

V

(3.3a}

(s.sb)

(3.3c)

Pgv eQv+g k(P v)

a'-e'+f"k",
(3.4a)

(s 4b)

where k„x"= 0, and f and X are otherwise arbi-
trary functions.

It can readily be shown that the individual terms
are not gauge invariant though their sum is. In-
deed, the fact that the sum turns out to be invari-
ant under gauge transformations is a strong test
which assures us that no algebraic errors have
entered into the calculation.

In our expressions for the cross section we
shall use the laboratory frame, in which

To investigate the gauge invariance of the scatter-
ing amplitude, we consider the tranformations

Ca) =
1+2('(u/M) sin'(-,'8) ' (3.8}

where 6} is the angle between 'k and 'k.
The differential cross section for converting a

graviton with frequency '~ and polarization e"'
into a photon with frequency 'v and polarization

is

2r
2M2 &u2 E2"v i

(3 9)

where D denotes the density of final states

] 2E&~3

(2 v)' M '(u (3.10)

The above relations follow from conservation of
energy-momentum and the transverse nature of the
photon and graviton.

The frequency of the outgoing photon is related
to the frequency of the incident graviton through
the Compton relation

1~p 0 'E =I Substitution of (3.6) and (3.10) in (3.9) and use of

(3.8) yields
~k=2p+ "k

)

~(d+M=~&;,'+ E.
(3.5)

40' e a «2 A

~ e""k .~+ ~',
dQ 8v sin'(-,'0) 1+ (2'~/M) sin'(-,'6)

T =2zev'»k ~+c (5 f)& (3.6a)

We remove the gauge freedom for the electromag-
neiic field by choosing the photon polarization E

to be purely spacelike (e'=0). The gravitational
gauge freedom is specified by choosing the trans-
verse-traceless (TT) gauge (~e'=e ' =0; e =0).

We then see that the contributions of the dia-
grams (a) and (b} vanish and the remaining terms
take a much simpler form: da' Ie""k .~+ -'

dQ 8vsin4(~e) '
(3.12)

(s.ll)
where "k is a unit vector in the direction of the
outgoing photon.

In the nonrelativistic (NR) region, i.e. , ~w

«M, there is negligible recoil of the scatterer,
and (3.11) reduces to

(d
Tg =2Xe e k( ]6f),

CO —"CO

where we have used

p ~ Z'= kK
p'&»p q. = e'f gp .q(~ f) (& f)y

(s.6b)

(3.7a)

(3.7b)

(NR limit, " in laboratory frame).

It is easily seen that the cross section (3.12) is
solely due to the contribution of the t-pole dia-
gram. We therefore conclude that although the
t -pole term is not invariant by itself with respect to
gravitational gauge transforrnations, it yields
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the correct nonrelativistic scattering amplitude
in the laboratory frame, but only if one chooses
the TT gauge fox the gy'aviton. One is free to
choose the photon gauge, as the t-pole term is
invariant with respect to photon gauge txansfor-
mations .

When ~~«M, the source of the electromagnetic
background field is not appreciably affected by the
incident graviton. This justifies the use of the ex-
ternal-field approximation" in the nonrelativistic
limit. In this approximation the differential con-
version cross section is given by

~here e„, e„e„and e, are the unit veetoxs in
the x, y, 8, and y directions. Substituting (3.18)
into (3.12), we find

~~l ~ ~
2

dQ' dO' 8 cot'(-,'8)(l —cos8)',
dQ ~~ dA ~ j6m

(3.19a)
d0' dO' 8 cot'{—,'8)(1+cos8)',
dA ~~ dQ ~~ 16m'

(3.19b)
where the first {second) subscript denotes the grav-
iton (photon) polarization. The cross section for
converting circularly polarized gravitons into pho-
tons (of any polarization) is then

with

(3.14) (
dO' dG' 8= —cot'(-,'8)(1+cos'8).
dA~ dQ ~ 8m

(3.20)

The transition amplitude to be used in (3.13) is
given by (2.12d), where one of the photon polar-
izations that must be contracted with it stands
for the 3-dimensional Fourier transform of the
Coulomb potential

For any angle 8+0 the outgoing electromagnetic
radiation is not eirculaxly polaxized anymore, but
elliptically polarized. In the forward direction
however the outgoing photon has the same helieity
as the incident graviton. We also note that there
is no backseatter,

(3.15) (3.21)

l.e.,
(3.15)

Here q is pure spacelike (no recoil of the scatter-
er). It is readily checked that the external-field
approximation leads to the nonrelativistic cross
section (3.12) .

From now on we shall restrict our attention to
this more realistic case of nonrelativistic scatter-
ing (unless otherwise stated). The relativistic (It)
cross sections can be obtained from the nonrela-
tlvlstlc cl"oss sections by multiplication by the
appropriate factor

It is worthwhile to compare these convex sion cxoss
sections with the Compton-scattering cross sections
for photons and gravitons. The photon Compton-
scattering cross section (in the nonrelativistic
limit) is the familiar Thomson cross section

(3.22)

Unlike Thomson scattering the conversion cross
sections (3.19b) and (3.20) exhibit a Rutherford
peak in the forward direction. This feature is en-
tirely due to the t-pole term and is also present
in the cross section for graviton scattering"

, ,8
[cos'{-,'8) + sin'( —,'8)],

do' M~
(3.23)

er. = 2 exes- eyes —i eXe3, + eyes 2

(3.18a)

(e, +ie,),z
~2

e

] A

(e~ —'le~),J
~2

8

(3.18b)

do'

1+(2'(o/M) sin'(a8) dQ „„
We choose now for the basis states of the inci-

dent graviton and the outgoing photon the circular
polarizations

ea ———,[e„e„—e„e,+i(e„e +e„e„)],

where M is the mass of the scattex'er.
We turn now to linear polarizations. %e choose

for the graviton basis states

e„= (e„e,+e„e„).X

{3.24a)

(3.24b)

cot'(-,'8)(sin'2P+ cos'8 cos'2$),dQ, 4'
(3.25a)

Substituting (3.24) into (3.12) and summing over the
polarizations of the outgoing photon we find
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cot'( —,'8)(cos'2Q+ cos'8 sin'2P).
dQ „4m'

(3.25b)

From (3.19) it follows that the outgoing photon is
also linearly polarized. For unpolarized incident
waves we must average over P, and we recover
(3.20) .

The diffexential cross sections can also be ex-
pressed in texms of the frequency "co of the out-

going photon instead of in terms of the scattexing
angle 8. Using (3.6), we find, after integration
ovex' P

2 (gp ~~ M "(e 2l

e' sin28(l+ cos'8)
32m [sin'(-,'8)+ (q„/2(o)']' '

(3.33)

For linearly polarized incident gravitational waves
the —,'(1+cos'8) must be replaced by (sin'2$
+cos'8cos'2$) or (cos'2Q+cos'8sin'2Q) for the+
and x polarizations, respectively.

The total cxoss section now becomes finite and
is given by

2~ de
o' = —sin8 d8 dP

dQ

(3.34)

X1+ 1~@~A
y (3.26) Note that this result is valid only for tenuous

plasmas, i.e., for ~X~-& j.. For dense plasmas
the electromagnetic index of refraction

(3.35)

1+2'&o/M

The totR1 conversion cx'oss section obtRlned by
integrating (3.20) diverges because of the long-
range character of the Coulomb field. This di-
vergence may be avoided by Debye shielding if
the scattering takes place in a plasma. In the
nonrelativistic limit the interaction of the gravi-
tRtlonRl wave %'1th the fixed cilRx'ge 18 Qow assumed
to take place through a scxeened Coulomb potential

exp(-x/X~) (3.26)

Here the Debye screening length X~ is given in
terms of the electron thermal velocity

(3.29)

Rnd the plasma frequency

(3.30)

5~
&2(op~

The screened Coulomb potential has a spatial
Fourier transform

(3.31)

where fl is the momentum of the spacelike photon
mediating the Coulomb interaction and qic =1/Xn.

Using (3.32) and (2.12d) we find that when shield-
ing occurs, (3.20) must be replaced by

will not allow the electromagnetic wave to travel
with the same phase velocity as the gravitational
wave, Rnd therefore the conversion cross section
will be reduced to R value considerably less than
(3.34) ."

If the scattering does not take place in a plasma
but the incident gravitational wave front has a
width B, the Huthe. x'ford forward scattex'ing peak
is again suppressed and (3.34) applies with the
Debye screening length XD being replaced by the
width D.

Finally, note that the foxDlulR8 dexlved Rbove fox
a point charge are also valid for a charge distri-
bution confined to the coherence volume

(3.36)

do' l
Sv sin'(~8) 1+(2"a&/M) sin'( —,'8)

x j8 + k(peg) ~

(valid for all "&o/M).

(3.37)

The cross sections for circularly polarized ox
unpolarized incident electromagnetic waves ax 6
the same as those for the corresponding inverse

All of the pxevious formulas applied to gx'avita-
tional-electroIDagnetic wRve conversion. The 1Q-

velse px'ocess 18 Rlso possible and ls desex'1bed by
the Feynman diagx"ams in Fig. 3. Straightforward
calculations similar to the ones above lead to the
differential cross section for converting an elec-
tromagnetic wave with frequency "~, polarization
Z' Rnd propagation direction % into a gx'avitational
wave with frequency ~~ and polarization 7:
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and utilize the extex"nal-field approximation. The
magnetic dipole field"

3r(m ~ r) —m(r ~ r) (4.1)

is obtained by applying (2.2) to the Maxwell 4-po-
tentia, l

FIG. 3. Feynlnan graphs for exchange Compton scat-
tering (photon graviton) by a charged spin-0 meson.

A.o =0,

(m x r),.
4m'' {4.2b)

conversion process. Owing to the different spin
nature of the incident quanta, the cross sections
fox' linearly polarized incident electromagnetic
waves, howevex, show R different (II) dependence
than the corresponding inverse-process results.
Specifically, for electromagnetic wave polariza-
tions along the x and y axes we find (in the non-
relativistic approximation)

2 ~
~
~ t 2 2 2

e2
cot'(-,'8)(sin'P + cos'8 cos'P) „dQ; 4&

2 2 I 2
do' e= —cot'(-,'8)(cos'P + cos'8 sin'P).
dA y

4m'

(3.36a)

(3.36b)

IV. CONVERSION IN A MAGNETIC DIPOLE FIELD

%e turn now to eleetrogravitational conversion
with a magnetic dipole field acting as a catalyst

. (rn xQ~)
0'l = -'L (4.3b)

Here t| is the pure spacelike momentum transfer
and p, is an arbitrarily small positive number,
which ean be thought of as originating from intro-
ducing afactor exp(- p,l) in (4.2}. its meaning will
be made clear below. We choose a pure spacelike
photon polarization and the TT gauge for the gravi-
ton and use Elle. (2.12d), (3.13), (3.14), and (4.3}.
The result for scattering a gravitational wave with
polarization e, frequency ~, and propagation direc-
tion ~P into an electromagnetic wave with polari-
zation Z', frequency m, and propagation direction
"k is

Hex'e m is the dipole moment. The Pourier trans-
forms of theA are given by

(4.3a)

~e"I,"fl "i ~* [mx("0-'ll)]+K*.[mx("i —'i)] {1—"k'k)+ "i e*"Il ( x'8)
dQ Bw[sin (—8) +1}] (i A f& ))

+ "kll[m x {"k—~k)]l)~k &*)j'. (4 4)

Here m is a unit vector along the direction of the dipole moment and q is a small positive number, which
is a function of p, .

We first consider circular polarizations and find from (4.4) after some algebraic manipulations

(
80' dC {d Pl sin 6

~ ][coen S1118+sinn(l —cos8)cosp] + (2 sllln sing) ),dQ „„dQ ~~ 64m[sin4 ~8 +1}]

(
— /[coen sin8+ sinn(1 —cos8) cosset&]'+ (2 sinn sing)'],

do da ld'm'(1 —cos8)4
dQ sq dQ ~s 64w sin 28 +q

(4.5a)

(4.5b)

where the first (second) subscript denotes the graviton (photon) polarization. The angles 8, Q, and n are
defined in Fig. 4.

Summing over final polarizations, we obtain the conversion sections for circularly polarized (or unpol-
arized) waves

2 I ~
~I~

~

~ ~~I

do do uPm' sin'(-', 8)(I+ cos'8}
/coen sin8+ sinn(1 —cos8) cosg]'+ (2 sinn sing)' ).

dQ s dQ Bll sin~(~8)+ q
(4 6)

Note that for any direction but the forward and backward, the outgoing wave will be elliptically polarized.
Unlike the scattering by a charge, the conversion cross section does not vanish in the backward direction

(dv/dQ), , = v 'ld'm' sin'n. (4.7)

The meaning of the arbitraxily small positive number q is now obvious. For any direction but the forward
direction (8e0), 1} may be omitted. However, for 8 =0, the presence of 1} ensures that the cross sections
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converge to a unique limit (namely zero). If we had not introduced the factor exp(-pr), the cross sections
in the forward direction would be nonzero and dependent on P.

For linearly polarized incident gravitational waves one finds from (4.4), after summing over final polar-
izations,

der ur'nP sin'( —,'8}
([(coso.sin8+ sinn(1 —cos8) cosP) sin2&f& —2 sinn sing cos2$]'

dQ, 4v sin' —,'8 +rl

+ cos'8[(coen sin8+ sinn(l —cos8) cosP) cos2$+ 2 sinn sing sin2$]'j,

do Hm' sin'(-,'8)
([(coen sin8+ sino(l —cos8) cosP) cos2 /+ 2 sine sing sin2$]'

da „4v sin'28 +q

+ cos'8[(coso. sin8+ sinn(l —cos8) cosP) sin2$ —2 sino. sing cos2$]'j.

{4.8a)

(4.3b)

As can be seen from (4.5), the outgoing electromagnetic wave will still be linearly polarized.
An obvious feature of these cross sections is the absence of a Rutherford peak in the forward direction,

a manifestation of the fact that the dipole field falls off faster than v . This yields a finite total cross sec-
tion,

g=5&g m (1 —9coso).2 2 I 2

Electromagnetic-gravitional conversion is also described by (4.4) with the following substitutions:

(4.9)

(4.10a)

(4.10b}

For circularly polarized or unpolarized incident electromagnetic waves, the conversion cross sections
are the same as the corresponding gravitational-electromagnetic cross sections. For linearly polarized
incident electromagnetic waves, the cross sections exhibit a different (t} dependence when contrasted with

(4.8}

(
dg ~'m' sm'(-'8)

(sin'y + cos'8cos'p) ( [coen sin8 +sinn (1 —cos8) cosp]'+ (2 sino.'sing)'j,
dQ; 4v sin (-,'8) + q

(4.11a)

do &u'm' sm (~8) (cos2y+cos28sin y)([cosot sin8+sino(1 —cos8) cosp]2+{2sinn sing) j.dg; 4v sin'(-,'8) + q

(4.11b)

V. CONVERSION IN AN ELECTRIC DIPOLE FIELD

The electric dipole field"

3r(p ' R —p(r ' r) i 53im (5.1)

may be obtained from the Maxwell 4-potential

(5.3), (2.12d), (3.13), and (3.14), we find the dif-
ferential cross sectjon for converting a gravita-
tional wave with polarization e, frequency co, and
propagation direction ~ k into an electromagnetic
wave with polarization e, frequency (d, and prop-
agation direction "0,

(5.2a)

The Fourier transform of A„ is

(5.2b)

(5.3b}o~=O.

Here p is the electric dipole moment. Again ere
choose a pure spacelike polarization for the pho-
ton and the TT gauge for the graviton. Using

FIG. 4. The spatial orientation of the magnetic mo-
ment m and the direction "k of the outgoing photon rela-
tive to the direction ~k of the incident graviton.
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GO

[sinu sin8 cosP —cosu(1 —cos8)]'
~

e ' "k«cz& ~'.
8v[sin'(-,'8)+ q]

(5.4}

Using the notations of the previous sections, we find that the cross sections for various polarizations
are given by

~

~ ~do dk &u'p' sin'8(1+ cos8)' 2
[sinu sin8 cosP —cosu(1 —cos8)],

64m[sin (28)+ 7J]
(5.5a)

[sinu sin8cosg —cosu(1 —cos8)]2,(
do do uPp' sin'8(1 —cos8)'
dA „~ dQ zs 64m[sin' (-,'8)+ q]

(
do du ~2p2 sin'8(1+ cos28)

[sinu sin8 cosp —cosu(1 —cos8}]',
dD & dQ ~ 32v[sin4(-,'8)+ q]

do ur'p' sin'8(sin'2p+ cos'8cos-2$),~

~ ~

~ ~[sinu sin8cosg —cosa 1 —cos8
16m[sin (-,'8)+ g]

(
do ~'p' sin'8(cos'2&+ cos'8 sin'2p)

[sinu sin 8 c os' —cosu(1 —cos 8)]' .
dA 16v[sin'( —,

'
8) + q)

(5.5b)

(5.6)

(5.7a)

(5.7b)

As before, electromagnetic-gravitational conversion is described by (5.4) modulo the substitutions

e -e—&f —&f+

E)+

Formulas (5.5) and (5.6) remain the same but (5.7) must be replaced by

(5.8a)

(5.8b)

(5.9a,)

(5.9b)

c
du uPp' sin'8(sin'p+ cos 8 cos Q),~sin~ sin0cos(t) —cosa(1 —cos8 ',

16m[sin'(28)+ q]

~

do +'p'sin'0 cos'P+ cos'~ sin'Q & .
~ sinn sin0 cos& —

cosa�(1

—cos 8 ' .
16m[a in4(-,

' 8)+ q]

Unlike scattering off a magnetic dipole, the conversion cross sections vanish in the backward direction.
The total cross section is finite and is given by

o=r7;u)'p'(1 ——', cos'u) . (5.10)

hP Qf eP Ref 4"x
t (6.1)

propagating along the z axis and incident on a uni-
form magnetostatic field B (see Fig. 5). This
magnetic background is confined to the region be-
tween the planes z = -l/2 and z = f/2 and makes an
angle n with 'k:

VI. CONVERSION IN A UNIFORM MAGNETOSTATIC FIELD
M

We first study the inverse Gertsenshtein pro-
cess,"i.e., gravitational-electromagnetic con-
version in a homogeneous magnetostatic back-
ground. Consider a plane gravitational wave

g Pl(
I

I
I
I

J( gk

zB= B rect — (sinu 8„+cosu 6,), (6.2)

where the rectangle function is defined by

„„(,)
~

~0 otherwise.
(6.3)

In the TT gauge the conversion process is des-
cribed by the 2-photon-graviton interaction func-

FIG. 5. The spatial orientation of the uniform ma~e-
tic background 8 relative to the direction ~k of the in-
cident graviton.
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tional [cf., Eq. (2.10c)] the usual procedure, we put

Sg=X A 'g Fg gad xp (6.4)
i
6(~k| —ek, ) ie =

2
6("k, —eke), (6.11)

where E,„and F&~ stand both for the outgoing elec-
tromagnetic wave i

6("k, -'k, ) i'= —6("k, —'k, ), (6.12)

E,„=-i("k„e„*—"k„ef)e '"'-'-,

and the magnetic background

(6.5}

Fi3=-F3i=O

The sine function is defined by

= (2v)'Bl coso.

d4
sine

2 5q, 5q, 5q, e'&"-

(6.6)
+23 =-F32

= (2x)eB/ sinn

4
x sine 2' 6(q, )6(q,)6(q,) e"-'-,

transition probability
cm' sec

2m I Tq,. I

=2~k'2 k
(6.13)

and we obtain, after using (6.8), (6.10), (6.11),
and (6.12)

with L an arbitrarily large but finite length. Ill-
def ined mathematical expressions containing
squares of 5 functions can be avoided if one uses
wave packets to represent the ingoing and out-
going waves. The infinities in iT&, i

a.rise as a
consequence of the infinite extent of the interac-
tion region (infinitely wide wavefronts propagating
in a magnetic background, which itself is infinitely
extended in the transverse directions).

Therefore we calculate the transition rate per
unit area

sine(x} = =j 0(vrx),
sin(vx) (6 7)

I'„,„e=8vB'leg i("k xB).e 7* i', (6.14a)

where j, is the zero-order spherical Bessel func-
tion. For the electromagnetic wave we choose the
pure spacelike gauge (co=0). From (6.4) we de-
duce the transition matrix element

T~,. = i2(2v}'z[(&k x B}- e ~ &+]

ik —k ilxBl sine ' ' ' "k,
27t'

x 6("k, ek, )6("k, 'k, ) . ( 6.8)

transition probability
sec

„... i T~, i'D6("k'-'k'), (6.9)

where D is the density of final states

d' 'k
(2v)' (6.10)

This transition probability exhibits quadratic de-
pendence on 6("k, —ek, ) and 6("ke —ek, ). Following

The presence of 6 functions in (6.8) means, among
other things, that the electromagnetic wave is
constrained to travel the +z directions.

To obtain the transition probability per second
we must square (6.8) and substitute into the "gold-
en rule"

F~„„„e= 8vB'le sine' —g i
("k x j9) . e .e ~

i

' .(d$

(6.14b)

Here 2; denotes summation over the final photon
polarizations and (d =- ~k'= "k'. Evaluating

P= f("kxB) -e e

for different choices of initial and final polariza-
tions we arrive at

P, ; =P„p„=0,
X

Pzz, =Ps.z = 0,

Pgg =Pgg = g sin Q2

(6.15a)

(6.15b)

(6.15c)

(6.15d)

T" = (+)I'T" = 4vB' sin'n l'T"
EMW GW g GW~

l
—sine

(6.16)

i.e. , linearly polarized gravitons generate linearly
polarized photons, whereas circularly polarized
gravitons generate circularly polarized photons
with the same helicity.

Note that these transition probabilities have been
computed for an incident number flux= 1 particle/
cm' sec. It follows that
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where 7E3M~ and T~~~ are the power flux of the
electromagnetic wave and gravitational wave,
respectively, and where the upper (lower) sign
refers to forward (backward) outgoing electro-
magnetic radiation. The electromagnetic power
flux in the backward direction is smaller by a
factor sincm(&of/v) as compared to the flux in the
forward direction and vanishes if the condition
f=nX/2 (n=1, 2, . . . ; X=2m/&o) is met. The fact
that the conversion efficiency I' is quadratic in
l depends critically on the equality of the propaga-
tion velocities of the electromagnetic wave and
the gravitational wave. If we introduce a medium
with a dielectric constant 41, we destroy the co-
herence between the gravitational and electromag-
netic pertuxbations and thereby put a limit on the
useful length /. Note also that for propagation
along the field lines of B resonant conversion
does not occux.

A magnetic field with finite transverse direc-
tions -I (L, » 2w/&u) has a conversion cross sec-
tion of the order

8E=E rect
f

(sinn e„+cosu e,).

x sine ' 5 q 5 q 5 q e-"-'"-

E»= E„=-(2v)'Ef cosn
(I 2)

x slnc 5Q 5Q 5q e

all other E„„=O.
The transition amplitude is given by (6.8) with B
being replaced by E. The conversion efficiencies
and cxoss sections of Sec. VI are applicable if we
substitute B by E.

The conversion processes are again described by
(6.4) where the electrostatic background is now

described by

E»= E»-= (2v)'El sina

a - 4mB'1. 'l2 sin'n

- 4mB'Vt sin'o.', (6.17)

VIII. CONCLUSIONS AND COMPARISONS KITH PREVIOUS

RESULTS

where V is the volume of the magnetic field re-
gion and t is the travel time of the gravitational
perturbation through the magnetostatic background.
The propagation direction of the outgoing electro-
magnetic wave is not confined to only (+) the di-
rection of the incident gravitational wave but can
be within a solid angle centered about this direc-
tion of incidence.

If the magnetic background is chaotic with an
ordered structure on some scale f,» 2v/&d (f,
stands for correlation length), the electromagnetic
waves generated in different cells are incoherent.
One must therefore add their energies, and one
obtains fox the conversion efficiency

(6.18)

where t is the time of passage of the gravitational
wave through the magnetic background. Fox the
Gertsenshtein process (electromagnetic-gravita-
tional conversion) all of the formulas above apply,
allowing the substituion a*-e, e- E* in (6.8) and

(6.14).

VII. CONVERSION IN A UNIFORM ELECTROSTATK FIELD

Finally, turn to the Lupanov process" (and its
inverse}, i.e. , gravitational-electromagnetic
conversion (and vice versa) in a homogeneous
electrostatic field. Choose the same geometrical

configuration as in Fig. 5, with B being replaced
by E,

We have computed electrogravitational conver-
sion cross sections using Feynman perturbation
methods for various electromagnetic backgrounds
of possible astrophysical and/or experimental
interest. For reasons of ease and straightforward-
ness, a quantum approach has been used to calcu-
late a process which is classical in itself (the
conversion efficiencies do not depend on 8}.

For the exchange Compton scattering, various
authors have obtained conflicting results. Papini
and Valluri, "and Matzner' have obtained finite
total cross sections. Our results confirm the
findings of Ginzburg and Tsytovich, "who exploited
the formal analogy with electromagnetic transition
radiation and obtained exactly the nonrelativistic
limit of our (nonintegrable) differential cross sec-
tion. The divergence is avoided only after either
introducing Debye screening or by limiting the
spatial extent of the incident wavefronts. Boughn"
also arrived at a divergent cross section in the
form of a multipole series. The quadrupole term
in this series is the most important one but the
higher-multipole terms do not fall off fast enough
to ensure convergence of the series. For this
reason one may not limit oneself to quadrupole
waves in computing the total cross section as
Matzner does.

It must be stressed that we have calculated a
gauge-invariant transition matrix element. We
have also shown that in the nonrelativistic regixne
(&u «M) one can still obtain the correct transition
matrix element by limiting one's attention to the
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t-pole diagram, ifone chooses the TTgaugefor the
gravitational uave. This is what Ginzburg and
Tsytovich, and Boughn have done. If one were to
choose a non-TT gauge for the gravitational wave,
the t-pole term becomes (in the nonrelativistic
limit)

2Xg
T= „~,[ere' "h«e&*& —&ue' k«e~*&+ ,'&uV-'k e"k- kl

,' e-"-e,*("k-'k)' - e"' "h„'k ~ e *] .
(8.1)

For notations see Sec. III. The transition matrix
element (8.1) was calculated for a pure spacelike
photon gauge. (The t-pole term is independent of
the photon gauge. ) In the TT gauge only the first
term in (8.1) survives. Note that for a non-TT
gauge the backscatter is nonzero,

(8 2)

If we choose to calculate in the TT gauge, how-
ever, we find T&rg. sg&= 0. This glaringly illus-
trates the ambiguities we must face if we calculate
a transition matrix element which is not gauge
invariant. The best we can hope for is that for an
appropriate choice of gauge, the effect of the
omitted diagrams is negligible. The gauge to
choose for this problem is the TT gauge.

Finally note that we have studied exchange Comp-
ton scattering only for spinless particles. For
spin-& fermions the calculations are similar but
more complicated owing to the extra spin degrees
of freedom. In the nonrelativistic limit, however,
the results for scalar particles are valid for
spin-& fermions as well.

Conversion scattering in the field of dipoles has
received attention from Ginzburg and Tsytovich,
and Papini and Valluri. Ginzburg and Tsytovich
give differential cross sections that are integrated
over Q. Our differential cross sections for an
electric dipole, when integrated over Q, agree
with the results of Ginzburg and Tsytovich. "
For magnetic dipoles, however, Ginzburg and
Tsytovich find the same results as for electric

dipoles, whereas our results are different. This
is because they do not use the correct field for a
magnetic dipole. "

The Gertsenshtein and Lupanov resonant pro-
cesses (and their inverses) have been analyzed
rigorously by Boccaletti et al." For electromag-
netic-gravitational conversion our results are
identical with theirs: Only the transverse com-
ponents of the background field contribute to con-
version, the converted wave propagates only in
the same or in the opposite direction of the inci-
dent wave, the converted wave propagating in the
backward direction is weaker than the converted
wave propagating forwards and may be absent
completely, and the conversion efficiency depends
quadratically on the travel time of the perturba-
tion through the background. We also confirm their
their numerical correction to Gertsenshtein's
original results.

There is some disagreement with the results of
Boccaletti et al. for gravitational-electromagnetic
conversion in a homogeneous background. These
authors find a backward-travelling electromagnetic
wave if the incident gravitational wave propagates
along the field lines of the background. This er-
roneous feature (which destroys the electromag-
netic-gravitational symmetry) is due to their
choice of a gravitational gauge which is not TT.
If one chooses to use the TT gauge, the method
used by Boccaletti et al. reproduces our results.
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