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We study the conditions for the natural suppression of CP violation af the orders G„and GFa of
quark —gauge-boson couplings in the SU(2) X U(1) gauge-theory framework. For the natural suppression of

CP at the order GF, the necessary and sufficient condition is that the quarks of the charges q and ~If
—l

do not belong to the same isomultiplets for at least one chirality. However, it is not generally possible to

n:lturally suppress CP at the order GFa except for the limited class of models such as the standard four-

quark model.

L INTRODUCTION

A few expire»ately s»~all numbers have appeared
in elementary-particle physics. They are the %~-
K~ mass difference, the K~- p, p, branching ratio,
upper bounds for the branching ratios of p. —ey
and p. - ee'e decays, and CP-violating pa-
rameters in K~- 2m decay. Do we understand
why all these parameters are so small? The
small or vanishing experimental number s
can be understood in two ways: by an arti-
fieia/ mechanism or by a na/ural mechanism. '
The artificial mechanism implies that there is no
alternative choice except one particular set of pa-
rarneters in the theory to produce experimentally
vanishing numbers ~ On the other hand, the natural
mechanism implies vanishing experimental num-
bers however one may choose the parameters in
the theory. Since the artificial mechanism is tri-
vial, we pose the question to the natural scheme.

For the natural conservation of strangeness and
muon number, the Glashow-Weinberg theorem
should be satisfied. ' But there does not exist an

equally useful study for a naturally small CP vio-
lation. Ever since the discovery of CP nonconser-
vation, ' the mystery has not been why it is there, "
but sehy it is so weakly ~.~iolated. ' The old idea for
the feeble CP violation with an imaginary coupling
constant' cannot be incorporated within a gauge
theory. If we stay in the standard four-quark
scheme of Glashow, Iliopoulos, and Maiani' (GIM),
we can introduce ingenious schemes through the
spontaneous CP violation or CP-violating Higgs
Lagrangian. ' However, they do not solve the basic
problem of the smallness of the violation in ex-
tended quark models. For example, the six-quark
scheme of Kobayashi and Maskawa' introduces a
complex parameter in 8'-boson-quark couplings,
but there is no a Priori reason that this parameter
should be small.

At present, there is evidence that we need more
quarks than the four quarks of CIM. The most
serious phenornenological need arises when we

try to fit the heavy lepton s in the scheme.
this possible circumstance of extending

quark and lepton models from the minimal four
leptons and four quarks, we ask the following; Is
it Possible to natural/y suPPress CP ~'iolation in
gauge-boson-quark coMPlings? We study this
problem essentially in the perturbative treatment.
Suppose that in a theory we have the maximum
number of CP-violating parameters. " This is
equivalent to the maximum number of unremovable
imaginary phases through phase redefinition of
quark fields. For example, the charged cur-
rent

defines a unitary matrix U in the flavor basis (in
the flavor basis, the mass matrix is diagonal).
Here U is n & n and u and d are n x 1 column vec-
tors of quarks of charge —; and ——,, respectively.
As usual, we identify d, =d, d, =s, u, =u, and u,
= e. Then we study the following problem: How
many columns of U can be made real while rnain-
taining the maximum number of independent param-
eters in U by the phase transformation VtUW,
where V and 8' are diagonal unitary? In this spe-
cific example (I), we can make only one column of
U be real for n = 3, but cannot make two or more
columns real. (For n=2 we can make both of the
columns real. ) This means we can remove any
CP violation from the order Gz but should include
it at the order G~n. Suppose we could make two
columns of U be real. Then we can remove CP
violation up to the order Gzn since we can rede-
fine the quark field phases such that any desired
two columns (or two rows) are real. In this case,
the E~-K~ mass difference which occurs at the
one- loop level does not have any imaginary com-
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ponent and CP violation in K~-2~ through gauge-
boson coupling is expected to occur at the level of
(nm, '/wM~')Gzn, i.e., q is order of nm, '/M '

We assume an SU(2) x U(1) gauge theory. " In
Sec. II, we show that the quarks of charge q and
q-1 do not belong to the same weak isomultiplets
for at least one chirality for the natural CP con-
servation at the order G~. This is equivalent to the
condition for the microweak CP violation of Lee."
Then we show that it is not generally possible to
have natural CP conservation at the order G~n.
In Sec. GI, we present a few models which can
have natural CP conservation in the K~-Ks mass
matrix up to the one-loop level. None of these
models can successfully interpret the high-y
anomaly. "

II. CONDITION FOR NATURAL SUPPRESSION

OF CP VIOLATION

In this section we assume an SU(2) x U(1) gauge
theory, " and define the quark fields in the weak-
interaction basis

~L) ~R

and the flavor basis

qg)

(2a)

(2b}

qr. V~(L, )

qR =V

The mass matrix

(4)

for each chirality. If necessary, q is decomposed
to charge eigenstates

q=(. . . , f, u, d, v, . . . J,
where f, u, d, v, have Q =-,', -', , --', , and --', , re-
spectively. In the weak-interaction basis gauge-
boson coupling is diagonal and in the flavor basis
the mass matrix is diagonal. The weak-interac-
tion basis and the flavor basis are related by uni-
tary transformations,

where

~Lyg + ~L ~RyI) + ~R (10)

d„= (~y (T~~ —sin H~Q~)$~

where

+ $ y, (T, —sin'8 Q )$

Q=Q '+Q"1-
2

'
2

Since [Q,M]=0, we have"

[Q', v, l =[@',v„l =0,

(12)

(13)

+ ~ ~ ~
) (14)

where U~'R, X~'R, Y~'", etc. are unitary matrices
and u~ R, d», etc. are column vectors with quark
fields.

Now we investigate systematically the conditions
for CP conservatjon at the order G~ and the order
G~a. For this we also assume that the quar@mass
matrix is completely arbitrary.

which guarantees the flavor conservation in Q~'"
terms in J~. For the natural conservation of fla-
vors in neutral currents, T, ' should be the mul-
tiple of identity for the equally charged quarks, and
Z„coupling to quarks conserves CP. If we require
flavor conservation only between d quarks, the Z„
coupling can violate CP but the K~-Ks mass dif-
ference picks up an imaginary component only at
the two-loop level of Feynman diagrams. Hence,
the contribution to apossibly large CP violation in

K~ —2m can come only from the charged-current
coupling (10). This charged current (10) can be
decomposed into components,

J„=u~y U~di+uRy U dR+d

+dsy„Xsvs+f~y„r~u~+fzy I'"us

$,M$„+ („M'$,
is diagonalized by V~ and VR,

H' = qz,MaqR+ qR Dqr.

where

(6)

(6)

A. Natural CP conservation at the order GF

Any unitary transformation A~'", B~'R, etc.
which is needed for making a particular element
of U~'R, X~'R) etc. real should leave the diagonal
quark mass matrix M~ unchanged,

M~ = V~MVR .

Equation (6) can be decomposed to

qMDq =uM~+ dM~d+ ' ~

where M„and M~ are diagonal. The gauge-boson
coupling is defined in the weak-interaction basis
as

Namely,

M =A~ M AR=AR M A~t
Q g Q

M~ =8 Mg =B MP
(16)

qMDq =u~M„us+ usM„u~+ d~M+s + dsM~d~+ ~ ~ ~

Z =gZ~W +(g +g")' 'J"Z (9) etc. , where A '" and 8 '" redefine the quark fields
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u~ ~ and d~ ~, respectively. Since M is completely
arbitra, ry, A~'~, B~'~, ete. are diagonal unitary
(i.e. , only the phase redefinition of quark fields is
allowed) and left- and right-unita. ry matrices are
equal,

A~ =A~ 8~ =B~ etc. (16)

As an illustration, let us take U and U in Eq.
(14). By phase transformations A~'n and B~ ",
we want, without loss of generality, to make the
first elements of U~'~ be real,

(A U B ) =real,

(A U B )„=(A U"B }„=real,
which is equivalent to

A,', U,',B,', =real,

A~~ U»Bi'~ =re» ~

(17a)

(17b)

Equations (17a) and (17b) imply that

phase of U~» = phase of U~» =pha, se of A„B„

which cannot be generally satisfied for arbitrary
U and U~. Hence, one of U and U is not allowed
for natural CP conservation at the order g. The
physical implication of Eqs. (17a) and (17b) is that
we can redefine quark field phases such that the in-
teraction uy (a+ by, )dW~ conserves CP There-.
fore, the decay 8"-ud conserves CP. This argu-
ment ean be applied to any final state of the quark
and antiquark combinations, and Eqs. (17a) and (17b)
guarantee the CP conservation at the order g in the de-
cays W'-u, d~. Further, we note thatif one of U or
?J~ were forbidden, we could make a,ny one row
(or column) of U~ of Un real by appropriate phase
matrices A~ and B~, i.e. ,

phase of U~, = phase of A~,B~,

if U" were forbidden.
Therefore, we obtain a necessary condition for

the natural CP conservation at the order G~: The
quarts of charge q and q —1 do not belong to the
sanze Meak isonzultiplets for at least one chirality.
This is also a sufficient condition since we can
make any one element real for any one unitary ma-
trix by appropriate phase transformations similar
to Eq. (17). Further, if the above condition is
satisf ied, the one- W-boson-exchange diagrams,
e.g. ,

u,.d&- S"-u„d, or f~u, or d~v, , etc. ,

can contain at most the overall phase fac-
tors which cannot be tested experimentally.
Namely, the above condition is necessary and suf-
ficient for the natural conservation of CP at the

order g and G~.
If this condition for natura, l CP conservation at

the order G~ is satisfied, it is easy to see that the
eleetrie dipole moment of quarks cannot arise in
the second order of g since the electromagnetic
coupling of fermions conserve CP and flavor. The
electric dipole moment of the quark in this theory
is estimated by I,ee" to be of the order of 10-"
ecm for ning=60 GeV and m, =3 GeV. (Here we
have not considered the factor e =10 ' of Ref. 10.)

%e note that the vector models'4 do not have
natural GF-order CP conservation. But the Kobay-
ashi and Maskawa six-quark model' conserves CP
at the order Gz.

8. Condition for natural CP conservation lt the order G&, 0(

The feeble CP violation observed in K~ —2w de-
cay, viz. , q, =qoo=2 x 10 ', suggests that CP is also
suppressed at the one-loop level of the s+s -d+d
amplitude due to the fact that the CP-conserving
K~-K~ mass difference is consistent with the one-
loop calculation. "' Since we can use the freedom
of redefining quark field phases, the necessary and

sufficient condition for the natural CP conserva-
tion at the order G~a is the existence of tuo uni-
tary diagonal n~atrices, say A and B, which re-
nzo'l)es all the coknplex )zulnbers fro)n tA. '0 coluPnHs

(or two rows} frown an arbitrary unitary n&atrix U

in addition to the condition for the natural G~-order
CP conservation. (This kind of argument can be
extended to the natural CP conservation at higher
orders. ) Note that if this condition on the order
G„e is satisfied, the K~-K~ mass difference does
not get an imaginary part up to Grn(m 'I'Mv') due
to the GIM suppression since the dominant contri-
bution to the mass difference comes from the one-
loop calculation which is known to be suppressed
by quark mass terms. Without loss of generality,
let us transform U~ by phase matrices A~ and B~
such that the first two columns are real, i.e.,

A~ O'B', =real, (19a)

A~, U~,B„=real (19t)

(j is not summed) namely,

phase of U, ,B„=phase of U,,B„
and the phase of A~, is determined from (19a) or
(19b).

For an arbitrary n x n unitary matrix U~, there
are n equations corresponding to (20), i e. , j=1,
. . . , n, to solve for two parameters B~, and B~~, .
Therefore, for n~ 3, there do not exist phase
matrices A~ and B~ such that (19a) and (19b) are
true. On the other hand, if n =1 or 2, CP is con-
served to all orders in gauge-boson-quark cou-
plings. This is the original observation of Kobay-
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ashi and Maskawa.
Since it is hard to observe CP violation outside

the neutral K system, we may relax the condition
on natural CP conservation at the one-loop level in
other channels, which will be the case for the
second Rnd third models in Sec. III.

At this point, it is worthwhile to examine the
consequences of the flavor-changing neutral cur-
rents. In this case the matrix U~ in Eqs. (19a) and

(19b) is m x n, where m o n. Corresponding to E|ls.
(19a) and (19b), there are 2m equations for the
phase, Rnd we hRve Pl Rd]ustable phases ln A.

~

and two adjustable phases in B~, and B~». There-
fore, the case m ~2 admits solutions without re-
stricting the value of n. However, the case m
=2&n which corresponds to two Q=-,'quarks and
n Q=-—,

' quarks presents other disastrous problems
such as the ones in Q =-—,

' neutral currents which
violate both flavors and CP.

llL MODELS

of Sec. II. The same conclusion can be drawn for
But we cannot make both U~ and F~ real, si-

multaneously. The reason is that the phase free-
dom is restricted for the u quark field due to Eq.
(16). For example, if we made Fs real, the free-
dom for A~ is exhausted and only two parameters
in U~ can be removed by B~ [refer to Eg. (19)],
leaving one complex parameter. Hence, CP is
conserved in K~-2~ up to the order Gzn of the
gauge-boson couplings and q from this source is
expected to be of order of (o,/v)m, '/M~'. (In this
model other sources of CP violation such as the
ones discussed in Refs. 5 and 8 play a more im-
portant role in K~-2v decay. ) The same degree
of CP conservation is expected for mesons,
(T,f, af f,)/W2. However, D»--(uc+uc)/v 2 is
expected to substantially violate CP unless it is
suppressed by real or imaginary (or both) Cabibbo
angles.

As the third example, we consider

In this section we shall give several examples
of natural G~n-order CP conservation in d-quark-
gauge-boson couplings. This ensures the reality
of the K~-K~ mass matrix up to the one-loop level.

The first example is the four-quark model of
GIM)

(26)

The phenomenological implication of this model
is similar to that of the second model. The three
models have the same unfortunate fate for the
high-y anomaly. " But this model is the simplest
one to include the 7 lepton in the scheme, "

''~ /") "l ("le, p,
~ &I t l, ~

I ~, and V+A slnglets. (27)

Any complex parameter in U~ can be removed by

redefining quark field phases» Rnd CP is conserved
to all orders of gauge-boson couplings.

The second example is"

We note that (26) and (2V) do not produce the Adler-
Bell- Jackiw anomaly. "

IV. CONCLUSION

f„f„[ '), / *).

(24)

The natural suppression of CP violation in gauge-
boson-quark couplings in the SU(2) x U(1) theory
has been studied. %e have obtained a necessary
Rnd sufflc1ent condltlon fox' the ox'dex'-G~ suppx'es-
sion of CP: The quarks of charge q and q-1 should
not belong to the same weak isomultiplets for at
least one chirality. However, we could not remove
the CP pha, se at the order G~n except for the spec-
1al CRses of Sec. ID.

In this model the G~e-order CP problem in the
neutral K system depends only on the matrix U~

which can be made real following the arguments
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