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Our previous strategy for obtaining the 5 matrix from polarization measurements is applied to a general
spin-1/2, two-body reaction at fixed s and t. One may test the hypothesis of a dominant reaction
mechanism by carrying out a short list of M measurements: M (4. Subdominant mechanisms may be
extracted by a long list of 2X-2 measurements: N is the number of independent amplitudes and N & 16.
The long list brings in all independent interferences of the dominant amplitude with the remaining
amplitudes. The scale of the amplitudes is set by the differential cross section; the amplitudes can be
determined only to within an overall phase. The cross section, short list, and long list are the elements of an
optimal strategy for amplitude determination; its extension to arbitrary spins is discussed. These formal
arguments do pay respect to practical aspects of amplitude determination.

I. INTRODUCTION

The dynamics of hadron-hadron scattering is
fundamental and of some intrinsic interest. It
was already recognized in early studies of NN
scattering that hadronic interactions are compli-
cated. The forces were seen to be strongly spin-
dependent, and measurements were crucial keys
to unraveling this spin structure. ' A basic formal-
ism for studying the spin dependence of polarized
XN scattering was developed by %olfenstein. '
There emerged a systematic and widely accepted
procedure for comparing theoretical models of the
nuclear forces with the polarization data that grad-
ually became available. The scattering matrix be-
came the meeting ground for theorists and experi-
mentalists. '

It is a problem of long-standing difficulty to de-
termine t'he scattering matrix from polarization
data in a way that is reliable, efficient, and ex-
pedient. At sufficiently low energies, where the
scattering is mainly elastic, phase-shift models
have been used to advantage. ' (Phase-shift analy-
ses do i~tdeed impose certain model-dependent
requirements, e.g. , threshold behavior of the phase
shifts, which is related to the long-range charac-
ter of the nuclear force. ) However, because of
experimental uncertainties, gaps in data, or in-
complete information, the scattering matrix is
usually determined subject to both discrete and
continuous ambiguities. Such ambiguities may pre-
vent a meaningful comparison of theory with ex-
periment. One suggestion to remove these ambig-
uities of phase-shift analysis is to do a sufficient
number of measurements at each s and t for a
complete reconstruction of the scattering matrix, '
up to an overall phase. This suggestion becomes

part:icularly important in the inelastic region,
where a large number of phase shifts ean contribute.

In more recent times, our conception of the
fundamental forces has changed. They are not
thought of as elementary-particle exchanges un-
itarized by a Schrodinger equation. One might
view them as Regge-pole exchanges that carry
distinct quantum numbers, subject to appropriate
modifications for unitarity. There is no theoreti-
cally consistent formalism for the latter, although
effective schemes that fit data do exist. ' The cur-
rently popular view is that hadrons are made of
quarks, held together by color-vector-gluon ex-
changes. Regge dynamics, which has been success-
ful in describing two-body and quasi-two-body scat-
tering data, is presumably a consequence of these
fundamental forces. ' Such theories, whatever their
precise nature, should be subjected to experimen-
tal test to determine their limitations, if any.
The central question we are addressing is how
such tests may most efficiently be made.

In looking for reasonable constraints on theories
of hadron-hadron scattering, we presuppose one
dominant feature learned from Regge phenomenol-
ogy'. Spin is an essenfiaE complication. Just as
in low-energy NN scattering, at least some of the
forces of interest are strongly spin-dependent.
As a consequence, we feel that a necessary part
of any strategy to test a theory must be to deter-
mine the scattering matrix for the process under
consideration to so»te degree of accuracy. One
can then ask what considerations are the most im-
portant for an amplitude reconstruction scheme.
%e feel that the following points are the most rel-
evant:

(&) What basic hypotheses are to be tested' ?
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(2) What is the best strategy for obtaining an

answer to (1)'?
(3) What experiments are possible, and to what

accuracy can they be done?
(4) When one has determined the amplitudes

from experiment, how can the information best
be presented so as to display any discrete and con-
tinuous ambiguities mhich may be present?

We now elaborate upon these questions, and dis-
cuss various (incomplete) answers that have been
glv en.

What basic hypotheses of the theory are to be
tested? We feel that this question is often ignored

by those mho propose schemes for amplitude re-
construction. Suppose one believes there is only

a. single dominant mechanism, as one might ex-
pect for pp -pp at intermediate energies. It might
be that the only question of interest is to verify
or disprove that dominance. In a previous paper'
we showed that from tseo special depolarization
measurements, one may test the hypothesis that
s-channel helieity is conserved at small momentum
transfer. This statement is true even though there
are fine independent complex amplitudes for pp
elastic scattering. On the other hand, the crucial
dynamical or physical question may require iso-
lating and understanding one of several competing
mechanisms. In such a ca.se, a general amplitude
reconstruction would be called for. As an example,
in Pp elastic scattering, one would need at least
nine measurements to obtain the scattering matrix
up to an overall phase. Depending on the accuracy
of the measurements and their choice, in general
more than nine measurements would be needed.
The latter point is discussed in more detail below.
We empha, size that no matter what reconstruction
scheme one follows, one must still be able to sep-
arate the competing physical mechanisms which
are of interest.

What is the best strategy for answering question
(1)'? If there is a specific dynamical mechanism
to be studied and compared with experiment, the
procedure is usually obvious. For example, to
test Regge dynamics in pp elastic scattering, one
isolates and examines the dominant reaction mech-
anism, as meB as the several subdominant ones. '
If one has in mind no specific fundamental physical
hypothesis, one can only rely on a formal math-
ematical construction of the scattering amplitude.
Typically one chooses all those experiments that
are feasible (an important consideration in any
case) and verifies that, for data of infinite pre-
cision, the scattering amplitude can be determined
unambiguously. ~' Qf course such formal exer-
cises are useful, but they do have obvious limita. —

tions. Since the data are all subject to intrin-

sic experimental uncertainties, not all "complete
sets of observables" are equally suitable for the
practical problem of amplitude determination.
Moreover, not all bases are equally appropriate
for expressing the amplitudes one determines.
Rotational invariance ensures that the scattering
matrix may be expressed in various equivalent
bases. However, it may mell happen that the
errors on the amplitudes may be quite small in

one basis, whereas they may be large in another
basis. One cannot bypass question (1) merely by

doing a "model- independent" determination of

amplitudes. The information one needs to test
a, fundamental hypothesis may be expressed more
conveniently in some natural basis, and one should

perform a set of experiments to determine those
natural amplitudes with small errors.

What experiments are feasible and to what ac-
curacy can they be done? For the answer to this
question, one must usually consult with the experi-
mentalists. After obtaining information from them,
one decides mhether one can determine the ampli-
tudes, in principle, from the feasible experiments.
Probably the most important factor, and one often
overlooked, is the precise effect of experimental
error on the determination of the amplitudes. An

otherwise reasonable set of experiments may give
no useful results if the level of experimental er-
ror is too large. Unfortunately, it may mell hap-

pen that no set of feasible expeximents mill give
useful information at the level of precision that
can be achieved. One practical suggestion for in-
vestigating the effect of experimental errors is to
employ Monte Carlo techniques. ' Analytic tech-
niques that provide insights into the problem are
certainly needed. '

Finally, when one has determined the amplitudes
from measurements, how can the information best
be presented so as to display the discrete and con-
tinuous ambiguities which may be present? If
the data are incomplete, it is again quite practical
to employ Monte Carlo techniques. ' Thereby, one

ean study the effect of errors, as well as of in-
sufficient information. One would expect to gain
more insight on this matter from an a.nalytic ap-
proach. Some analytic work has been done, "but
many thorny questions remain. Properties of si-
multaneous quadratic equations either have not
been exhaustively investigated, or else the results
have not been applied effectively to this problem.

We mill not attempt to provide general ansmers
to questions (1)-(4) above, since the answers are
apt to vary from context to context, as the char-
acter of the underlying physical situation changes.
We have addressed ourselves to one small aspect
of the problem of determining amplitudes from
data, which does have a satisfactory solution.
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When certain reasonable dynamica, l hypotheses
suggest that there is one dominant mechanism, we
believe all the above questions can be answered.

In a previous paper' we considered determina-
tion of the five independent amplitudes for proton-
proton elastic scattering from polarization mea-
surements at a particular energy and scattering
angle. We described a set of eleven measurements
from which the amplitudes can be deduced, to with-
in an overall (energy and angle-dependent) phase.
We developed a strategy for determining those
amplitudes from an optimal set of measurements
when one expects a particular amplitude (call it D)
to dominate the scattering process. This strategy
consists of the following steps:

(S) One should measure (relatively crudely) a suf-
ficient number of observables that are linear in

~D ~', in order to verify that D is dominant.
(L) One should then measure (rather precisely)

the observables which are linear in D and which
involve all mutually independent interferences of
D with the nondominant amplitudes.

Since the nondominant amplitudes are obtained
from interferences with D, they are determined
without substantial ambiguity. By contrast, if
one depended upon "second-order small" obser-
vables, a considerably greater precision would be
necessary to obtain comparable results. It is also
possible that discrete ambiguities would occur.

Here we shall describe certain formalizations
and generalizations of the above approach. In Sec.
II, the strategy is posed in the general context of
two-body scattering of spin--, particles. We find it
convenient to express the elements of the strategy
in terms of the observables whenever possible,
rather than directly in terms of a specific basis
set of amplitudes. Thereby, the strategy can be
elegantly expressed in a form directly applicable
to experiment. In the Appendixes we describe some
elements of the strategy for general two-body scat-
tering of particles of a,rbitrary spins.

II. SPIN- 2
—SPIN- ~ SCATTII RING

The scattering of hadrons above the phase-shift
region is more difficult, to understand as one con-
siders interactions of particles with higher spins.
The spin-averaged cross section is an incoherent
sum of terms involving the various spin amplitudes,
so that one cannot unambiguously pick out trends
in a given amplitude by looking at a single mea-
surement ~ In fact, one would not expect to be
able to draw any simple, firm conclusions from
an incomplete set of measurements when there
are several competing mechanisms of interest.
Qf course, one can gain certain valuable insights

from incomplete spin measurements through the
use of S-matrix models. ' The focus of our work
is to use models as guides in choosing suitable
measurements, in order to disentangle the ampli-
tudes in a model-independent and unambiguous way
from a complete set of measurements.

There is a wide latitude of choice in constructing
(algebraically) complete sets of measurements, and

not all such complete sets are equivalent in a prac-
tical situation. In fact, we showed in Ref. 7 that
there is considerable advantage to basing the choice
of observables partly upon model expectations.
Suppose one has a rough idea that a certain ampli-
tude (D) dominates the scattering process. Then
one can construct an optimal set of measurements
consisting of a sho~t list of measurements and a
long list. The short list represents an implemen-
tation of item (S) of the strategy: If the measured
values of these observables are in rough agreement
with the anticipated results, it will have been es-
tablished that D is the large amplitude. On the
other hand, the long list corresponds to item (L)
of the strategy: These latter measurements bring
in each independent interference of a small ampli-
tude with the dominant amplitude D.

The measurements on the short list serve pri-
marily to establish that the amplitude D is dom-
inant; they are not very effective at reducing am-
biguities once that dominance has been established,
since the nondominant amplitudes make only second-
order contributions. By contrast, the measure-
ments on the long list serve to reduce ambiguities
by pinning down the various interferences with D.
As the accuracy of the measurements on the long
list is improved, the amplitudes can be determined
with correspondingly greater precision. Further-
more, it is clear that each. measurement on the
long list plays an independent role in determining
the amplitudes. Finally, we point out that the
spin-averaged differential cross section estab-
lishes the absolute scale for the scattering ampli-
tudes; it obviously must be well measured to set
that scale. Without having measurements of the
differential cross section, one can determine only
the relative sizes of the various amplitudes.

For the general case of two-body interactions
involving spin- —,

' particles, there are sixteen in-
dependent (complex) amplitudes. When the reac-
tion conserves parity, there remain eight indepen-
dent amplitudes. In proton-proton (PP) elastic
scattering, for which one has parity conservation,
time-reversal invariance, and identical particle
symmetry, that number is reduced to five. Fur-
thermore, since np and pp elastic scattering are
related to pp by isospin and charge-conjugation
invariance, respectively, they also have five in-
dependent amplitudes. In the subsequent discus-
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sion, many of the conclusions apply for general
two-body reactions involving spin- —, particles with

unequal masses. We shall mention specifically
when use of a special symmetry is made. As in

Ref. 7, we will consider the problem of amplitude
reconstruction at a particular energy and scatter-
ing angle.

The usual observables of spin-correlated quan-

tities, such as polarizations PQ, spin rotations
R and A, and depolarizations D, may be expressed
as traces of the scattering density matrix%%~
multiplied by polarization tensors for the various
particles. For spin--,' particles, the polarization
tensors are two-dimensional; the only indepen-
dent ones are OQ =J, along with the Pauli matrices
a„a„and a, . (Note that a, lies along the axis of

quantization, which may be chosen independently
for each particle in the reaction. ) A general ob-
servable for the process n&, + nz~ - »&, + ~»~ may be
written as

I(abed) = Tr(a,a„Ka,a,Kt)

= g (a,), ,, (o,). ..(K) ..., ,...
(2 1)x(a,),, , (a,),, , (K)&,

The quantity I(0000) is the unpolarized differential
cross section at the energy and angle in question.
The scattering amplitude N is expressed in a par-
ticular basis of spin states. For our purposes it is
convenient to relabel the indices on%, and to form
a (complex) column vector g from its 16 indepen-
dent components. Similarly, we may define a
16-dimensional matrix V,~,„as the suitably indexed

direct product 0",So~(so.,o'„. In that notation, we

may write any observable as

I(abed) = /~V„,„P. (2.2)

There are 256 linearly independent observables
of the form (2.2), which correspond to the 256 lin-
early independent Hermitian matrices V„,~. The
two-dimensional matrices (a,.j satisfy the multipli-
cation relation 0,.0,. =g, ,„v„, with q, ,„'=+1. As a
consequence, the 16-dimensional matrices, as
direct products of Pauli matrices, satisfy the ma-
trix product identity

gV~ yae ~ceger ~

where q' =+1 here also. In particular, it follows
from (2.3) that these V matrices either commute
or anticommute with one another since the matrices
(a~) have such a property. The identity

so that all V's are traceless, except VQQQQ

We establish a convenient scale for the ampli-
tudes by setting

I(0000) = Tr(KKt) = P P = 1. (2.6)

I(abed) = Tr(pV„„) (2.8)

and express the matrix p as a linear combination
of the matrices V„,„:

Q&ao—.P'a~ca (2.9)

the sum extending over all 256 V's. By using
(2.3)-(2.5} and (2.8), we obtain

K y g gg I(abed)

The problem of determining amplitudes from
observables amounts to determining P (or p) from
the matrix elements I(abed) given in (2.2). There
are 30 independent (real) numbers to be determined,
because of (2.6), along with the fact that an over-
all phase in P cancels out of p, as well as the ob-
servables I(abed). With the goal of implementing
item (8) of the strategy, we consider the case in
which a set of observables (8$ [corresponding to
matrices D~ in (2.8)j take on extremal values, 1.e. ,

8„=$~D„g = +1. (2.11)

Because of the identities D~' =I and TrD„=O, each
matrix D» (except V»» I) has eight pair——s of eigen-
values +1 and -1. From the extremal conditions
(2.11},one may conclude that q~ is an eigenvector
of each of the matrices D„with eigenvalue 8„=+1.
When a suitable set of observables D~ take on their
extreme values, one can determine $, the common
eigenvector, to within a phase. Notice that the
matrices (D~} form a mutually commuting set,
since the relations

In such a scale, one evidently has I(abed)' » 1 for
any observable and any state g. In this scale, g
becomes a (complex) vector of unit norm. Ob-

viously, the physical scale is obtained by multiply-

ing each component of P by the square root of the

unpolarized cross section. We may define a den-

sity matrix p corresponding to this "wave function"

$ by the relation

o =44' ~

This density matrix satisfies the identity p' = p
and corresponds to the pure state with wave func-
tion P. Thereby, one may write the expression
(2.2) for the observables as

V.~.~V.~ca
=

VQQQQ
=~ (2.4) D, D,.g =8,.8,.$ =D,.D,.y (2 12)

TrV„,„=Tra, Tro„Tro, Tro', (2.5)

is a special case of the product rule (2.3). Fin-
ally,

exclude the possibility that D,- and D,. could anti-
commute.

Suppose that, upon the basis of model-dependent
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considerations, a specific amplitude is expected
to dominate the scattering process under consid-
eration. For convenience, we shall first dis-
cuss the case in which, with appropriately chosen
axes of quantization for the spins of the various
particles, the amplitude K„„(which corresponds
to the first component of i~) is expected to be dom-
inant. The set of mutually commuting matrices
ID,j may be taken as o,'So",So, 8'o~, where each of
the four indices a, b, e, d must be either 0 or 3.
These 16 matrices are diagonal in the standard
basis, and (2.11}is satisfied for the eigenvector
P, that corresponds to dominance. To establish
that %, „is in fact dominant, it is sufficient to
measure four suitably chosen observables from
our set. The latter subset of four observables
8„8„8„8,must be chosen so that the four-tuple
assembled from the kth diagonal element of the
corresponding D matrices, n.'„=(d,', d~, d~, d4~), has
the property w„c u.', for /e =2, 3 „.. . , 16. If one mea-
sures values near d', , A",„d'„and d,', respectively,
for these observables, dominance is established.
[This set of four observables must be chosen in
addition to the differential cross section, I(0000)
=1.] As an example, one may choose the four ob-
servables 8, =I(3000), 8., =I(0300), 8,. =I(0030),
and 8, =I(0003).

The choice of this set may be dictated to an ex-
tent by convenience and pra, cticality. Once four
such observables have been measured, one knows
that the values for all 16 observables 8~ are equal
to the first diagonal elements d'„of the correspond-
ing matrices D„. Furthermore, because any ma-
trix outside this set (call it U) anticommutes with
ai least one of these 16 matrices (call that one
D ), we have

d' ~P~Ui = g, UD P, = gD Ug„= rl' -~POU-~)o (2.13).
Because d' =+1, we may conclude that for the state
P, the observable corresponding to U is zero. The
expression (2.6) for the density ma. trix consequent-
ly involves only a sum over these 16 diagonal ma-
trices D~:

(2.14}

%e have discussed the case in which a particular
model predicts that a certain spin amplitude should
dominate the scattering process. Qf course, the
model expectations may be of a different character.
For example, they may suggest that a given ex-
change mechanism dominates the process, or per-
haps that all "non-spin-flip" amplitudes are rough-
ly equal, as well as much larger than any of the
"spin-flip" amplitudes. In such cases, one might
expect that the dominant amplitude would have sev-
eral significant spin components; that is, the col-

umn vector g corresponding to the dominant amp-
litude has several nonvanishing components in
any s-channel spin basis. One may still pick out
a "short list" of observables, which take on ap-
propriate extreme values if, and only if, that g
is actually dominant. However, the observables
on that list may come out as unwieldy and unfam-
ilia. r linear combinations of those observables
usually encountered, whenever the model is rela-
tively complex.

To illustrate and clarify the procedure, consider
the simple case in which the scattering process is
"spin-independent. " %e choose the sn»~e spin
axes for all the particles, with the 3 direction
along the momentum of the incident projectile,
with the 2 direction normal to the scattering plane,

A A A

and with 2 && 3 =1. Then one expects the 16 inde-
pendent observables 8„=I(ahab), a, 5 =0, 1,2, 3,
to be equal to +1, if the process is to be spin-in-
dependent ~ These observables correspond to mu-
tually commuting matrices, D„. These latter ma-
trices may be simultaneously diagonalized, and the
vector ]) is one of their 16 simultaneous eigen-
states. One must choose the short list of measure-
ments in such a way that the set of their eigen-
values gives a, unique signature for the eigenvec-
tor $. A suitably chosen set is 8,„=I(2020),
8„=I(3030), 8„=I(0202), and 8„=I(0303).

We implement item (L) of the stra, tegy by mea. -
suring observables that bring in all independent.
interferences of the dominant amplitude ]», with
each of the small amplitudes. [We adopt the nota-
tion of Eqs. (2.12)—(2.14) for this part of the argu-
ment. ) ln the general case there are 30 indepen-
dent interference terms. The 16 members of the
mutually commuting set 1Dg do not contain any
of these interferences, since they bring in the
nondominant amplitudes fg, , i =1,2, . . . , 15) only
in second order. The interference terms, Ref, ~)*,.
and Imp, g, , must be determined by measuring a
selected set of the 240 remaining observables. %'e
shall establish that these 240 observables divide
naturally into 30 equivalence classes of eight each,
and that one should measure one observable from
each class to determine il) in our strategy.

To establish the eightfold equivalences, we con-
sider any one of the 240 nondiagonal matrices, U.
Of the sixteen matrices {D„),eight anticommute
with U and eight (including I) commute with it.
For each of the latter eight matrices, D„one has

(2.15)

It follows from (2.3) and commutativity that q„=el.
The matrix U' is also one of the 240 matrices. %e
express the amplitude to first order as P =P, +&/,
where P, is the dominant part, and the parameter
& is small. Thereby, we obtain
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alld

&}~)~~U'g~ r=l,"e(&t&~U&f&„+ i&&~U&j&)+ O(e')

P~U]& =e(d&~U&c&„+ &t&~U&t&)+ O(e ).
(2.16)

We have used the identities D„g, =d, $, and g",Ug,
=0 in establishing this result. Consequently, one
has

i' U'&&~ = &i„rl,",I~t U:I +&O(e'). (2.17)

As a result, we have established that, to within a
determinable sign factor q~d, , the observables cor-
responding to U and U' give identical values, up
to second order in E. These observables are equi-
valent, in the sense that they involve the same in-
terference term with &(&, (viz. , Re/ U&(&, ). The eight-
fold equivalence is thus established.

Having established that there are 30 equivalence
classes for the 240 observables, we pick one ob-
servable from each class:

5,. = ~()~ U,.P, i = 1,2, . . . , 30. (2.18)

(a) Freely replace 0's with 3's, or 3's with 0's.
(b) Exchange 1' and 2's, while keeping the total

nu~nber of 2's relatively even.

Here is an example of eightfold equivalent sets of
obs e rvables:

I(1120), I(2110), I(1123), I(2113),

I(1210), I(2220), I(1213), I(2223).
(2.20)

In the remaining part of this section we special-
ize to PP elastic scattering data, where, because
of invariance requirements, there are only five
independent complex amplitudes. We make a speci-
fic application of the above arguments to reproduce
the major conclusions of Ref ~ 7 concerning the

There are 30 interference terms to be determined,
and each of the above 30 observables roust deter-
mine an independent linear combination of them.
(The set of 256 n&atrices is complete, and brings
in all ihe interferences, as a consequence. ) An

appropriate set of observables is listed here:

I(1111), I(1100), I(1001), I(0110), I(0011),

I(1112), I(1200), I(1002), I(0120), I(0012),

j(iiio), I(1011), I(1000), I(0101), I(0010),

(2.19)

I(1120), I(1012), I(2000), I(0102), I(0020),

I(1101), I(1010), I(0111), I(0100), I(0001),

I(1102), I(1020), I(0112), I(0200), I(0002).

We obtain the eight observables equivalent to any
one of them by one or more of the following oper-
ations:

choice of measurements on the short list.
Let us choose the overall scale of the observables

so that the cross section I(0000) =1. A direct con-
sequence of parity conservation is that l(n»nn) =1.
One can easily verify this result in the transver-
sity basis, for which the spins are quantized along
n, which is normal to the production plane. In that
basis, parity requires all amplitudes involving an
odd number of spin flips to vanish; in other words,
eight of the sixteen amplitudes vanish. The param-
eter I(nnnn) is the sum of squares of the even flip
amplitudes minus the squares of the odd flip arnp-
litudes, and hence isequaltoI(0000) =1. Converse-
ly, if I(»nnn) =1, the odd flip amplitudes vanish,
and parity is, in effect, a good symmetry for this
process'

The matrix V„„„„,which corresponds to I(»»»n) in

Eq. (2.2), is o„'So„'&go'„3a'„; the scattering ampli-
tude /is an eigenvector of V„„„„,with maximal
eigenvalue +1. All observables that anticommute
with V„„„„arezero. The remaining observables are
equal in pairs, up to a determinable sign.

The basic physical hypothesis made in Ref. 7 is
that, for small-t scattering, the dominant ampli-
tude conserves s- channel helicity. The hypothesis
is correct if, and only if, the depolarization param-
eters D„„=I(ono») and D„=I(olos) are both +1.
These give the requirements that when the target
is polarized either along the normal, P~ or along
the beam direction l, the recoil proton will re-
main polarized in those same directions. For the
recoil proton to have its spin parallel to the beam
direction l, one tests by double-scattering experi-
ments that the spin lies in the production plane and
transverse (s) to its direction of motion. (Recall
that. in the laboratory frame, the recoil proton
comes out at an angle of about 90 with respect to
the beam direction. )

The operators V,„=o,'N)o„'0, o„and V„
=0.,'Scr,'So, (30, commute with V„„„„.When the
corresponding observables D„„and D„ take on
their maximum eigenvalues, the scattering ampli-
tude P is completely determined, a,s we shall show
presently. The short list consists of D„„, D„and
I(nn»»). The long list will be those inequivalent
measurements which are exactly zero for D„„=D„
=I(nnnn) =1 (they will anticommute with at least
one of the members of the short list); it brings in
linear interferences of the dominant amplitude
with each of the remaining components of the scat-
tering amplitude.

Through general arguments, one establishes
that measurements of D„„=D„=1,along with the
requirement j(nnnn) =1, determine &t& to within two
independent components. Parity requires 128 ob-
servables to be zero. The remaining 128 are equal
in pairs, so that there are 64 independent obser-
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I(oooo), 1(nnnn), I(onon), I(nono),

I(ol os ), I(nsnl ), I(os ol ), I(nlns),

I(nooo), I(onnn), I(nnon), I(oooo},

I(nlos), I(osnl), I(nsol), I(olns),

I(soso), I(lnln), I(snsz&), I(lolo),

I(siss), I(lsll), I(sssl), I(ills),

I(solo), I(lnsn), I(snln), I(loso),

I(slls), I{lssl), I(ssll), I(llss).

(2 .21)

There are only four independent measurements;
representatives of these are I(oooo), I(nooo),
I(soso}, and I(solo). Although I(oooo) can take on

any value between -1 and 1, the observable I(onoo),
which is equal to I(nooo) through identical-particle
symmetry, must vanish. The latter result follows
since V „anticommutes with V„„,(fo„,op=0).
The symmetry requires I(nooo), as well as the
seven equivalent observables, to vanish.

Let us express the density matrix p= |I}(i in a
2 x 2 representation:

v = —:I+—2~U. .+ —:PU,.&. ~ (2.22)

We must have Trp=1 and p' = p. The square of p
is computed by using the direct product form

p' = —,'(1 + n' + P )I+ —,
'

o.V„„+—,
'
PV„„.

The requirement p'- =p is reduced to e-+I3- =1, or
equivalently

I(soso)'+ I(solo)' = 1. (2.24)

Ke now investigate the further con.sequences of
identical-particle symmetry, as it; pertains to pp
elastic scattering. The analysis can be done most
easily using the c.m. -frame observables. " In
particular, the combinations

I(xoxo) = I(solo) i s~n8I(+-soso) cos8r,

I(xozo) =I(solo) cos0r+ I(soso) sin0~
(2.25)

vables and g has eight independent complex com-
ponents. The constraint D„„=1requires 32 of the
64 observables to vanish; the remaining 32 are
again equal in pairs, so that P now has four inde-
pendent components. The requirement D„=1
leads to tI} having two independent components. Fin-
ally, we establish that identical-particle symme-
try requires these components to be dependent.

%e list below the observables which commute
with U„„, U,„,„, and V„„„„.Each row lists quan-
tities which are equivalent when only D„„=1and
I(nnnn) =1. Within each column, successive pairs
are the equivalence classes when 0„=1as well:

are such observables. The quantity 0~ is the lab
scattering angle of the fast final particle: tan0~
=(m/E} tan0/2 with c.m. angle 8 and c.m. energy
E for each proton. The "x"direction of the beam
is identical to "s"; the "l" and "s"directions of
the recoil proton are the rotations of "x"and "g"
by angle 0~. Analogously, we can also construct
the c.m. quantities

E(oxox) = I(oso-s) cos8s —I(osol) sin8s,
(2.26)

I(oxoz) = I(osos-) sin0s+ I(osol) cos8s.

Here 8„ is the lab angle of the recoil proton:
tan(v/2 —0z) = (F/~n} tan8/2. Identical-particle
symmetry requires I(oxox) =I(xoxo) and E(oxoz}

I(xozo)—." Using these relations and the con-
straint I(osos) =0, we find

I(solo) = I(osol) c-os{8z+0~),1

I(soso) = I(osol) si-n(0s+ 8~).
(2.27)

We may determine the value of I(osol) from the re-
lation V„„=-V,„V„„;it requires I(osol)

I(olos) =--1. Thus the density matrix (3.2) is
uniquely determined:

III. PERSPECTIVE

%e have outlined a strategy for an optimal
choice of experiments in the special case in which
there is a dominant reaction mechanism. For the
general two-body interaction of spin- —,

' particles,
there a.re 16 independent (complex) scattering amp-
litudes and 256 linearly independent observables.
In the special case of proton-proton scattexing,
for which one has the symmetries of parity, time-
reversal invariance, and the Pauli principle, there
are five amplitudes and 25 observables. Even in

p= ,'I+-,'sin(8R-+8~)V, ,+-,'cos(0 +8 )V„„,
(2.28)

I(soso) =sin(0s+8 ) and I(solo) =cos(8 +0 ).
To summarize, we have shown that D„„, D„

comprise the short list when par ity and identical-
particle symxnetry are imposed. We can evidently
make sim ilax arguments to show that the long list
consists of the eight measurements'P, , C„„,C„, C»,
R, I(nsos), I(l son), and l(sion). These anticommute
with D„„, D„, or both, and are inequivalent. The
detailed proof that they are linear in the small
components of the scattering matrix is left as an
exercise.

&ofe added in Proof. These results can also be
proved for reactions such as pp -AA, where C-
conjugation invariance replaces identical-particle
symmetry. The relations (2.22) and (2.24) hold for
such diffractive processes as pp -X*p with spin-
1+ li. g&
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the latter case, consid rable algebraic complica-
tion could conceivably arise in a direct implemen-
tation of our strategy. However, we have shown

by means of a quite general, formal analysis that
one can pick out the obsex'vables in the optimal
set without too much effort. One need only be
familiar with polarization operators (tensor pro-
ducts of Pauli matrices), and be able to construct
a set of basis amplitudes, of which the dominant
amplitude is a member. Simple and general argu-
ments are then used to determine the observables
that should take on values near their extremes
(i.e. , near the maximum or minimum permitted),
and which observables should take on values near
zero. The short list is a conveniently and some-
what arbitrarily chosen subset of the fo mer
class, whereas the long list is a subset of the lat-
ter class. As a consequence one can easily ob-
tain an optimal set of observables, and to an ex-
tent its choice ean even xeflect the practical lirn-
itations of the experimental facilities.

We realize that the general problem of ampli-
tude reconstruction still has no satisfactory solu-
tion. One of the main outstanding problems is to
analyze the situation in which there are insuffici-
ent data. Are the measurements compatible with

each other, and what constraints do they impose on
the amplitudes'P Will such constraints give m-
swers to physically interesting questions 7 There
is a need for systematic answers to these open
questions.

Also, for realistic applications, symmetries
such as parity, time reversal, isospin, etc. are
expected to reduce the number of independent
amplitudes. In our formal analysis, we found a
natural and convenient method to impose parity
conservation, but not the other symmetries. It
would be interesting and useful to find a general,
elegant treatment of symmetries.

Finally, for systems such as NX-XN, there
are distinct isospin amplitudes; the processes
PP-PP and nP-nP are independent. A complete
amplitude- reconstruction scheme will determine
both isospin amplitudes and their relative phases.
There arises the deeper question of how to fix the
absolute phase of the scattering matrix in the in-
elastic region. Although the phase is not directly
measurable (except in the forward direction by the
optical theorems, and near-forward direction by
Coulomb interference), it is crucial in comparing
theories. Much more attention could be paid to
this problem.

APPENDIX A: EXTENSIONS TO PARTICLES

OF GENERAL SPIN: SPHERICAL TENSORS

It is convenient to express the density matrix
for the tensor states of polarization of a particle

One has T,'=J, the unit matrix. For J. =l, we

obtain the expressions

T', =[j(j+1)]' 'Z, (A4)

T~ =+[2j(j+1}]'&'Z, .
One may establish the following multiplication

formula, which reflects the group-theoretical
ehax'aeter' of these spin-g matrices:

Tz& T~2 = Q K(L„L„I.;j ) (I &37&L,.ii,
~

I I1I)T",

where K is defined in terms of the Racah 6j-symbol"
by the formula

If(L„L„L;1) =If(L„L„L;j)

=(—l)~&'~- ~[(2L+1)(2j+1)]»-'

&& ~(fL„&L.;i L).
It is useful to have a simple procedure for gener-
ating the matrices T~. Since for a given value of
L, the matrices T~ may be obtained from To~ by re-
peated use of Eq. (A3), we need only consider de-
termination of Taz. If we set (I, , M, }=(I..O) and

(L„&&I,) =(1,0) and evaluate the vector coupling co-
efficient in (A6), we obtain the recursion relation

of spin greater than —,
' in terms of a set of irreduc-

ible tensor basis states. " For particles of spin j,
one defines (2j+1)-dimensional matrices as fol-
lows""

(T»~), = &j»& '~ T'~4'
~j &») = (j»& 'L I&~I Ij »& }

We have applied the Wigner-Eckart theorem in re-
lating the matrix elements of an irreducible tensor
operator to appropriate Clebsch-Gordan coefficients
(we follow the conventions of Condon and Shortley),
and have chosen a convenient normalization. (With
this convention, the elements of T~» are real. } The
matrices T'~ vanish identically for L&2j; so for
spin j there are (2j+ 1)' independent matrices,
whicl: form a basis set of (2j+1)-dimensional ma. -
trices. The T~, which are all diagonal, form a
complete commuting set. The matrices T~ are
superdiagonal for 3I &0, with nonvanishing ele-
ments only on the 3Ith row above the diagonal.
One also has the reflection relation T~" = (-1)"(T~&)~.

As is required by their tensor character, the ma-
trices T~ for spin j have the following simple com-
mutation relations with the angular momentum
matrices for spin j:
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L+1 (2j+L+2)(2j —L) '~'

2L+1 4j (j +1) ~+'

L (2j+L+1)(2j —L+1) '~'
2L+1 4j(j+1)

(A8)

The matrices To~ for L~2 may be generated from
the matrices T', =I and F,' [given in (A4)] by re-
peated use of the three-term recursion relation
(A8). We thereby generate T~ as a matrix poly-
nomial of order L in the matrix J„ for example,

T', = [(2j —1)j(j+ 1)(2j+3)] ' ~'[3Z,' j(j +—1)I],

(A9)

APPENDIX B: EXTENSIONS TO PARTICLES OF

GENERAL SPIN: TWO-BODY REACTION S

We describe the general two-body reaction s, + sb
—s, + s~, where the particles are labeled by their
spins. The scattering amplitudes may be expressed
in a suitable spin basis as %~ „,with the sub-
scripts representing the various spin components.
The scattering amplitudes consist of
S = (2s, + 1)(2sb+ 1)(2s, + 1)(2sd+ 1) complex functions
of the energy and scattering angle. The observ-
ables are bilinear functionals of these amplitudes,
e.g. ,

I(ABCD) =Tr(KT„Ts3ft~Tc TD)

T, = [(j —1}(2j—1)j(j+ l)(2j+ 3)(j+2)] '~'

x [5J,' —3j(j+1)J,+J,]. (A10)

all indices

X (TC)c'c(TD)d'd' (al)

cdiab( A)aa'( B}bb' c' d', a'b'

One may easily establish these trace relations
for the spherical tensors from (Al) and (A6);

TrT~~ = (2j+ 1)5~ohso,
(A 11)

hf' N tTr( d;(,) ) =
2L2L+

The density matrix for a particle of spin j may be
expanded in terms of the spin-j spherical tensors:

(A12)

The matrices T„, T~, T~, and TD, which describe
the tensor state of polarization isolated for the corre-
sponding particles, may be chosen independently
from the set IT~). There are S' such observables.
We choose the scale by setting the differential
cross section at the energy and angle in question
equal to + 1; in our notation, I(0000}= Tr3fOR~ = 1,
since T„, T~, T~, and TD are the identity ma-
trices of appropriate dimension.

It is convenient in the general case, as for the
scattering of spin--,' particles, to form the direct
product of polarization tensors:

I M Trp(TN)t (A13) T(ABCD) = T'„8 Ts IR TcII TD. (a2)

The normalization condition Trp =1 is met if t,'=1.
The density matrix must also be positive-definite.

We are especially interested in the case for
which, for a particular choice of the axis of quan-
tization, the component t', takes on its maximum
value, [j((j+ 1)]'~'. Since the eigenvalue is unique
[cf. Eq. (A4)], the density matrix must correspond
to the pure state for which the z component of spin
of the particle is +j. In the standard basis the ma-
trix p is diagonal, with the only nonvanishing ele-
ment being (p),, =1. The expansion in (A12) in-
volves only M =0 terms, and one may show from
(Al), (A4), and (A8) that

1(ABCD) = Tr(T(AB CD)p), (a4)

since Trp=1 with our choice of scale. We may use
the identities (All) to express the density matrix
p as a linear combination of the S' independent ma-
trices T(ABCD):

We also define a density matrix in this direct-pro-
duct space

p =Slum'.

The relation (al) defining an observable may be
written in terms of the S-dimensional matrices
T and pas

2j+1 —k '
~~ 2j+1+u (A&4}

p = —Q L ~cD I(AB CD) T(AB CD),
1

where

(a6)

A similar situation occurs if t,' takes on its mini-
mal value, -[j/( j + 1)]' ~ '. The only nonvanishing
element of the density matrix is (p), , =1, and the
value of P~ is (-1) multiplied by its value in (A14).
For these special cases in which t', has its maxi-
mum or minimum value, the density matrix may
be determined without additional information.

L =(2L„+1)(2L +1)(2L +1)(2L +1).
We shall describe the implementation of our

strategy for the case in which one of the ampli-
tudes SK,~ „is dominant. For clarity and simplic-
ity, we shall give details for the case in which the
spin components of the dominant amplitude are all
maximal. This latter situation does involve some



PORTER %. JOHNSON AND GERALD H. THOMAS

specialization, but the approach may be extended
to other cases. (We see no point in presenting a
general analysis, unless it is dictated by physical
considerations. ) For the case in question, the
dominant density matrix has the form

(86)

the only nonvanishing element corresponding to
the maximal spin state. Because the matrices
T(ABCD) are mutually independent, and since this
density matrix is diagonal, the sum in (85) goes
only over the 9 diagonal T matrices:

P~ = —Q L~cDI(L„O,I sO, I cO, LnO)T~
1

S T' 8 T' 8 T'

One may use (84) to show that the observables in

(87) are

I(I „O,L O, L O, I. 0)

%hen these observables take on their maximal val-
ues,

S ~/Z S 1/2 8 Z/2 Sa b c d (810)
8 +1 8~+1 8 +1 Sg+1

respectively, the density matrix has the form
(86). Consequently, when the four observables
(89) take on their maximal values (810), the 8 ob-
servables that correspond to diagonal T matrices
all have their expected values, given in (88).

The long 1.ist of observables involves all indepen-
dent interference terms of the dominant spin ampli-
tude. Because the dominant density matrix p~ has
the simple form (86), such interference terms cor-
respond only to the first row (or first column) of
the T-matrix elements. By choosing T-matrix
elements with mutually independent first rows,
we obtain a suitable short list. Let us recall that
the matrix T~" has nonvanishing elements only on
the Mth diagonal above (below) the main diagonal,
and that none of those elements vanish. As a con-
sequence of that feature, one can show that a suit-
able short list of observables is

I(1000 00 00), I(00 10 00 00),

I(00001000), I(00000010).
(89)

with the individual maximal matrix elements being
given by the formula (A14).

The "short list" of measurements is chosen from
the set of S measurements in (BV), and must be
sufficient to gum. antee that the density matrix has
the form (86). While this list is not unique, a
convenient list consists of the measurements

I(L,M„L M, L,M„L M ),

where there is one and only one observable for
each different 4-tuple (M„M~, M„M~), subject to
the constraints 0 ~ M„M„M„M~ and M, + M, + M,
+M, )0. The short list consists of (S —1) observ-
ables. Since the T matrices corresponding to these
observables are non-Hermitian, the numbers in
(811)are intrinsically complex. Their real and

imaginary parts, which are 2S —2 real numbers,
permit the determination of the interferences.
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