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It has recently been pointed out by P. B. Jones that for 8 g 0„ the anisotropic part of the stress tensor

associated with the flux lines in a type-II superconductor could be considerably larger than B '/4m, and that

consequently the magnetic distortions of a neutron star could be appreciably larger than previously supposed.
We calculate the stress tensor of a type-II superconductor using a thermodynamic approach, and find that
the magnitude of the anisotropic term is just BH/4m, which agrees in order of magnitude, but not in detail,
with Jones's result. The stress tensor derived here is then compared with that found by Josephson. We find

additional terms arising from the strain dependence of the magnetic free energy.

I. INTRODUCTION

The protons in the interior of a neutron star may
well be a type-II superconductor. "When mag-
netic flux threads such a superconductor, it does
so in the form of quantized flux lines, each con-
taining a flux go=bc/2e=2xIO ' Gcmm which is
confined within a distance of the order of the super-
conducting penetration depth, X~=(m~c'/4wn~e'}'~'
-10 "cm from the axis of the flux line. Here n~
is the proton number density, and m~ is the proton
mass. Each flux line has a core with a radius of
the order of the proton superconducting coherence
length, $» within which superconductivity tends to
be suppressed For .the matter to be a type-II
superconductor the condition ]~/X~& W must hold.

Recently Jones' calculated the stress tensor of
a type-II superconductor using Ginzburg-Landau
theory and came to the important conclusion that its
anisotropic part could be several orders of mag-
nitude greater than the corresponding part of the
Maxwell stress tensor for a uniform distribution
of the same magnetic flux. He further argued that
as a consequence of this, static distortions of mag-
netized neutron stars couM be considerably larger
than one would estimate using the Maxwell stress
tensor. He then explored some of the implications
for pulsars of this conclusion. We note in passing
that the form of the stress tensor has important
consequences not only for the static deformation of
neutron stars, but also for the dynamics of their
interiors.

The stress tensor of type-II superconductors is
also of interest for laboratory superconductors,
especially in the context of flux flow and vortex
pinning. A careful discussion of the stress tensor
is given by Josephson, 4 and a review of work in
this area is given by Kim and Stephen. '

In this paper we give a thermodynamic derivation
of the stress tensor which is valid for arbitrary
temperatures and field strengths. This method of
derivation, which was previously used by Joseph-
son, 4 has the advantage of giving results indepen-
dent of any detailed model. We then evaluate the
stress tensor using Ginzburg-Landau theory and
find that there are indeed anisotropies in the stress
tensor of the same order of magnitude as those
found by Jones. s Our result differs somewhat from
that obtained by Jones, and we trace the origin of
the discrepancy to an implicit assumption in Ref.
3 about the core of the flux lines. Our result also
differs from Josephson's4; we find additional terms
which arise from the strain dependence of the flux-
line free energy.

The paper is organized as follows. Section II
contains the basic derivation of the stress tensor
for a material which is isotropic in the absence of
flux lines. The more general case of an aniso-
tropic material is considered in the Appendix. In
Sec. III the results are compared with those of
Jones' and of Josephson. Section IV contains
some concluding remarks.

II. DERIYATION OF THE STRESS TENSOR

For simplicity let us consider a medium which
in the absence of a magnetic field is isotropic.
This is the case of interest for neutron stars,
since the matter there is a fluid. In general, lab-
oratory superconductors are anisotropic due to
the presence of the crystalline lattice. The stress
tensor for such an intrinsically anisotropic medi-
um is derived in the Appendix. We use a thermo-
dynamic approach so that our results are indepen-
dent of any detailed microscopic model. In fact
they apply to any magnetic material for which an
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average magnetic field is well defined. We shall
present the rather simple calculations in some de-
tail in order to bring out clearly the yhysical ori-
gin of the effects we consider.

Imagine a rectangular parallelepiped with sides
of length L„L,„and L,. We choose the coordi-
nate axes to be parallel to the sides of the para1-
leleyiped, which is oriented such that the magnetic
flux lines are parallel to the z axis. We assume
that there are a large number of flux lines thread-
ing the volume, but that the volume is sufficiently
small that spatial variations in the matter density
and the number of flux lines per unit area may be
neglected. We calculate the stress tensor by con-
sidering how the Helmholtz free energy changes
under virtual deformations of the parallelepiped
at constant temperature.

There are two assumptions implicit in this pro-
cedure. The first is that the matter is in local
thermodynamic equilibrium. This is certainly a
good approximation if changes occur on time scales
long compared with thermal equilibration times.
The stress tensor thus calculated will be a good
approximation to the true one at low temperatures
even if this assumption is invalid, since for highly
degenerate matter the thermal contribution to the
free energy is negligible. The second assumption
is that we neglect dissipative processes associated
with the motion of flux lines. Because of the very
high electrical conductivity, diffusion of magnetic
flux in the interiors of neutron stars occurs only
on time scales of the order of the age of the uni-
verse even if the matter is not superconducting. 6

Thus it is a good apyroximation to neglect the dis-
sipation associated with diffusion of magnetic flux
in calculating the stress tensor. If the matter is
suyerconducting it is an even better ayproximation.

The Helmholtz free energy of the parallelepiped
is given by VF. Here V=L,„L,„I., is the volume of
the yarallelepiped and F is the Helmholtz free en-
ergy density, whose natural thermodynamic vari-
ables are the temperature, T, the matter density,
p, and the spatially averaged magnetic field, B.
In terms of the average number of flux lines per
unit area, n&, B is just n&Q, . From our assump-
tion of isotropy, F is independent of the direction
of B. For the coordinate system chosen, the off-
diagonal components of the stress tensor g,j van-
ish by symmetry, and z,„and z„, are equal.

Consider first a small virtual change in L,. This
changes the density p but leaves B unaffected. Thus

(IF) =F(p, B) p(p, B). (-I)
d eE

L L„dLg '
Bp

Now consider a small virtual change in L, or L„.
This changes not only p, but also B, since the flux
lines move with the matter as in the case of mag-

netic flux in highly conducting normal matter.
Thus, since the total number of flux lines N& in
the volume remains unchanged during the defor-
mation, B is N&yo(L, L, ) ', and consequently

1 d gF
oxx =ow =

L dL
(IF) =ces

y g x 8B p~
BH

=&gg 4

~ matter g +&magij ~ij (8)

where

F matter

p matter F matter

Bp

is the pressure of the matter in the absence of the
field, and

eF' H. aE p 4 5fj +
4 ~

sr jr

To appreciate the physical origin of the aniso-
tropic term, consider the case when the spacing
between flux lines is large compared with the pene-
tration depth A~. In this discussion we shall neglect
the dependence of the free energy on the matter
density because this affects only the isotropic part
of the stress tensor, as can be seen from Eq. (8).
The free energy of the flux lines is then proyor-
tional to their total length and is given by N&$L, .

In tensor notation our result may be written

8E H 8 II]B;
o't~ = F —p —

4 5,)+ 4
', (4)

gp B ir

where H is a vector of magnitude & in the direc-
tion of B. It may be seen from (4) that the iso-
tropic part depends on B, and that the anisotropic
part has only a zz component, of magnitude BH/4z.
Physically this corresponds to a tension in the z
direction of size B/4w per unit flux.

To bring out clearly the contribution of the flux
lines to the stress tensor it is convenient to write
the free energy density in the form

F Fmatter (p) +Fmag(p B)

where F '""(p) is the free energy density for B = 0,
including the superconducting condensation energy,
and the remainder, F ", is that associated with
the flux lines. One should note that F ~ in general
depends on the matter density as well as on B.
With the help of (5), we may rewrite the stress
tensor in the form
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Here $ is the free energy per unit 1ength of an
isolated flux line, since the interaction energy of
the flux lines may be neglected in this limit. %hen
the material volume is stretched in the z direction
by an amount 51., the free energy of the volume in-
creases by an amount N@$5t.„which corresponds
to a tension n&g per unit area. On the other hand,
when the material is stretched perpendicular to the
z axis there is no such change in the energy since
the total length of flux lines remains unaltered.
These effects give rise to an anisotropic contribu-
tion to the stress tensor of magnitude

(9)

To make contact with our earlier result (2) we note
that in the low-flux-density limit

l000 ~
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H =4wS /4;=H„.
8 (GAUSS)
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Equation (10) follows directly from the definition
of H, Eq. (3), the relation H =n&p„and the fact
that the free energy density associated with the
flux lines is nzS. Thus from Eqs. (9} and (10}o„
-o„=EH~/4w, in agreement with Eq. (2).

In the low-flux-density limit the anisotropic part
of the stress tensor is H„/8 times larger than the
corresponding part of the Marvell stress tensor.
H„ is given in order of magnitude by (po/
4wX» ) in(X» /(» ),' and therefore the condition that
the spacing between flux lines is large compared
with X~ may be expressed as B«0„. For neutron
stars, one expects &„ to be of order 10"Q, and
therefore if B-10"Q, an often-quoted valse, the
low-flux-density limit is appropriate, and the en-
hancement of the anisotropic part of the stress
tensor is of order 10', in agreement with the con-
clusions of Hef. 3.

Detailed estimates of the enhancement factor re-
quire estimates of p,&, but unfortunately there ex-
ist no detailed calculations for the conditions of
interest in neutron stars, namely temperatures T
small compared with the superconducting transi-
tion temperature T,. Calculations of &~ have
been made for T c1ose to T, using Qinzburg-
Landau theory and its microscopic extensions,
and for arbitrary temperatures in limit of large
w =- X~/F». ' For the latter case the result is

H„= 4, (inn+0. 08).(3to

4mb, p

For the former case the results are fitted very
well by

FIG 1 The factor H0g/B by which the anisotropic part
of the stress tensor is enhanced in the low-flux-density
limit for a variety of values of v and X&. H, &

is taken
from Eq. (12). (When B~H, &

the factor by which the
stress tensor is enhanced will be somewhat greater
than H0&/9 since, as a result of interactions between
flux lines, H will be greater than H, &.)

where the weighting function w(w) is

0, g(4

u)(K) = 0.311nw-0. 43, 4&v&100

1, g&100.

(13)

iii. COMPARiSON KITH PREVIOUS YORK

To make estimates we assume thatII~ is given by

(12), even for T«T„provided X» and $» in (12) are
identif ied with their actual temperature-dependent
values rather than their Qinzberg-Landau values.
Calculations by Neumann and Tewordte for clean
superconductors such as one expects in a neutron
star show that as T decreases from T„H„/(p, /
4wX»') increases. If this trend continues, Eq. (12}
will underestimate H~ for T«T, . For T«T„X~
is given by the London expression (m» c'/4wn» e')'~'
and ]»~gv»/wd, » where v» is proton Fermi vel-
ocity and 5~ is the proton superconducting energy
gap. Wus, for a proton density = 5x10~ cm
w =X»/]»= 14.6s» (MeV). 'Ihe enhancement factor
is plotted in Fig. 1 for several values of I(.

" and X~.
Ih the next section we shall make a detailed com-
parison of our results with those of Ref. 3.

H„=, ([1-w(w)]1.16n'~
4@A.~~

+w(K) (inn +0.08)), (12)

In this section we compare our results with those
of Jones' and of Josephson. ' First we note that the
contribution p(SF n/sp)w r5-„ in Eq. (8) was neg-
lected in Hef. 3, and in Ref. 4, which was for the
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00 0 00 0

00 0 = 00 0fj

00 m 00,g

(14)

since in this limitff =H„and F~ =EH&/4v. Hy
comparison the result of Ref. 3 is"

(-(r"& 0 0

0 -&T) 0

0 yN + ~$

(15)

Here (T") is the spatially averaged magnetic ener-
gy density and (T~) is the spatially averaged kine-
tic energy density of the circulating supercurrents
associated with the flux lines. (T ) is greater than
(T") by a factor of order (2-3) 1n(a~/t'~) a3-5 for
values of A~/(~ appropriate for neutron stars.

'Ihe zz component of (15) agrees with that of (14)
since the energy per unit length of a flux line is
just ((~+(T ))/n» but the xx and yy components
do not. In Ref. 3 the stress tensor mas calculated
by taking the expression for the microscopic can-
onical stress tensor derived from Ginzburg-Landau
theory, and then averaging it over all space, ex-
cluding the cores of the flux lines of radius $».
This procedure implicitly assumes that when a
volume containing many flux lines is stretched in
a direction perpendicular to the flux lines, the
cores of the flux lines are similarly stretched. In
general the cores mill not behave in this fashion,
and one finds that the macroscopic stress tensor
is that found in Ref. 3 plus additional terms coming
from the surfaces of the flux-line cores. These
extra surface terms are just those required to
make o and O„„vanish.

The enhancement factor of the anisotropic part of
the stress tensor differs from that of Ref. 3 in tmo
respects. First the basic expression for the stress
tensors differ as we sam above. Taken by itself
this mould imply that in Ref. 3 the enhancement of
the anisotropic part of the stress tensor is over-
estimated by a factor of 1+ (T")/((T") + (T )),
which is approximately equal to 1 plus a number of
order I/Inx for ~»1. A second difference is that
the calculation in Ref. 3 is restricted to the high-sc
limit, and is equivalent to the use of Eq. (11) for

general case, the corresponding term 8F ~/sg,
~ ~

was neglected [see Eq. (A10)]. Apart from this,
the stress tensor given by Josephson is correct.

Even if we neglect the BF ~/sp term in the stress
tensor Eq. (8), the result still disagrees with that
of Jones. To understand the origin of this dis-
crepancy we again consider the case mhere 8«&„.
With the density derivative term neglected, the
stress tensor of the flux lines is simply

(18)

m~ &H~
4n'

(19)

This is greater than the corresponding term in the
Maxwell stress term by a factor RFI,&/B, which is
tmice the factor by which the anisotropic part of
the stress tensor is enhanced. For the values of
v expected in neutron stars, the result (19) should
be a not unreasonable estimate.

IV. CONCLUDING REMARKS

We have calculated the stress tensor from a
thermodynamic approach. We find, first, that
the stress tensor contains terms arising from the
dependence of the free energy of flux lines on the
matter density {or more generally on strains)
which appear not to have been previously con-
sidered. Homever, the quantity of interest in
studies of flux flow in laboratory superconductors
is the force on the flux lines and the additional
terms in g, ~

do not contribute to this force, which
in equilibrium is (VxH)xB/4v. In the fluid in-
teriors of neutron stars the additional terms are
isotropic, and are of the same order of magnitude

On the other hand we have used Eq. (12) which

is valid for a wider range of ~. H~ calculated from
Eq. (12) is larger than that calculated from Eq.
(11). For example for N =2.5, one of the values for
which calculations mere made in Ref. 3, the esti-
mates of H„ from the bvo equations differ by a fac-
tor -2. These two differences tend to compensate
each other, and our final estimates are not so dif-
ferent from those of Jones.

The isotropic contribution to the magnetic part of
the stress tensor, denoted by-P 5, &, is also en-
hanced. From Eq. (8) this is given by

pmSN H ~ Qgmag g (16)
Bp p 4''

In the low-flux-density limit (H «H„), F & =HH„/
4m, and thus in this limit

pmag + 2 ~~ +H — + (I 7)
H & 8H

4wp ap p
'& 4mp ap

The calculation of s&„/sp is complicated since it
involves, through $», density derivatives of the
superconducting energy gap, which cannot be esti-
mated reliably. Homever, in the extreme type-II
limit {z»1) the )~dependence of H„ is unimportant,
since it enters only through the v in the logarithm
[Eq. (11)], and therefore, neglecting variations of
the logarithm, one has
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as the anisotropic term. If the magnetic field in a
neutron star varies spatially, these terms can
give rise to distortions of the star comparable with
those produced by the anisotropic part of the stress
tensor. It should be noted, however, that the dis-
tortions of a superconducting star cannot be cal-
culated simply by scaling from the distortions of a
star containing normal protons with the same B
field configuration. This follows from the fact that
the ratio of the isotropic and anisotropic contribu-
tions to the magnetic part of the stress tensor in a
superconductor differs from the corresponding
ratio for the Maxwell stress tensor.

Second, we have confirmed Jones's important
conclusion that there can be significant anisotropies
in the stress tensor. We find that the anisotropic
part of the stress tensor associated with the flux
lines is simply HB/4w. Under typical conditions
in neutron stars one expects the anisotropic part
of the stress tensor to be the order of magnitude
Jones estimated.

fiote added in proof. In a paper which appeared
after the present article was submitted, Kogan"
has independently pointed to the importance of con-
tributions to Qe stress tensor arising from the
strain dependence of the magnetic part of the free
energy.
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APPENDIX; THE STRESS TENSOR OF AN INTRINSICALLY

ANISOTROPIC MEDIUM

We derive here the stress tensor for a material,
such as a laboratory superconductor, which is
anisotropic even in the absence of a magnetic field.
The Helmholtz free energy density F is then a
function of the temperature, the spatially averaged
magnetic field B„and the tensor u, &

=—su, /sx&,
where M, is the displacement vector of the medium.

We consider a thin slab of material of thickness
As before, we assume that the temperature,

matter density, and 8 are uniform, and that the
field lines are frozen into the material. We now
imagine that the upper surface of the slab is sub-
jected to a virtual translation over an infinitesimal
distance P, whose direction is not necessarily that
of the unit normal n, The force per unit area is
g„n~, and therefore by equating the work done by
the force to the increase in the free energy /gal per

unit area we find

a(~n~$; =6(tF) =h5F +F% . (Al)

E)n)
5u) ~= (A3)

(A4)5'g =g)n] .
In addition, since we are assuming that flux is
conserved,

6B, = [Vx(5 uxor)],

(BJ"J)4 (4') Bl
(A5)

Substituting (A2)-(A5) into (Al) we get the follow-
ing expression for the total stress tensor of the
matter and the flux lines:

o)~ = +- g]~+ + . A6

If E depends on u, , only through the trace u«,
then F5,&

+sF/eu,
&

becomes (F —peF/sp)6, &, and
the expression for g,&

reduces to that derived in
Sec. II.

We now split E into a nonmagnetic part and a
magnetic part, as in Eq. (5):

F(u, „B,) F '"'(u, ~, )+F~"(u, „B().
This allows us to write the stress tensor as

matter + mug
Of j O(g Off

where

Bg matter
rnatter v. matter r

T. a

(AV)

(A9)

(A10)

Equations (A8)-(A10) are the generalizations to an
anisotropic medium of Eqs. (6)-(8), which hold for
an isotropic medium.

If one is interested in situations where the flux
lines can move relative to the matter, as in the
case in flux flow in laboratory superconductors,
then it is useful to know the forces on the matter
and on the flux lines separately. Including pinning
forces P on the flux lines, we find that in equili-
brium the forces on the matter satisfy

Since the deformation is assumed to be homogene-
ous and isothermal,

8E
5Ii = 5u] ~+ 4 H)5B),

8Qg f 7f
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gy matter g lll4g

+
r s ~&& ra-

-p =0

(All)

vrhile the condition for balance of forces on the
flux lines is

(AH)xB+P=0 . (~12)

We note that the term 8E~'s/&u,
~

in the total stress
tensor enters the condition for the ba1ance of forces
on the matter, but not that for the balance of forces
on the flux lines.
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