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We solve the Einstein equations for strong gravity in the limit that weak gravity is neglected. The class of
solutions we find reduces to the Schwarzschild solution (with the weak-gravity Newtonian constant replaced

by a strong-coupling parameter) in the limit M' t0, where M is the mass of the strong-gravity spin-2 meson,

These solutions may be of relevance for the problem of defining temperature and confinement in hadronic

physics.

I. INTRODUCTION

~ matter

where the first term is the usual Einstein Lagrang-
ian and the second is its strong analog (identical
in form apart from the replacement Kg Kf)
other fields are grouped into the term g

To give the f mesons a mass (as well as their
weak gravitational interaction) we need a mixing
term between f and g fields. One of the simplest
possible covariant mixing terms is given by
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where M is a constant with the dimensions of
1Tlas S

In Ref. 1 (on the basis of a, linearization of these
equations, with f„,=r)„, +g&P~„„g,=g„„+x h„„),
it was suggested that the equations resulting from
(1.1) and (1.2) describe a massless graviton given
by the field combination
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The proposal that tensor fields may play a funda-
mental role in strong-interaction physics was in-
troduced some time ago. ' This idea was given ex-
pression in a two-tensor theory of strong and

gravitational interactions where the strong tensor
fields are governed by equations formally identical
to the Einstein equations apart from the coupling
parameter Kz

-—1 GeV ' which replaces the Newton-
ian K —- 10 "GeV '. The equations for the strong
field f&, and the gravitational tensor g„„are de-
rived from the Lagrangian

1 1z= „, 4 gz(g)+, ~-z(f)+z„
Kf

plus a strongly interacting massive spin-2 field
described by the orthogonal combination'

(f„,-g„.).
In this note we wish to solve the equations for

pure strong gravity, in the limit K - 0, without
any further approximation. We are particularly
interested in that class of solutions which are soft
in the limit M~ - 0 and which —as may be expected
from the structure of (1.1)—reduce to Schwarz-
schild-type solutions (with && replacing c ). Our
interest in such solutions stems from the possibil-
ity offered by the recent work of Hawking —to in-
terpret them as strong-gravity solitons, radiating
all species of hadrons thermally, with a tempera-
ture which is proportional to strong surface grav-
ity. 4

1
, ~fR(f)+2 „, ,

Ky
(2.1)

where gf (-1 GeV ') denotes the strong analog of
the Newtonian coupling and the first term here,
expressed in terms of the tensor f„„,and its in-
verse f "", is identical in form with the Einstein
Lagrangian (except for the interchange of gz for
K ). The second term, which gives mass to the
tensor meson, takes the form

-M2
g — ~q (fKX riKX)(f PU PU)

Ky

(2 2)

where q„, denotes the flat space-time metric. In
the usual rectangular coordinates it equals

gp, = diag(+ 1, —1, —1, —1) .

II. LAGRANGIAN AND EQUATIONS OF MOTION

From now on we deal with the purely strong-
gravity situation. All matter, as well as ordinary
gravity, will be ignored. In this situation the La-
grangian (1.1) reduces to the form
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The expression (2.2) is to be interpreted as the
relic of a generally covariant form (1.2) in the
limit in which ordinary gravitational effects are
ignored (i.e. , tt -0 and g&„- ti„„). It is a strictly
phenomenological expression whose origin in vacu-
um polarization effects we shall not attempt to
justify here. '

On varying f"' one obtains the equations of
strong gravity,

components by

f~ „x"dx' = Cdt' —2Ddtdr -Adr'
—B(d8 +sin 8dqt2), (3.1)

where the components A, . . . , D depend only on r.
The inverse is given by

2D Cf"'a a = —a' ——a a ——a'
p v ~ t ~ t r ~ r

2
Rtt v zftt UR =Kg Ttt„, (2.3)

where the left-hand side is the usual Einstein ten-
sor and the right-hand side is simply

z'T„~ = 2™(f"-" —q' )(qKttq~„—g„~t)tt „)

2 + Q
21 1

sin 0

where the convenient combination

g =AC +D2

(3.2)

(3.3)

X (~q/v f) . - (2.4)

T„„is not a prescribed source; it depends on f„„.
We also emphasize that this expression is not gen-
erally covariant: It is the flat-space approxima-
tion to a generally covariant term (1.2). This
means that, although the left-hand side of (2.3) is
a tensor, the right-hand side is not. One is not
able to remove any components from f„,by way
of coordinate conditions as one would do with a
covariant system. Thus, there are altogether 10
independent equations in (2.3) although 4 of them
take the form of constraints on T„„

is used. In the following we shall exchange D for
6 as the variable of choice.

For the four independent functions we have, of
course, four equations to solve. [Two of these
will be of the constraint type (2.5), but here the
distinction is not a very useful one. ] The four
nonvanishing components of T„„are given by

r' 2r' C
tt

(3.4)

0=f ""vt,T„„, (2 5) Bv'Z B
where V', denotes the strong-gravity analog of the
covariant derivative.

Without the softening (expected, for example,
from the Yang-Mills ansatz motivated in Ref. 5)
one might expect the solutions of (2.3) to behave
badly in the limit M - 0, since in this limit the
equations (becoming generally covariant) decrease
in number from ten to six since the four con-
straints (2.5) are removed. (An analogous situa-
tion is encountered in the weak-field approxima-
tion where the five degrees of freedom associated
with a massive spin-2 field are reduced to two in
the massless limit. As is well known, this phe-
nomenon is heralded by the presence of singular
factors M ', M~ in the massive tensor propaga-
tor. ) Notwithstanding these general considera-
tions, however, the message of this note is that
not all solutions of (2.3) are singular in the limit
M'- 0, andwe shallexhibita class of smooth ones
in the following.

III. A STATIC SPHERICALLY SYMMETRIC SOLUTION

When spherical symmetry is assumed, the num-
ber of independent components in f„, is reduced
from ten to four. For convenience we use spheri-
cal polar coordinates and define the independent

B" B' A B'C ' C'g' B'g'C"+
B 2B 2a B 2g AB

C „B'C' B'6'
= -1+—B"+

2z C 2z

The identity DR«+ CR,„=O implies the purely
algebraic constraint

O=DT, +CT „

2 Boa B (3.6)

when the expressions (3.4) are used. There are,
therefore, two categories of solution:

(1) B=-,'r',
(2) D =0 (or a =AC) .

These values are solutions, it should be noted-
not coordinate conditions. Type-2 solutions have

r4 r' A+CT„=-,'M -3+—+
BVT B b,

in spherical coordinates. The Ricci tensor is given
by

C C „B'C' C'4'
R = ——R = ——C+
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+C = —+-,'60
~2y 2

C =-'z 1 ————
2 0 ~ 6 g 3/2

0

(3.7)

where p. and 4„are arbitrary constants. The cru-
cial step in obtaining this solution was the replace-
ment of D by 6 as a dependent variable. The Ricci
component A„„ is very complicated when expressed
in terms of D and, correspondingly, D = (6 -AC)' '
is a nontrivial function of r. 'The remarkably sim-
ple result that ~ is independent of r comes from
the combination

CA„„+RA„=It. (CT„+AT„) .
The right-hand side vanishes and the left reduces
to

B" B" CB' g' C g'
C B 2B' 28 g r ~ '

when the solution for B is inserted.
In order that D =s(a-AC)'~2 is real, we must

choose either

been considered by Aragone and Chela Flores, '
who have shown in a semilinear approximation that
these solutions exhibit a Yukawa-type behavior,
(I/M~r) exp[ —(M~r)] for large r. Our concern is
with solutions of type 1. For these, the remaining
three equations are easily dealt with and one finds,
altogether,

B=sr

Defining

~„[o(u' H"
)(1+n )'i' 1 —p

(3.13)

ADDENDUM

we can cast (3.10) into the form

j~ (1 —p)dt2 —(1 —p) 'dr —r'dg —y' sin'8 dp'] .
This is the Schwarzschild-de Sitter solution and

will therefore possess the corresponding Schwarz-
schild and cosmological horizons.

Now Gibbons and Hawking' have recently analyzed
the problem of thermal emission from this class
of soliton-like solutions and concluded that there
are two distinct temperatures which can be as-
sociated with the two masses p, and 1I4 in these
solutions. They have also argued for an observer
dependence of the radiation associated with the
cosmological horizon. If our basic notion of as-
sociating a fundamental spin-2 field of the above
variety with strong-interaction physics is correct,
it is clear that a direct test of (the partly contro-
versial) conclusions arrived at by Gibbons and

Hawking may be sought in experimentation in had-

ronic physics. A more direct use of the "potential"
(3.11) may lie in the possibility it offers for con-
finement in hadronic physics for the repulsive case
(3 9) when va &0.

Appreciation is expressed to Dr. C. S. Isham for

stimulating discussions.

or

p &0, ~9&a„and v z, &0

g&0, 9 &ho, and ~6~&0.

(3.8)

(3.9)

The mixing term used in the text is by no means
the only feasible one. An alternative "cosmolog-
ical"' one is given by

The choice (3.8) corresponds to the Schwarzschild-
de Sitter-type solution in weak-gravity theory.
(For M -0 we recover the pure Schwarzschild case,
and for p, -0 the pure de Sitter case. ) For com-
parison with the known solutions in weak-gravity
theory, it is perhaps instructive to exhibit (3.1) in
the form

f„,dx "dx" =-,' a (1-p)dt' —(1+p+ n)d~'

x{-det[xg '+(1 —x)f ']]"' (Al)

where g= detg„, etc. and the contravariant tensors
(g ')"" and (f ')"' are defined as the matrices in-
verse to g„„and f„„, respectively. If the parame-
ters are restricted by the two constraints

2[- xn+ (1 —x)ti] (1+ P. ') = —xX'+ (1 —x)A, (A2)

(n + P ——,') x(x —1) (P. + X')' = 4 AA', (A3)

—2dt dr[ p(p + n }]'~'

4y

9z (dg 2+ sin2g dP')

(3.10)

then the coupled system possesses a stable flat-
space-time solution f„„=g„„=Minkowski metric. In
the linearized version there is, in addition to the
graviton, a tensor meson with mass given by

where
M'= ~ (xz'+x~') Xl'/(A+A') . (A4)

p(r} =2p/r+ —,'M'r'a '~',

n =4/(9a)-1.
(3.11)

(3.12)

The mixing term (Al) was introduced (with x=-,')
in the Appendix of R.ef. 1.

It is a simple matter to obtain exact solutions to
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the coupled f g-equations for the ease of the new

mixing term (Al} by imposing the constraint
—,B(d8 + sin 8 d(p )

O=det[xg '+(I —x)f '], (A6)

g dx" dx"= 1+ —r2 dI, "— 1+ —r2 dr'
]IV 6 6

—r'(16'+ sin'6 d(6'), (A6)

which decouples the equations for f and g provided
e+ P& &. At one's disposal there are now eight co-
ordinate conditions, one of which must be used to
satisfy (A5). To illustrate, consider the de Sitter
solutions

1+—x' d t — 1+ —y'2 d y2
6 6

—r '(d8'+ sin'9 d&p') . (A7)

The coordinates t, x are fixed by assuming the
standard form here for g„Likewise, the t, F
coordinates correspond to the standard form for
f„One must now construct a transformation
such that (A5) is satisfied, i.e. ,

0=-det[xf '+(1 —x)g 'J

=(e's's'e) ' (s (1-s)—B x'+ 1+ —r' f1+ 1+ —r~ C +
x(1 -x)

(A8)

There are many ways to satisfy this; perhaps the simplest is by choosing

WB= r = [(x-1)/x]'~'r 7 = t

~' x-1 2 x-1 A,
' x-1 2

'
2 x-1f,dx" dx"= 1+ — r' — 1+ — r' dr' — r'(d6'+sin'6drp').

v 6 x x 6 x x (A10)

Alternatively, one may take

1./2 1./2

WB=r= " r, I = n [I+f(r)J
x x-1

and choose f(r) so as to make the last factor in (A8) vanish. One finds

p x y'
2

r' 1 x-1 2f e 'ds'= S 1 ~ —e)' ~ 1 1 —f'cede — — 1 ~ — — 1 ~ —f" ee'Ix-1 R2 x R, R
e

(All)

r'(d8'+ sin'8 dfI)'), (A12)

where I/R'= [(x-I)/x]&'/6 and

(A13)

This solution reduces to that in the text (with p, = 0} if one takes x= 3 and X= 0. (If A. e(0, then it coincides
with the exact solution recently obtained by Isham and Storey' for the old mixing term ).

The stability of our solution against changes in the details of the mixing term encourages us to believe
that it may have a more basic significance than the explicit derivation would appear to suggest. This sta-
bility is perhaps relevant also to the discussion of Boulware and Deser' who showed (in the approximation
g=q) that a sixth (scalar) degree of freedom is excited in the interacting f system. For the particular
mixing term used in the text of our comment, they show that the Hamiltonian is unbounded below. No such
statement is possible, on the face of it, for the term (Al), nor is there any statement for the complete
f gtheory in eith-er version of the mixing term. In fact, with the constraint (A5), the f gLagrangian-
essentially reduces, for this solution, to a sum of two "independent" cosmological Lagrangians. Thus,
presumably, the problem of the boundedness of the Hamiltonian is reduced to the familiar problem of a
pure gravitational Lagrangian containing a cosmological term. We believe that the question of such extra
degrees of freedom in f -g theories is a deep problem and will perhaps be resolved when tensor masses
are generated by a spontaneous mechanism. '
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1 1
g=E—g & g(g)+~f & p(f)

Kg Ky

+~f 1 &(f Px
gyes) (fvA, gvx) ( F .F

where F» are Yang-Mills field strengths for a non-
Abelian gauge theory. A soft mass term for the f
field is generated as a result of quantum effects, with
the operator products A/~ and f„zf„„(spontaneously
and self-consistently) developing e-number parts. In
the present note we have not used this model but have
presented solutions for the original f-g equations re-

suiting from {1.1) and (1.2) with the Newtonian con-
stant ~~= 0.
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