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The lattice gauge theory proposed by Wilson is discussed. Gauge fixing is defined for the lattice theory,

and it is shown that gauge fixing is done in this theory solely for calculational purposes. The gauge-fixing

method is used to study the mass renormalization of the gauge field quantum. An explicit calculation is done

to lowest order which sho~s that there is no mass renormalization. This same result is proved to all orders in

perturbation theory using the Slavnov identity.

I. THE LATTICE GAUGE THEORY

The lattice gauge theory has been introduced by
Wilson' to explain the dynamics of strongly inter-
acting elementary particles. The non-Abelian
gauge field has many well-known and remarkable
properties. In particular, it is a nonlinear field
which couples to itself (and, of course, to anything
else which carries the requisite quantum number).
In this sense it is similar to the gravitational
field. The ga.uge field also exhibits asymptotic
freedom (that is, the strength of the coupling goes
'to zero for zero-distance interaction)~ and, when
coupled to the quark field, the coupled quark-gluon
theory shows quark confinement in the strong-
coupling limit. The gauge field quantum is an
elementary particle. For the case of strong inter-
action, this quantum is called the gluon. The
quantum of the Abelian gauge field is the photon
and its properties are fai.rly well understood.

%ilson" ha.s given an action functional formu-
lation of quantum field theory using the Feynman
path integral. In particular, the lattice gauge
field is quantized on a discrete lattice embedded
in a four-dimensional Euclidean spacetime. The
reason for going to a lattice is twofold. Firstly,
the lattice provides an ultraviolet cutoff, and
hence there are no ultraviolet divergences in the
theory. %e will sometimes work with a finite-
size lattice, and this will provide an infrared cut-
off. The problem of renormalization has to be
solved to go to the continuum limit, i.e., to let
the lattice spacing go to zero. Secondly, using the
lattice as a cutoff allows one to formulate the cut-
off theory so that we have exact local gauge &n-

variauce for the lattice gauge field. Any other
conventional way of defining the cutoff theory
usually destroys local gauge invariance. Local
gauge invariance is the single most important
property of the gauge field, and the la,ttice gauge
field is a more accurate representation of it than,
say, would be a theory which preserves Lorentz
inva, riance but gives up local gauge invariance.

%e work in Euclidean spacetime as this allows us
to rigorously define the Feynman path integral.
Analytically continuing to physical time is nec-
essary for computing physical quantities.

Consider a finite lattice of N' lattice sites and
with periodic boundary conditions. Let n specify
the lattice site and p. the directions on the lattice.
The local gauge degrees of freedom are the finite
group elements U„„belonging to the gauge group
G, which for definiteness is taken to be SU(n).

The gauge field action functional is defined by"

where g, is the bare coupling constant (Tr signi-
fies trace). Note that

~niv=Unii Un+p, v U.+.-, pU. v ~

The gauge field theory is quantized by integrating
e" over all possible values for U„„, i.e.,

[x' x'j=ic' x,
Tr(X'X ') = 5"/s2;

(1.5)

for the fundamental representation, s' =2.3 Let
8„'„be the local lattice spacetime gauge field,
Q„'be a local scalar field, and let f„'„, be the local
gauge field tensor. Then
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where dU„& is the invariant measure.
Note that A is invariant under local gauge trans-

formations, which for the lattice is defined by

UnI —~n Unp Vn+p ~

where V, is also an element of the gauge group.
I et (X') be the generators of the group. Then
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8„'„and f„'„„arebounded variables which take values in the compact parameter space of SU(n).
We consider the case when 8„'„«1. Using the equation e"e =e"'s+~' ~~'+ ' ' '

we find from (1.8)

abc 5 t." b c 5 cf nuv + vBnp +v Bnu ic (Bn+ v, Bn+j, v+Bn+v, pBnu+ 8 nvB n+ p, v

BnuBnu Bn~Bn+u, ~ Bn+p, vBnv) +O(8 ) = fnvur (1.10)

where repeated indices are summed over A„h„
=—h„,p -h„ is the finite lattice derivative. In gen-
eral, f„'„„is an infinite power series of the f8„'„,
8'„,„-, , 8„'-„, 8„', I variables. That f'„„, is an

analytic function of these variables is a conse-
quence of the group multiplication law. We also
determine the effect of the gauge transformation
on the 8„'„variables. Let P'„« I; then, from (1.4),

exp(iB'„„X')= exp(i P'„X') exp(iB'„„X')exp(-i P'„,„-X')

giving

8:~= 8:„c„0:-—ac'"(0'+ 4.+p)8'„

+-,C' ' P„' P„',„-+O(P'). (1.11)

We will return to these equations in Sec. II. [In
Sec. IIB, we use 8„'„(P)to denote B„'„.]

II. THE WEAK-COUPLING APPROXIMATION

The lattice gauge theory is studied for its weak-
coupling behavior. It will be shown that a gauge-
fixing term is necessary in this limit solely for the
purpose of calculations. A counterterm has to be
introduced into the action to cancel the gauge-in-
variant effects of the gauge-fixing term. The
counterterm will be evaluated in the weak-coupling
approximation, and the result is seen to be signi-
ficantly different from the results of the conven-
tional continuum non-Abelian gauge fields. We
attribute these differences to the lattice cutoff that
is built into the theory. The main purpose of the
gauge-fixing/counterterm formalism is to reduce
the lattice theory, in the weak-coupli. ng approxi-
mation, to conventional field theory on a lattice.
This, in essence, means that all the field vari-
ables (B„'„)take values over an infinite range (i.e. ,
over the real line R) rather than over the compact
parameter space. Having all the variables B„'„
range over R will allow us to define Feynman per-
turbation theory for the lattice gauge field. In this
section, we will basically discuss under what con-
ditions the above-mentioned reduction is possible.
The gauge fixing/counterterm formalism will be
introduced to make this reduction possible; we
will also discuss why, without this formalism, we
have a well-defined theory which is, however, un-
suitable for calculations. We will first discuss,
for pedagogical reasons, the theory without the

gauge-fixing term, and then show the necessity for
introducing it. The necessity for the counterterm
arises as follows: (a) The gauge fixing breaks lo-
cal gauge invariance of the theory. This is nec-
essary, since it is local gauge invariance which is
the obstacle to setting up a Feynman perturbation
expansion for the original action. (b) The counter-
term is introduced to cancel the gauge-invariant
effects generated by the gauge-fixing term. The
resultant theory gives the same gauge-invariant
vacuum expectation values as the original theory.

A. Gauge fixing

We will discuss gauge fixing from the weak-
coupling point of view, although the basic results
are valid for arbitrary coupling. The reason for
this is that the usefulness of this approach is ob-
vious for the weak-coupling limit. By the weak-
coupling limit we mean the behavior of the lattice
gauge field when we let g, -0. The properties of
the gauge field can then be computed as an expan-
sion in gu. We will look at the O(g, ') behavior of
the field.

We will first study the behavior of the theory
without any gauge fixing. To do so, we have to
make a change of variables such that all the vari-
ables in the path integral that' have no coupling to
the gauge-invariant sector are factored out of the

path integral. This change of variables is called
choosing a gauge for the gauge field. We choose
the generalized axial gauge as defined in Ref. 1

for the Abelian lattice theory; the non-Abelian
case is essentially the same as the Abelian case
except for some not so minor complications. The
choice of a specific gauge will help clarify the
role of the gauge-fixing term.

To choose the axial gauge, we have to partition
the finite lattice into disjoint domains. On each
domain will be defined a distinct change of vari-
ables. The domains are defined as follows. We
consider a finite lattice 1 &n„&N with periodic
boundary conditions. We partition the lattice sites
into the following disjoint domains:

D~'~ =(n
~

1 & n, & N —1, 1 & n; & N),
4-dimens ional hypervolume;

D~'~ =(n( n, =N, 1 & n, & N - 1, 1 &n» n, & N),

3-dimens ional volume,
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D(' =(ni n, =n, =N, 1(n, &N-l, 1& n &N),

2-dimensional surface;

n=¹ Vg =1

dUgq =dU„q =de~ for a.ll p..
(2 2)

1-dimensional line,'

D" =[N= (N, N-, N, N)I, single lattice point.

Do the following gauge transformation:

U„q - U„q = V„U„~V„+p . (2.1)

(2.2)

and

dU„, =4V„.
For the single lattice site N we have

The axial gauge is defined by the following cha.nge
of variables:

Note that V~ = 1 is the only choice for V~ which is
gauge invariant. The only difference, in the choice
of gauge, between the Abelian and the non-Abelian
case is in (2.3), the reason being that the Abelian
case has a higher symmetry than the non-Abelian
case, which allows one to eliminate the variables
(U„,j', , from the action. This is no longer possi-
ble for the non-Abelian case and causes some
complications. %e will return to this point in Sec.
III.

For concreteness, we examine the effect of the
gauge transformation on the path integral of the ac-
tion functional. Firstly, not that gauge invariance
implies that the action is inva. riant under this
transformation, that is,

A[W] =A[W], independent of the fVg variables.

Hence

(2.4a)

J' ««, wi
@=0 D (p) P (& V)

then we show in Appendix A that

(2.5)

In other words, Z can be represented by a con-
vergent multiple integral where all the variables
$B'„,j (except at the lattice site N) range over an
infinite range. Note also from (2.4a) that the re-
dundant variables (Vg have been factorized in the
path integral from the gauge-invariant sector.
Note, however, that the variables (B'„„)are non-
zero on very complicated domains, and this makes

any tractable Fourier transform to k space virtual-
ly impossible. Hence (2.5) is not suited for per-
turbation theory, although it is well defined.

The gauge-fixing term is introduced to control
the divergence due to the fP'„j variables. This
means, in terms of the original variables fB'„,J,
that the action has added to it a term which neces-
sarily breaks gauge invariance. To leave invariant
the gaug e- invariant sector, we fur the r add the
counterterm. The counterterm is a gauge-invari-
ant functional of the gauge field and is evaluated
from the gauge-fixing term via a path integral.
(We will relax the property of gauge invariance
later on. )

Let A be the gauge-fixing term and A, be the
counterterm. The modified action is defined as

A'=A+A +A, .
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z = II da„„
n p, a

(2 7)

(We will make a specific choice for A, in Sec.
II B.) To define A„we introduce the following
notation:

dv= II dv„,
nW N

«=II II«"
n

(V)Un„—VnU„„Vn

(2.8)

(2.9)

(2.10)

The actions A and A' give the same gauge-invari-
ant physics. (We will prove this later. ) One has
a wide choice as to what functional of the field
variables A~ should be. The only necessary condi-
tion is that

We thus see that e"~'"~ leaves the gauge-invariant
sector unchanged. Hence, in particular,

g(g ) f=dUe*t '="fdUe"'" '* (2.i7)

Note that the result (2.16) is valid exactly for the
lattice theory. This formulation reduces to the
Faddeev-Popov' formulation in the weak-coupling
approximation. We now choose a specific A and
calculate A, for it.

B. Evaluation of the counterterm

Choose the gauge-fixing term4 to be

e"~'~'= 'g sa - t a (2.19)
n, a

where (t'„] are fixed numbers, 11„'=—Ii„cN, and

Define A, by

A lU]
C

Note the identity

[p(V)~
dVe, gauge invariant.

(2.11}

s„= A„Ba-

Define B„'„(t)()by

exp[is„„(y}Xc] = V„U „V'-

(2.19)

(2.20)

dV ~ dV'
(V) (V')

(2.12}

Let K[U) be an arbitrary gauge-invariant function.
Then

(2.2i)s'„(0)= g &„a„'-„„(p).

Note that Z„s'„=Z„s„'(P)= 0; hence there are only
(N'- 1)-independent variables for the s„'. Let Z„'

Then from (2.12)

fdV &AN tU«&&

dUK[U] = dUK[U] f, A &U( &&v ," '".= rr 6( ~
n n

n, a
dV II'5(s'„(g) t '„)

n, a

dV dUK[U]s"dt ' ' e"c

(2.13)
n, a

(]) Sa ga d V II' 5(sc„((]))) —s„') .
n, a

(2.22)

Unf = VnUnt +n+f" y

dU' =dU,

K[UV]+ctU &K[ U]&'AUEU&

We then have

(2.14)

(2.1s)

Perform the gauge transformation on fU„„]vari-
ables such that

Note that in taking the step to (2.22) we have lost
gauge invariance for e &, since it now depends on
gauge transformations through the variable s'„.
However, the combined effect of e ~' & is to leave
the gauge-invariant sector unchanged. (We will
return to this point later. )

From (2.22) we see that e"c is independent of
(t '„). Recall from (2.17) that

dUK[U] =( dV dU'K[U']e"*t "*
dUK[U] ctU&+Ate L' U& (2.16)

g(g) fdUe '==dU *, (2.23)

i.e., Z(g, ) is independent of (t'„}. ThereforeA

+00 Q
Z(g, ) = (const) II' dt „'exp ——(t„')' Z(g, )2

dUe**' ll'f dt exg — (t„') '„e(e'„—t )— '„
n&a

dUe+ exp —— ' s' dv II'5(s'„((t)) -s„').
n, a

(2.24)
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Equation (2.24) is the final form for A and A,
which we will use for computations. We show in
Appendix B that the combined effect of e"+'"a in
fact leaves the gauge-invariant sector unchanged.
e"a is no longer gauge invariant, but e"&'"& has a
lower symmetry, which is the Slavnov symmetry
(see Sec. IIC).

I et ci=0(1/g, '); then the modified action A'=A
+A +A, restricts all the variables (except 8'„,)
to be O(g, ). We look only at regions for which
8'„=O(g,) and hence have for all n, ii

8'„„=O(g, ) . (2.25)

A' = A ——Q (s'„)'+ A, ,
n&a

(2.26)

e" = dVII 5(s'„(Q) —s'„). (2.27)

What we mean by (2.25) is that in evaluating the
path integral of e", only those regions of the phase
space contribute to the path integral for which B'„„
= O(g, ). In other words, in this gauge the path inte-
gral is evaluated over those points of 0 which are
a distance «g, from the origin. Equation (2.25) can
be derived from the results of Sec. III.

In summary, from (2.24) we have

1 CabeCcde85 Bc (@d yd )+ O(y2 83')
(2.29)

Define u'„= u'„(P) by

s'„(it ) = u'„+ s'„.

Then from (2.27)

(2.30)

e ~ ~= dV 5 s'„P —s'„
n&a

(2.31)

We will now make a change of variable from
[Q'„] to (u'„] to evaluate (2.31). The 5 functions
make u'„($) =0; this in turn implies Q'„= 0 as the
unique solution for which u'„= 0 (as long as 8'„„«I).
We analyze the va, riable u'„=u'„(P). To do this, we
define the Fourier transform of the variables. Let
k„by any arbitrary function of n. Owing to the
torus structure of the lattice, we have h„,„„-=h„:
periodic in all the coordinates with period N.
Hence h„can be expanded in terms of the basis
functions {e'"&"'j,fi„=0, »/&, . ~ . , (»/&)(& —I).
That is,

We now evaluate A,[8] to O(g, '). For this, we
need 8'„(t) iup to terms linear in Q'„and quadratic
in 8'„„We c.omputed 8'„„(@)to O(g, ') in (1.13); the
only two terms missing there are of order B„„'Q„
and 8„„'P„+~. Since there is no mixing of P„and

;, we can set one of them equal to zero and
compute for the other. Using the equation

exp(A) exp(8) = exp (A+ 8+ —,
"
[A, 8]

+ —,', [[A,8],8] ——,', [[A,8],A]

+ ~ ~ 0 (2.28)

we have, for $~-„=0,
8' (P) = lower order+ —,', C"'O' '8' 8' P"

We can similarly do the calculation setting P'„= 0,
and from these results and (1.11) we have

~ e&&n~a ga ~ ei&nba
n nv kv ~

Then, from (2.29) and (2.30),

~ e-gA~n+a

Using (2.29) gives

u', = p ~

1 —e'" ~'y' + ' C'"g (1-—e-"~}(I+ e"~)8'
a

+ 1 CabeCcdeg g (1 e ill}(1 ei-qz)85 Bc (2.32}

Note from (2.32) that u'„, = 0; i.e. , it is not coupled
to the Q'„. We can hence redefine u'„, to be

(2.33)

Then, from (2.32) and (2.33),

u', =d~Q~+ g (M' (k, if)+ L~(k, q)}P, , (2.34)
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where

1 if k=0,
dk

i P i
1 —e" i' if k220,

(2.35)

Therefore,

cE~) = detT

= de(( d (1+ —M+ —l)), (2.44)

Let

M" (k, q) = z C
"4 Q (1 —e "«)(1+e"«)B',

(2.36)

L~(k q)= 2 f, d&dc«d gg(1 &-&2)«)(1 &ia«)
k'

k ki~ip ki, y,

(2.37}

T), =dz5' 5 +M' (k, q)+L' (k, q) (2.38)

=d~ 5' 52,„+ M' (k, q)+ L' (k, q)
k

where we have used (2.39) to obtain (2.44) and we
are using simplified notation. Using property
det(AB) = detAdetB, and that d, is independent of
the gauge field (B'„„}gives

e d i = (const) && det 1+ —M+ —LA fg] 1 1
d d

1 1
=exp Trln 1+ —M+ —L

d d

rt' 1 1
=(const) &&deti d 1+ —M exp Tr —L

d

(2.45)

(2.39)

From (2.34), making a change of variable from
(P~] to (u~) gives

where the overall constant is independent of the
gauge field. We evaluate

Tr —L = —Laa k, k

and

du' =g T' d(t)
cob

(2.40)

ggZ;=d t( )gdy,'.
a q&a

Hence, from (2.31),

e "c= dV 5 ua„
ny a

(2.41)

where we have used

Cabcc ~bc +pa+

Using the fact that

X B'k.„Bk'
k

(2.46)

(2.4V)

(2.48)

=11 fdd: ( )il d(4;)11 II( „'). (2.42)
n&a a n&a

The integrand fixes (t)'„= 0, and g((I)'„= 0)= const.
Also,

g' 5(u'„) =g g 5 (u', },
n&a &0 a

giving

gives

Tr —L = ——g QB'~ Bf„
k a&g

(2.49)

e" ' '=det(d, 5"5 +M"(k q))

Ba 2

48 n ga
Note that Tr[(1/d)L] is completely local. Hence,
we conclude from (2.45) and (2.49) that

x«exp ——g (B'„„)' + 0(g.') .
nba

(2.50)

1

detT (2.43)

This is the final answer. The determinant in the
expression for A,[B] can be represented by a fer-
mion integration; it is this term which is called
the Faddeev-Popov ghost term. However, the ex-
tra local term P„«,(B„'«)' is absent in the continu-
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um formulation. This term is quadratically divex-
gent (we will show this in Sec. III) and plays an im-
pox'tRnt role 1Q eQsux'lng that there ls Qo IQRss x'e-

normalization necessary for the lattice gauge
field. We will return to (2.50) in Sec. III.

%e note in passing that choosing the axial gauge
and using a gauge-fixing term are both ways of
choosing a gauge for the gauge field. The only dif-
ference is that in choosing the axial gauge there is
no counterterm, whex'eas using A. ~ fox gauge fixing
introduces a nontrivial counterterm. However,
from a practical point of view, the two ways of
choosing a gauge are vastly different. In contrast
to the axial gauge, gauge fixing using A. allows us
to treat al/ the field variables on an equal footing,
and hence allows the systematic use of perturba-
tion theory.

C. Qgynov identity

Recall that in the last section we proved that

(2.55)

(all repeated indices to be summed over). Hence

(2.5"l)

e"~=& de)„'6 g'„y -s„')
tt «C

=det," d4„'& 4'„

= det(es'„/s P') .
To define the Slavnov transformation~ we hRve to
represent the determinant e~ using fermion inte-
gration (this is discussed in Befs. 4 and 'I). Let
&, &„' be scalar fermion fields, and let ( ) denote

g dU~A dU ~A+A~+A~

We also had computed e ' = det( T"(k, q)) to 0(g,').
Nt thatA. f s tyb k ga g
also, our definition of e ' is not gauge invariant.
However, the term A ~+A, is invariant under the
Slavnov transformation, ' which we mill define in
this section. This invariance is more restricted
than gauge invariance, but its usefulness lies in
that it holds for the gauge theory in the presence
of gRuge fixing

To define the Slavnov transformation, we first
rewrite & ' in a more formal way. From (2.2&)

(for an infinite-size lattice)

dV 5 8 f ~8 )

The value of {g)for which the 6 functions are sat-
isfied is g =0. For an infinite lattice

~ =det g = exp „ tt cm

Hence we hRve

(2.59)

A, = ct'(»'„/8$„'}c' . (2.61)

(2.63)

Let ~ be a spacetime-independent fermion variable
which anticommutes with othex' fex'DlioQ variables
and commutes with bosons. %e adopt the notation
that (M'„(Q)/&Q' ~«=, = &A'„/&Q'; let c'" be the
structure constants. Then the Slavnov transfor-
mation' is defined by

Therefore

e "+=(const}11 dg 6(s„'(y) - s„') .
ft «0

(2.53)

From (2.62) we have

~n ~n+& O m p
fm

(2.65)

We make the change of variable from (&g ) to (4'„j
defined by

C '„=s„'(&P)—s„'. (2.54)

In evaluating the Jacobian of the transformation,
the & functions make us evaluate this at ft)„' =0, i.e.,

es'„/e y" es,'/ay' -+ a(8«s„'/8 y' & (g)ct ~. (2.66)

We now examine the effect of this transformation.
The gauge field action A is left unchanged since it
is gauge invariant, and (2.62) is a linearized gauge
tx'RnsforxDRtlon. Fox' +~ we hRve
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A~~ ——Sn+A b C~8$

=A —nXs'„(&s„'/spgc '

and for the counterterm

(2.67)

A. gsb g 's'
A —c '+ —C&c act& +A. , ct'

c n 2 n n ~~a ~y pic l

&(c —ops ).
After simplifications using anticommutation of
fermion variables, we have

A -A + n A.ct' s' + —c'8~ ct'ct~cb~S A, ~S
c c

g2S b

CtaCtcC b
c n 1 nt' (2.68)

Therefore, from (2.67} and (2.68}, we have

~sb
A„+A, -A +A, +A. —,'c' &, c„c„&c'

n

2 b~ Sm ta tcCb
a c Cn C~

~ 4n~4S

(2.69)

Note that the term in parentheses is zero since
b 1 a' s'Ct'Ct'Cb, m CtaC

s~cs~c n l m 2 s~cs~c n

b

CtcCtaC b'
sy', sy'„

a a
Sb CtaCtcCb

2 ~pa ' epc mn

(2.70}

and'

mass divergences in the theory must exactly can-
cel. From asymptotic freedom, we know that we
have to study the lattice theory for gp-0 to ascer-
tain the high-momentum behavior of the quantum
theory, i.e., the behavior for a (lattice spacing)

0 (see Ref. 6).
In particular, we will study the B'„~ field prop-

agator in the weak-coupling limit, and we will
show by calculation that to lowest order the prop-
er self-energy of the gauge field quantum for zero
momentum is zero. This will show that there is
no mass renormalization for it. We will then prove
this same result more formally by making use of
the Slavnov identity.

Owing to the infrared instability of the non-Abeli-
an gauge field, it is in general not possible to com-
pute the behavior of the zeroth mode without solv-
ing the large-distance strong-coupling problem.
The same is true for the lattice theory provided
that there is no quadratic divergence arising from
a nonzero mass renormalization term. However,
if there is a quadratic divergence in the theory,
then this would destroy asymptotic freedom; the

2
divergence would completely dominate the e ' ~p

effects arising from the high-momentum modes
due to coupling-constant renormalization, etc. ;
and we could compute this divergence using the
weak-coupling approximation for the zeroth mode
propagator. Hence, we assume that there is a
quadratic divergence, and compute it using
weak coupling for the zeroth mode. We will then
show that the divergence is in fact absent. The
calculation is self-consistent, since if there were
a quadratic divergence our calculation would de-
termine it.

We now discuss the main features of the calcula-
tion before going into the details. Define the (glo-
bal) color-singlet propagator

(2.71)

Therefore, the term in (2.70) cancels the other
term in parentheses of (2.69), giving

dUB' B' e"'" +"c/Z
nuv nQ pv

e-kk nD

(3.1)

(3.2)

A +A, -A +A, : invariant. (2.72)

III. MASS RENORMALIZATION

We know from general considerations that mass
renormalization for the gauge field is incompatible
with local gauge invariance —since any mass
counterterms in the Lagrangian would violate
gauge invariance. Hence, for the renormalized
theory to be gauge invariant, all the quadratic

Hence we have proved that A+A +A, is invariant
under the Slavnov transformation. In the next sec-
tion we will use the invariance to show formally
that the gluon has zero mass renormalization.

Using translational invariance (due to the periodic
lattice} gives

Dq„„=— dUB'I, „Bq„e Z . (3.3)

Let D,'„'„be the bare propagator defined by the
quadratic part of A', let II,„(k) be the proper self-
energy. Then, in matrix notation, Dyson's equa-
tion states that

Dq Dq'c'+ Dq~c'II(k)Dq (3.4)

Recall from (1.6b) that B~„=agcsAc is dimension-
less, making II (k) dimensionless in (3.4). Hence, the
continuum self-energy, which has the dimension of
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(mass), is givenby dimensional analysis. Since the
only dimensional quantity in the entire theory is
the lattice spacing a, we have

rr'"'(p) = —,rr(k =pa) (3.5}

= ~(ii(0)+ [11(pa) —Ii(0)]J. (3.6)

It can be shown using perturbation theory that

(p «)

Hence, in the a-0 limit,

(3 7)

Ii'""(p)= —,II(0)

+ logarithmic divergences in a. (3.8)

lim —,[II(pa) —II(0)]- logarithmic divergences in a.

(3.14)

As we discuss in Appendix B, dU„could not be
treated like the other variables since there is no
Gaussian factor for it in the integrand. When we
Fourier transform the (B„'„j,we see that the role
of UN is taken by the variable B~~ „, since there
is no Gaussian factor for it either. (This can be
easily seen later. ) We also have to isolate this
zeroth mode in the action, since we are interested
in integrating out all the other modes. We do this
as follows (the original variables are B'„„=

4k nBa }.
I I I

B' =B' /X4+g e""B' P -=g (3.15)
k&

Define

We conclude that for there to be no mass renor-
malization, the quadratic divergence (I/a')II(0)
must be zero, i.e.,

I
ga ik ga

nQ A~

(3.16)

(3.17)

II(0) =0. (3.9)

The logarithmic divergences in a are taken care
of by wave-function renormalization.

When g0-0, we have an expansion

B'„,= 0(g,),
O'„= O(1) .

(3.18)

(3.19)

In the presence of A, +A„we have (for o =1/2g ')

II(0)=II +11,g +II g k+ ~ '' ' (3.10) Therefore, since B'„,= 6;+Z,B;,= 8;+ O(g, ),
In our lowest-order calculation, we will show
that II, =O. The general result that II(0) =0 is
proved by the Slavnov identity. From (3.4)

and

raa x' t a' xaels x fk I O( ) (3.20)

1
k D(0 I-1 II(k)

(3.11}

Itwillbetrue that, forN- ~, k-O, D,~ '-0; hence

dU„„=dU~+ O(go),
a a

Where U„=e'er
Also,

(3.21)

1
kw 11(0)

'

In order to evaluate II(0), we will evaluate

(3.12)

(3.13)

U„~ = exp[i(Bk, + 8'„)X'] —=U„(1+A„„).

A„„ is a matrix of O(g,). Let

with

(3.22)

(3.23)

To calculate D, we will first perform an integra-
tion over all (B;„k4 0) in the path integral; this
will leave us with an effective action involving
only the B~~ „variables, and will provide us with
II(0). In the following we will analyze Z(g, ) and
then show how to extract II(0).

Tr(X'Xk) = —6'k

Tr(1) =n.

[The gauge group is SU(n). ] Then

A= kQ Q Tr(U, ~U„,a „U „- «U~),
+0 n

(3.24)

A. The weak-coupling action

Recall from (2.9) that with a change of notation

nQ nQ

and, using (3.22), (3.23) gives a complicated ex-
pression involving the U„and A„„. As already
discussed, the entire calculation is based on the
assumption that there is a quadratic mass diver-
gence. This means that we are interested only in
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the coefficient of the 6)'„0' term; if there is a quad-
ratic divergence, then all the higher powers of
O„will be negligibly small. Hence, in the action,
we keep only the terms for 8'„which are at most
quadratic. Secondly, we are doing the calculation
to lowest order in g„ i.e., to O(1}; this means
that we will keep at most terms which are quad-
ratic in the B„' . We will show that A„"„' is of
O(g, ') and A'„, is of O(g, ); hence we keep terms
linear in A„"„' and quadratic in A'„„. Note also that
if the above approximations are consistently used

[U., U„]=0+O(8'), (3.25)

where O(8 ) means the order of the terms generat-
ed in the action by the approximation in (3.25).
Hence, the action is

for the action, then a simple bookkeeping rule is
to consider all the U„as commuting. (If one goee
to higher order in 0'„or B'„„, then this bookkeeping
method is no longer valid. ) To summarize, we
use

A= 2g Tr[(U U„+UA„U„+U U„A - „+UA„U„A „-„)
2go nf v

x(Ut Ut+UtA~„U~+At - U~ Ut+A~ - „U~At„Ut)] (3.26)

N I t t,g Tr(U U„Ut Ut)+ 2gg [4nA„"'+2A' „A~„Tr(U„X'UtX')+A„' A„„Tr(UtU X'U„UtX )

+A„',-,„A~,„- Tr(X'X~}—2A„',-„A~„Tr(U X'Ut X~)]+O(g, B').

(3.27)

In studying the above action, we will consider it as a polynomial in 8' and B„'„and, as already pointed out,
keep at most terms of O(8'B') We use. the notation

a b =a~b~, (ax b)~ =c'~"a8b"

Then, from (3.22} and (3.23),

(3.28)

(3.29)

Therefore

A„„~A „=B„~B „+ '(B„xB }~ (8— —8„),

A„xA „=B„xB„+2(g xB„)xB„+2B„x(g„xB ).
We need the matrix

G' = Tr(U X'Ut X ) = —'O' ——'C'~~8~ —-'O' "C 8"8 g~2 2 4

Therefore

A' G'A, = —,'[A„„~A, (A xA ) ~ g —,'(A x g ).(A x g )]

Collecting (3.28)-(3.34) and simplifying the action gives, from (3.25) and (3.27),

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

A=A~+ 2 QQ (4(-—,')[B„——,', (g„xB„)2]+2(~)[A„„~A„,„- „+(A„xA „. ) ~ g„—'(A x g ) ~ (A . x g )]
go n ff. v

+ —,[A A —(A„xA„„)~ (8 8 } —,'(A x(g g )). (A x(g g ))]

+ —,A a,„A p „—2(-,')[A„,„- ~
~ A„„—(A„,„- xA ) ~ 8 2(A, x 8 ) ~ (A x g )]J. (3.35)

We break up the action as a polynomial in 8, and write

A =A +A +A'"+A"'v o I I
where, after considerable simplification,

(3.36}

Ao =-
~ QQ [(~.Bn, }'-~.Bn.~.Bn, l~0 4+ 2 v np p, nv v n~ (3.37)
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(3.38}, gg 8„(r„B'„-r „B„'.)(B„',„- „+B'„„).
4&0 n P V

{~ehave replaced Q' hy p using antjsymmetry of the summand. ) Note thai the general structure of

Ag ls

(3.39)(.)gP&=, P g PB„',M „B'„.
+D tft ~ ff ff V gQ

ln the fmal ca]cuiatton we will keep only terms of O(8 ) in performing the B„'„ integrations S.tnce I „
=O(8'), we will, owing to integration over the B„',, end up evaluating its trace, and hence need only the

diagonal elements M„"„ofthe matrix M„'~„. Hence

Aq ' ——
2 QQ [~~(8„xB„„)-~~(B„x8 ) ~ (B„,„„x8 ) —2(B„x8„)~ (B„-„x8„)j+off diagonal inI 2+ 2 l2 y. n@ 13 nfl, y, e+V ~g P ~ ny. ff, n4V~@ V

pv

(3.40)

%e will work in the Feynman gauge, i.e.,

Using the definition of 8„'„=Z,e'~B'„, we have

a.+~.=-,-PQ(P~t-e'"~*}s „a;„=-,P'Pu, a s
gybe

Q Q 8'(e"u-l)(e "v+1)+5 +8'(e '~s-1)(e "~+1) B" B'
ty

g@bc=- 4, —.
' g p 8'(s*"-l)(e-*~+ 1)- 8„'(e *+ 1)-(e'"-+l) 4f5.„—+ 8;sins. B',„B,

fy

&P& -=—,g g B',„~™„(I)B',

(3.42)

(3.44)

Qgbcgggg
g(~) j-85 8g I 85 8g ~ &i' & ~ 8&8g&fk„~g gy

~Afk kfI, &

ling

a&e a
g&a& P'P &8»8» &8»8» g (z&»„+ z-i»„) & g 8»8»(z»&„+ z-»&„) Bc

I 4@ 2 AP, ff. g %if,

Collecting Eqs. {3.42), (3.44), and (3.47} gives

(3.45)

(3.48}

where both ¹ and M „have been made expl1cltly
He rIQltlan. +et

is true for the measure p,(B„„),fol which we have,
from Ref. V~

(3.49) » =II l&(B„'„)=exp ——g (B„'„+8„')'+O(g, )

The gauge-fixing term 8 has no dependence on
8-„', however, the A, term is a function of 8„' . In
performing the (B~,kv 0) integrations, we can ig-
nore the coupling of 8„' to 8' coming from the A,
term, as this will produce O(g, ) terms multiply-
ing 8„', which we are ignoring anyway. The same

v{9)= my(- 24Nge„' + O(g, &. '

Then, collecting all the results, we have

(3.50)
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d= ll) dU„e" 8(9)ee te'll il f educe
0 sC

dU e" (e)e+") "
— . (3 51)

(detL)' i' 1 1
detJ. =det 1+ —&+—M

d d

(3.53)

B. Self-energy calculation

%e evaluate the lowest-order contribution to the
proper self-energy. This will consist of calcula-
ting the integrand of (3.51), i.e. , of

(fff e 8(P& d(d (9 )~ f " [de(L(9)]"' '

(3.51')

1 1, 1 1=exp Tr —N+ —M -& Tr —N —M
d d

1 1 1 1= exp Tr —M ——, Tr —N —N . (3.54)d d

(3.55)

7o do so, we calculate detl. and e"~' '. %e will
make use of our results from Sec. II to evaluate
e"~'~'. Since we are considering 8'„ to be small,
we will expand exponential functions of 8'„ in a
power series. %e will then consistently use the
identity

8()„"9, 9, =5„ff)dU„e"8,' (5. 555)

Tr —M —(fg —(-3+ —' d, ) .
16

Def ine

(3.57)

= t)„x (constant) . (3.52b)
(3.58)

We wiB signify the use of (3.52) by an arrow
(-). We will also use [for SU(n)]

9„12, +2

Define

Ie'~1 —e '~1
)

M"(u, q) =-k(."'"g (1-e "')(1+8"")&',„„
(3.65)

K= g' (1- cosh, cosh, )/(f, '. (3.61) M"(0, q) = —~ (."'"g (8"~-e" )8'„&,„+O(g,),

Tr —N —N =12/ I+2Ã .1 1
d d

(3.62)
M" (a, q) = n" p)6„,+O(g, )

(3.66)

(3.6V)

e ( 12J'-7/4-6I-12g)+

Nn 18- ge„'( 8) de ) —
)

We now evaluate e "d. Recall from (2.50) that

e"d = exp ——
8 gg (&'„„)'

But

1
=exp (- —' P)exp —'- Tr —n n. (3.68)—

12

(3.69)
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Therefore

e"~ = exp [-(t) (,—' i —,
' I )]+0 (go) .

Also,

(3.70)
The propagator was def ined by

(3.82)

w(8)= p(——N'QH =„'e p(- —'(). (3.71)

Hence, from (3, 63), (3.70), and (3.71) we have,
using (3.51),

P(6H J (de(i.)"'

D 4 Bn o Bwo, „exp -N IIo H„Z1

(3.83)

Suppose IIo&0; then we can. extend the range of
6) „ integrations to infinity, giving

dU, e"&exp(-,'+ ,' I+ 6K--6d)(t). (3.72)
D-X4 1 1

& IIo IIo
(3.84)

5= ~+- I+ 6K —6J .

From the identity Z, (d,'/d~') =1, we have

J=4J- 12K- 4

glvlng

4 = 4(Z- 6K) .

(3.73)

(3.74)

(3.75)

Hence we see that, if II, QO as N- ~, we get a
quadratic divergence -(I/a')ll, . However, since
II, -e ~, we ha.ve

D-e ~ as N-~. (3.85)

Note that the bare propagator D"' also diverges as
E-~ since

Ii(0&=N'(8„')/Z — as N-

It ean be shown that'

Z=6K+O(e "), (3.76)

glvlng

6 = 0+ O(e "),
= —ce N

where c is a constant and is O(1).
herefore

(3.77)

(3.78)

g =II dU exp(Ac) exp(-ce "p)

U„exp(hc) exp N4(cne "/4) Q-O '

(3.79)

IIo=-,' ene ". (3.80)

We discuss our results in the next section, and
show how, if II, QO and N- ~, we would have a

uadx'atlc dlvex'gence.

C. Discussion

Z=llfd()„""e p N Hg~, ') . -',(3.81)

We now show how a finite II„ in the N- ~ limit,
would lead to a quadratic divergence. Let

The main result of the last section, from (3.79)
and (3.80), is

We therefore conclude that, in the N- ~ limit,
the lattice gauge theory has no mass renormaliza-
tion. The continuum theory also shows zero mass
renormalization, and we conclude that discretizing
spacetime does not violate this propexty since the
lattice gauge theory was defined to exactly preserve
gauge inva, riance.

On the finite-size periodic lattice„our calcula-
tion shows mq„,„,„'-e "; however, fox the infinite
lattice we have no information about the mass of
the gauge field quantum, since the absence of mass
renormalization means that the large-distance
problem has to be solved for determining mq„,„,„

The cubic and higher-order terms in 8'„cannot
affect the divergence of D for X-~; that is why
they can be ignored. All arguments me used apply
equally well for II(0), and we see that the coeffi-
cient of the quadratic term Z 8,' in the action con-
tains a/l the information regarding mass renor-
malization. The calculation we performed for II,
can be done using Feynman diagrams. The exter-
nal lines are B~.„„;the propagator for the internal
gluon lines is 5 „/d~ and for the internal ghost
lines is 1/d„. The vertices are rather complicated
and can be read off from the action. The graphs
used are shown in Fig. 1. Note that, since the 8'
variables were held fixed when perfoxming the

(B~„,k40j integrations in the path integral, the
proper self-energy is equal to the complete self-
energy for the gauge field quantum.

We now give a general proof that II(0) is zero to
all order in perturbation theory using the Slavnov
transfoxmation. We will obtain an identity involv-
ing D»„and this will give us the desired result.
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Therefore

I ghost

I

quantum

/'

+ ~ Fourier transforming the above equation and using
translational invariance gives

(1 e~kp)(I e Av}D))b — 5a))I
kp& (3.95)

Recall from (2.63) and (2.65) that

esa

(3.87)

(3.88}

In obtaining (3.88) we have used

e es~Ac=e„,, C
Bq„

(3.89}

and the fact that 5/5c„'anticommutes with all fer-
mion variables. In particular, we are using

Therefore, from (3.87) and (3.88),

—eX&„B)„„&B„g (3.90)

( ) -=1111JdU„„de/c~'s" .

(cc Q Bb sA(g+A~) (ce Q gP eA~+Ag)

FIG. 1. Feynman diagrams for the computation of the
lowest-order self-energy of the gauge field quantum.

To determine the behavior of II(0), we need only
the k = 0 behavior of the propagator. From (3.95),
we have that D» I/O'-for 0=0. Hence we conclude
that II(0)= 0, and there is no mass renormalization
for the gauge field.

One might be tempted to conclude from the above
result that the gauge field quanta are massless for
the exact theory. However, this conclusion cannot
be made for the lattice theory. In the strongly
coupled region for the lattice theory, the degrees
of freedom are no longer 8'„„, but instead are
U„„=exp(fB'„„X') If th.e s'„are written directly in
terms of the U„„[such that (3.89) is recovered in
the weak-coupling limit], then one finds that the
expression for e c is no longer a pure determinant,
but instead e "' is a sum of (determinants) ' due to
the fact that the g„„5(s'„(Q)—s'„) now no longer has
a unique solution for the P'„at Q'„= 0. (This fact has
also been recently recognized for the continuum
theory by Gribov' and leads to nontrivial modifica-
tions of the continuum Yang-1VIills theory. ) This in
turn means that the Slavnov identity no longer
holds, and hence the identity for the propagator
is lost when we arrive at a strongly coupled theory.
%'e hence cannot conclude that the gauge field quan-
ta are massless for the exact lattice theory. This
question can be resolved by studying the behavior
of the lattice gauge field under the renormabza-
tion-group transformation.

+ ~ C c 8AN+AcM
n

(~ s' ~ ~ a' - s"" )= —e' e".).c
a ft- ff, C

(3.91)
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To perform integration by parts for the fermion
variables, note that APPENDIX A: WEAK COUPLING

From (2.4) we»ve

(3.93)
(W2)
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We are interested in go-0. In this limit, the ac-
tion has a sharp maxima about W„,„=1, and ex-
panding about this gives

Unl
- VnUnuvn+i" ~

dUn„- dUn„.

Then

(B4}

(B6)

A=, g Tr(W„,„)
2go n~v

, g Tr[exp(if„', „X'}]
2gO nl v

(As)

~(Uj eXp -~ ~ n, a sn' P )'

jd Vg „,5(s„'(P$}—s„'(y})

exp [--' &~...(:(&}}'l
J'dvg„, 6(s„'(y) s„'—(P)) '

&=O, 1,2, 3, ncD"
(A4)

f„',„ independent variables.

However, at n=N, all the f„'„„aredependent
variables.

Hence we see that in each domain except n = N,
e" provides a Gaussian factor for the three inde-
pendent variables B„' (the non-Abelian index is
irrelevant here) through the three independent
variables f„',„. Hence, from the action, we see
that B„'=O(go}, and we can extend their range to
infinity. However, B~„has no Gaussian factor
and remains O(1). Hence its range has to be kept
over the compact space. This special behavior of

B~„ is not without consequence, since it is con-
nected to mass renormalization.

Collecting our results, we have

z(g, )= if d))„'„g(B„,) fl f dU„, "'"'

Recall that we are in the axial gauge. For every
domain except n=N, we have three independent

f„'„„. More precisely, we have'

where, in taking the last step, we have used
d(V„V„)=dV„. Note that e"~ is now a function of @,
i.e. , not gauge invariant. Since Z is independent
of Vn, we can trivially integrate it over all Vn,
l.e. ~

Z= dvz

4„'=s„'(Q), (B8)

ss()('a

. rl ~:
n, a 4m sna &~)=C'na n, a

(Bg)

Let

J[B,(1)] =det(ss„'(Q)/SQ ) ~,.(~) o (B10)

Then

dU eA(U] dV P[ 2 o~)).g( ))(4)}]

fd Vg„,5(s„'((t)}—s„'((])))
'

(»)
Define a change of variables from Q„' to 4„' by

( oo (A5) dv=Q dv„=lid(t)„'II i(, (Q„')
n, a

APPENDIX B: GAUGE-FIXING AND COUNTERTERM

Recall that from (2.26) and (2.2'7)

where

1
J[B (f))

i [ & )ll n& (B11)

Z = dU 8&+&I+&c

where (for an infinite-size lattice)

(Bl}
i [» 4)=II ~(e.[B,4)). (B12)

A = ——P (s„')',
n, a

(B2)

e-" = d'V ~(s„(y —s„').
n, a

(Bs)

We show that with this form for A and A, (where
A, is not gauge invariant), we still have

We now evaluate e"c.

dVQ6('(~)- „(A)
n, a

(Bls)

Define a change of variable from Q„' to u„' by

fff &(:r (( )f1=&(~:(() @:). —
n, a n, a

Z = dU e&+~a+~c
u~ = s~(4)) —@~. (B14)

const x d U e~ .

perform the gauge transformation

The 6 functions in (Bls}force us to evaluate the
Jacobian of the transformation (B14) at the value
of (l)„' for which s„'(P) = O'„'. Therefore
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gd„=dt ',",
n, a

(B15)dQ'1 gdy„.

Similarly, the value of the measure g(P„) is fixed
by the 6 functions giving

o, , J[B,4]x exp —
2

(C„')'

dUe"' ' dC' exp ——'Q. 4' '
n, a

g u (4.[&, c']) =
i [&, c ] . (B16) =(co st)x f dUe ' (B18)

Therefore

e "'= p[B, 4]/J[B, 4]. (B17)

Collecting Eqs. (B.7), (B.ll), and (B.17), we have

Hence, we have proved the desired result. Note
that the result is exact and valid for any value of

g, . I thank M. Peskin for a discussion on this
topic.
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