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Properties of the solutions of cold ultradense configurations in the Brans-Dicke theory
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We have studied the properties of cold ultrahigh-density static configurations in the Brans-Dicke theory.
%'e used a perfect-fluid model with a simple equation of state, p = &p, for matter. An exact solution with

infinite central density is obtained, and the properties of solutions with finite central density are also
examined.

I. INTRODUCTION

(v'-gP' ) SENT SENT

g 2'+ 3 2(d+ 3 (2)

The properties of cold superdense stars, with
densities of the order of or larger than nuclear
density, have been studied extensively in recent
years."' A major source of uncertainty in these
investigations is the form of the equation of state
at very high densities. Consequently, there has
been particular interest in obtaining the proper-
ties of ultrahigh-density stars that are relatively
insensitive to the choice of the equation of state.
Steps in this direction have been taken in general
relativity by Misner and Zapolsky, ' and by Harri-
son. In this paper we make an initial investiga-
tion of the corresponding problem in the Brans-
Dicke- Jordan theory of gravitation.

The Brans-Dicke- Jordan scalar-tensor theories
mere first investigated by Jordan, ' and later, in
connection with Mach's principle, they were stud-
ied extensively by Brans and Dicke. ' The theory
can be expressed in units in mhich the local value
of the Newtonian "gravitational constant" is a func-
tion of a scalar field mhich is in turn determined
by the trace of the energy-momentum tensor of
all other nongravitational fields. The field equa-
tions are

Commas denote partial derivatives with respect
to the coordinates x" (p, =O, . . . , 3). Semicolons
mean covariant derivatives. T„„is the energy-
momentum tensor of matter and all nongravita-
tional fields. ~ is a positive constant. "The field
equation can also be written as

Sm (d+ 1 (dp. „p.„""2(d+ 3

(8)
In Sec. II we discuss the general assumptions

made in this paper; spacetime is taken to be static
and spherically symmetric, and the energy-mo-
mentum tensor is that of a perfect fluid. The equa-
tion of state chosen is what is generally believed
to be the asymptotic form of the proper pressure-
density relation for very high density. In the next
section we derive the relation between the scalar
field Q and g„. The equation of equilibrium is
derived in Sec. IV, where a second-order non-
linear differential equation is obtained for the
density distribution. In Sec. V we show how solu-
tions to the equation of equilibrium are generated
from a given solution by a homology transforma-
tion. All solutions with finite nonzero central
density are generated in this way. In Sec. VI an
exact solution of the field equation is found cor-
responding to a density distribution that is infi-
nite at the origin. It is shown in the next section
that all solutions of the equation of equilibrium
approach this exact solution in an oscillatory
fashion as the central density increases. Finally,
in the last section, we suggest some possible ap-
plications of this result.

R„„=I'„„~—I"„~„+I',I'
g

—1 „~I

I ~gg
(g8w, ~+gSv, u g gv, g) » (4)

II. GENERAL ASSUMPTIONS

We assume that spacetime is static; the metric
and the scalar field can be chosen such that

g =- detg„„.
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go, =0, i= 1-3. (8)

T„„=(p+ p}U„U„+Pg„„, ( io)

where p and p are the proper pressure and energy
density, respectively. U„are the components of
the fluid four-velocity. For a static fluid U, =O,
and since U"U„= -1, it follows that

U Uo=-1,

and therefore

T =-p

Pgfp~

(»)
(13)

For the further specification of the problem an
equation of state is needed. %e are interested in
densities greater than nuclear (p& 10"g/cm'). In
view of the large experimental and theoretical un-
certainties concerning the equation of state at ul-
trahigh density it has been common'~ to make the
simplest choice that keeps the velocity of sound
less than the velocity of light, and to use

If the configuration is spherically symmetric,
further simplification of the metric is possible;
the line element can be put in the Schwarzschild
form

ds'= e'"(r)d-t'+ e2~(r)dr2 +r2(d8'+ sin2edp').

(9)

The energy-momentum tensor T„ is specialized
to that of a perfect fluid

=-8w 1+ (3e —1) pv'-g,+1
2(d+ 3

(20)

[&-g4(»4)'"] =
2%+ 3

8w(3e —I}pv' -g
2(d+ 3 (2i)

Combining Eqs. (20) and (21), we get

[~ gg(in/) ") —,
' c[v' g@(lng„) "] = 0 (22)

or

(& -g4[»[4/(g. .)'"]j"),.= o, (23)

where

Combining Eqs. (16) and (17), we get

=', [v -gg(lng„)" ]„=8 (7", — T) d-g.

(18)

Furthermore in the static case Eq. (2) simplifies
to

(~&'"),.= [&-ge(inc)'"], .=
2 3 (19)

8m Tv'- g

Substituting Eq. (12) and (13) into Eqs. (18) and
(19) and making use of Eq. (14), we obtain

l (d+ 1-r[&-gA(ing. ,)'"],.=-8~ p+
2 3(3P-p) &-g

P=&p~

where E is a constant. Since

(i4)
3& -1

(2(u+ 3)+ (&u+ I}(3e—1)
(24)

dp
dp

where s is the velocity of sound, then in units
where the velocity of light is unity, we must have
0~& ~ 1. For a static configuration we further re-
quire that E& 0. In this paper we consider configu-
rations with Eq. (14) as the equation of state.

III THE RELAT ION BETWEEN p AND g00

If the metric satisfies Eqs. (7}and (8), Eq. (3)
gives

We integrate Eq. (23) and use Gauss's theorem to
obtain

4-g ln Q goo
' ")„d'x

~g en[4/(g )'"]]'"d'S.= o (2&)

Assuming that spacetime is spherically symmet-
ric, and that the metric is chosen in the Schwarz-
schild form (9), Eq. (25) becomes

4-gP x ln Q goo
' ' '"d'S„

(16) y' sjnge+Q gn @ g I ) '"dq

From Eq. (6) we obtain

o 8w o ~+ 1 ~,'o
2'+ 3

therefore

= 4mr'e~ Q[ln(g/e'~)]'"= 0, (26)

8m a+I 1 g'"(g )„
2~+ 3 2 & goo

(i7)
[1 (nP e/'~)]'"= e ' [In(@ e/'~)] „=0,

and hence

(27)
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415 = const x e'". ( 28)

We see from Eqs. (20) and (21) that Eq. (28) is also
valid outside matter with e an arbitrary constant.
If we choose ca 0, and if we require P(r) to be
finite and different from zero, then g~ is finite
and different from zero; consequently, this type
of vacuum solution does not have a Schwarzschild
horizon. This assumption, which is satisfied in
the vacuum Brans solutions, ' is quite reasonable
since P(r) can be identified with the inverse of

the local measurable value of the gravitational
constant.

For simplicity we choose units such that

ec$ (29)

In the limits ~-~, or E-3 it follows from Eq.
(24)that c-0; thus, from Eq. (29), p-1. There-
fore in these cases the Brans-Dicke theory re-
duces to general relativity.

IV. THE EQUATION OF EQUILIBRIUM

Under the assumptions of static spherically symmetric perfect fluid with the metric in the Schwarzschild
form, Eq. (9), we find from Eq. (6) that

R„=-[P'+ (0')' —A'0' —2A'/r]

= —p — (3p —p) e'~+ (&u+ 1)[(in/)')'+ (In/)"-A'(In/)',
2(d+ 3 (30)

R»=R«=1 re ' -(g'-A'+ 1/r)= —p — (3p —p) r'+re '~(in/)',

R = e"" '[P"+ (tP)' —A'P'+ 2$'/r]= —p+ (3p —p) e'" —P'e"" "'(In4)'
8n' u+ 1

tt 2&v+ 3 (32)

where the primes denote derivatives with respect to r. Making use of Eqs. (14}and (29) in Eqs. (30)-(32),
they simplify to

(c+ 1)g"+ [(~+ 1)c'+ 1](g')' —(c+ 1)A'g' —2A'/r = ——,„e— —(se —1) pe'~, (33)

8m (d+ 11-re '~[( c+1)g'- A' +I r/]=, „c— (so+ I) pr',
e 2(d+ 3

e"" '[g" + (c+ 1)(g')' -A'y'+ 2$'/r] =, 1+ (se —1) pe'".8n " (d+1
e'~ 2(d+ 3 (s5)

The conditions of energy-momentum conservation, T".„"= 0, that follow from the identity G".„"=0, imply'
that for a static spherically symmetric perfect Quid

(p+ p) -=-(p+ p) —.dp d In(-g»)'~' dg
dh dr dr'

With p=&p, we find

d(lnp) e+ 1 dg
dr E dh

or

p p e c(6+j ) /6) (0 40) —ge t. (64'I) /6]4&
0

where p, and $0 are the values of p and |t} at some arbitrary point r =r,.
Making use of Eqs. (33}-(35},and (38), we eliminate A', e '", and p from Eq. (35) thus obtaining

(36)

(38)

2+a, —+a, —+ —+e ' '
E 2+a, —+a~ —+a, —+as =0, (39)

where

2f
e(c+ 1)+ 1 ' ( 40)

x =- In[(8vE)' ~'r j
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and

()( = -(g (t)c —c),

a, -=2(c+ 1),

[1—(e —1)&u l(k roc' —c)a =—
3 2(d+ 3

-2[1—(e —1)(d ](c+ 1)+ [2&v+ 3+ (3e —1)(v+ 1)](—,
' (dc' —c)

a~ -=

2(0+ 3

-[1—(a —1)(0]—2[2(d+ 3+ (3e —1)(to+ 1)](c+1)
5 2(d+ 3

-(2~+ 3) —(3& —1)((d+ 1)
2(d+ 3

(41)

(42)

(43)

(44)

(45)

(46)

Since p= Ee (("""", Eq. (39) governs the density
distribution for a static spherically symmetric
perfect fluid in which an equation of state of the
form p = &p is valid.

U. THE HOMOLOGY TRANSFORMATION

A general homologous transformation is one in
which the density and the radius at each point are
multiplied by constant factors in order to obtain
another equilibrium configuration. %'e shall show
that the field equation (39) admits a transforma-
tion of this type. Specifically we prove the follow-
mg:

Let g(x} be a solution of Eq. (39), then

where A is an arbitrary constant, is also a solu-
tion. Furthermore

p„(x), p(x+ lnA)

4)„(x) (t)(x+ lnA) ' (46)

7=-x —ln4, (49)

then

where po/(f)o and p/(f) are the ratio of proper den-
sity to the scalar field for the 0 and the P solu-
tions, respectively.

To establish this result let

Q(x}-=g()(+ lnA)— 2a ln4
t(c+1 +1

= g(('+ lnA) —D lnA, (47)

P(x) = Q(F)+ D lnA.

Substituting in Eq. (39), we obtain

(50)

d'Q(F) dQ(F) ' ~dQ(F) ' dQ(F),„, ,/, e d'Q(X) dQ(F) ' dQ(F) ' dQ(F)
dF' ' dF ' dF dF dF' ' dF ' dF ' dF

( 51)

Dropping the bars, we see that Q(x) is also a solu-
tion to Eq (39). Mo. reover we have

PA( } Ec (2/())Q(x) A2E-c-(2ID)(t(x~(aA)
4o(&) (f (x+ lnA) '

and

po(r) = ' p(Ar).po(r. )
p r,

Therefore we can write

(55)

or in terms of r
po(r) A2 p(Ar)
0 (r) 4(Ar)'

In addition we have

(r) (t) (r )ec(o(F)M(FO))

(r gectS(ir)-)t)&Aro)3

4 „(r,)

(52)

(53)

(54)

p„(r) „,p(Ar)
y„(r,) @(Ar,)

'

%e have seen that from one solution of the field
equation (39) a continuous family of solutions can
be derived by the homology transformation, Eq.
(56). We shall show in the Appendix that all solu-
tions g of Eq. (39) that are finite at the origin have
dP/dr =0 (or equivalently dp/dr=0) at r=O, and
therefore the transformation (47) relates all solu-
tions that are finite at the origin. The correspon-
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ding property for Newtonian polytropes had been
worked out by Chandrasekhar, ' and in general
reh. tivity by Bondi. '

YI. AN EXACT SOLUTION

We can verify that Eg. (39) is satisfied by the
following singular solution:

%'e have then

P = Se-"~"=Sa-&e-~

or, using x= in[(SxE)' r],
p g 1

Sxx' 2x[e*+ Se+ 1+ (Se —I)'/(2&v+ 3)]r'

where

a(2x+ lnB) D(2x+ lnB)
c(c+ 1)+ 1 2 Also

g =e'~ =B e~' (SxEB}r~.

(60)

(61)

z'+ Se+ 1+ (Se —I)'/(2~+ 3)
(56)

Finally, using Eqs. (5V) and (59) in Egs. (33)-(35),
and solving for e'~, we get

1+
(3~-I)' ~ c.+66+1+ (Sc-I}'

(2(d+ 3)(36+ 1) 2(e+ 3

(2(o+ 3)(Sa+ 1)

Note that in the limits ~- ~ or & - 3, we have

3a -1
( 2a&+ 3)+ (or+ 1)(Sa —1)

and therefore

p
2x( c'+ 6m+ 1)r' '

g -const xr'I'~"
00 t

(63)

(64)

(66)

p(0)-~. This is indeed the case in general rela-
tivity where all solutions approach the singular
solution, Eg. (65), in an oscillatory manner as the
central density increases. ' Presently we will see
that this is also the case in the Brans-Dicke theo-
ry.

We consMer a solution p(x} that is near g, (x) for
some range of x. The domain in which such a
solution can be found is contained later in this
section; there we wQl also explicitly obtain the
function g(x) under consideration. We thus define

E'+ 6$+ 1
(I+ ~)2 (6V)

D
z -=P —P, = P —

2
(2x+ InB), (71)

These results agree with the corresponding solu-
tion in general relativity. ' The Newtonian approx-
imation is obtained from (65)-(6V) in the limit as
f =P/p 0. We have in this case

(72)

and write Eq. (39) in terms of z, then linearize
the equation by assuming

g~-const x (I+4& Inr),

g„„-1+ 6c.

(69}

(70)

z«1,
dz «1
dx

In this way we find the linear system

(73)

(74)

In the next section we wi11 show that the singular
solution (5V) is the limiting form of all solutions
when the central density increases indefinitely.

VII. APPROXIMATE SOLUTION FOR ULTRADENSE STARS

In Sec. VI we found an exact solution of Eq. (39)
corresponding to a configuration with a central
ratio p/@ that is infinite. On physical grounds,
it is reasonable to expect that this solution is the
limiting form of all finite solutions when p(0)/

d'z dz
bo 2+hz +by=0

wnere

b =-8+ & =—5e'+ 6&+ 1+1, (Sz —1)'
0 2(d+ 3

b, = —-z (a,D'+ a++ 1)1

(Se -1)'
Sa+ 1 (2&v+ 3)(Sz+ I)~
c+ 1 (Se —1)(~ —1)

(K&+ 3)(3&+ I)(z+ 1)

(75)

(77)



BRUCKMAN AND K. KAZKS

8 F~8 & +F28 (V9)

b, = 2-B(a,D'+ azo+ 1}=2e'"~b„ (78)

where e'"~, given by Eq. (62}, is the g metric
element for the singular solution. The most gen-
eral solution to Eq. (V5) is

where

p
—gg K(I+1)/&344. (934

Since z =Ey "cos($ lny+ n) is small, we can fur-
ther expand the exponential, and retain the first
two terms. In this way we find that

where F, and F, are constants, and

b, + (-b, ' —4b,b,)'~'

b, —-(b, ' —4b,b, )'~'

2bo

Let us define

b,
2b 0

(4b,b, —b, ')'I'

(81}

(83}

~+1p= p, 1 — Ey "cos(&lny+ n} . (94)

From Eq. (94) it follows that as y —~ the density
distribution approaches that corresponding to the
singular solution. If the solution are finite at the
origin we can choose E to be the central density
(i.e., choose P = 0 at r = 0). Since y = (8vZ)' ~'r,
we have shown that p- p, as the central density
increases (also p- p, as r- ~; however, in this
limit we do not expect the equation of state p = &p
to remain valid). The solution (94) intersects the
singular solution p, at points

or, using Eqs. (76)-(78), (2s+ 1)(v/2) —ny=exp (95)
(3z —1)'

3m+ 1 (2~+ 3)(3e+ 1)'
2(e+ 1) (3& —1)(c —1)

(2&u+ 3}(3e+1)(e+ 1)

3e —1'
(3z+ 1)'+

1 2(0+ 3
S 3e —1*E'+ 6%+ 1+

2&d+ 3

(85)

%e see that the condition z «1 is achieved when
x- ~. The real part of Eq. (86) can be put in the
fol m

z =Fe~'cos(@+a),
where F and n are constants. Using

x = 1nt (8vE)'+r] -=lny

in Eq. (87}, we find

z = Ey "cos($ lny+ a).

(87)

(88}

Substituting for z from Eq. (89) in Eq. (Vl), we
obtain

P= P,+ Ey~ cos($ lny+ a).
Finally, since

p E~"((4+i)/6) 0

we have for the density distribution

p gg r(&i)/I304$ r (641)/eV'P "CO4(C 1le+e)

p @-C(I+a)/61&W 1CO4(4 1se+O)

(90)

(91)

(92)

It can be easily shown that for 0&&~1, and co&0,
we have q& 0, P& 0. We write Eq. (79) in the form

z = e~(Z,e"*+I,e "*).

where n is an integer. The amplitude of the oscil-
lations p —p„ fall off by the factor e '" "at suc-
cessive peaks.

VIII. CONCLUSIONS

Vfe have shown that the existence of a singular
solution, corresponding to the limit of infinite
central density, is a common feature of Newtonian
and relativistic gravitation as well as of the
Brans-Dicke theory. Misner and Zapolsky' have
made use of this fact in general relativity to show
that, provided that the equation of state at high
densities is representable by Eq. (14), there is a
maximum mass for cold matter beyond which equi-
librium cannot be achieved. Harrison et al. ' ex-
tended this result and showed that the mass and
radius of ultrahigh-density stars approach finite
values in an oscillatory way as the central density
increases. Since numerical model calculations in
the Brans-Dicke theory' simQarly show that the
mass of a static spherically symmetric cold star
is bounded from above, our result may be used to
establish more generally that, under certain rea-
sonable assumptions about the equation of state, the
mass of an equilibrium configuration has a damped
osciQatory character as the central density in-
creases.

The close resemblance of the Brans-Dicke the-
ory to that of Einstein gravitation for a static
ultradense perfect fluid suggests the possibility
that a systematic way to go from a solution in
one to a solution in the other could be found. In a
future paper we will show that this is indeed the
case. For static vacuum solutions this has al-
ready been given by Buchdahl. "
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APPENDIX

In this appendix we show that all solutions P of
Eq. (39) that are finite at the origin necessarily
have dg/dr=0 at r =0.

In terms of

(Al)

Eq. (39) takes the form

+a, W+a, W+dW

+e '" ' a +a W'+a W+a W+a =0dW
3 4 5 6

where

x —= ln[(BwE)'i'r] =—lny.

(A2}

dW =-a W
dx (A4}

or

The origin (r= 0) corresponds to x = -~. Hence
we will study solutions with P finite in the limit as
x- -~. We first show that W remains finite as
x- -~. Theproof proceeds by showing that the
contrary leads to an inconsistency. Thus, assume
that

i Wi —~ as x - -~. We have the following
possibilities:

(i) a, =--(-, ~c' —c)40. For x- -~, the terms
within the second set of parentheses in Eq. (A2)
can be ignored in comparison to the first two terms
within the first set of parentheses, hence we ob-
tain

1W= -0.
2x+ const (Alo)

W- const, x —-~

or

W-O, x- -~. (A 13)

From (A12)

Wdx= const xx, x- -~. (A14}

But this type of solution is not bounded as x- —~.
Therefore, we are left with the case W-0 as
x~ 00

We are now going to show that condition (A13)
and Eq. (A2) imply that We ~ remains finite when
x- -~. The proof is by contradiction. Thus we
assumed that

i
We ~

i

-~, and W- 0 as x - -~.
Equation (A2) takes the limiting form

dW
dx (A15)

We have shown, for arbitrary a„ that the assump-
tion

i Wi -~ for x - -~ leads to a contradiction;
we conclude that W remains finite in this limit.

Hardy" has shown that every solution of an al-
gebraic equation of the form

dU Q(U, x}
dx R(U, x) '

where Q and R are polynomials in U and x, is
ultimately monotonic as ix i

—~. Equation (A2)
becomes an algebraic equation of this type when
x- -~, and therefore W must approach a limit
monotonically as x- -~. Thus we have either

1 -0
2a,x+ const (A5)

from which it follows that

W= const && e "-~, (A16}

which contradicts the assumption
i Wi -~ as x

(ii) a, =O. In this case, it is easily shown that
for ~&0, and 0« —1, we must have dP dP „dg„=e "—= e "W= e"We ~.

dg de dx (A17)

and we have a contradiction. Therefore We "is
finite at x= -~.

Using Eq. (A3), we obtain the relation

3z —1
(2ur+ 3)+ (3& —l)(tv+ 1} (AB) Since We ~ remains finite as x —-~, it follows

from Eq. (A17) that
Since, from Eq. (41)-(43)

(e —l)(cu —1)a =— a, =0,
2(d+ 3

a, = 2(c+ 1)= 2,

then we have as x--~
dW

or

(AV)

(AB)

(A9)

dP—- eonstxe'- o,
dg

Finally, since

dP 1 dP
dy (BvE)'12 dr '

we have

dt's—-0, x —-~, ~-0. Q.E.D.
y'

(A18)

(A19)

(A20)
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