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%e present new equations for four-body scattering, obtained by generalizing our three-body formalism to
the four-body case. These equations, although equivalent to those of Faddeev and Yakubovskii, are
expressed in terms of singularity-free physical transition amplitudes, and their energy-independent effective
potentials require only half-on-shell subsystem transition amplitudes (and bound-state wave functions) as
input, However, due to the detailed index structure of the Faddeev-Yakubovskii formalism, the result of our
generalization is considerably more complicated than in the three-body case.

I. INTRODUCTION

The treatments of the four-body problem that
exist in the literature provide a variety of solu-
tions to the problem of finding appropriate four-
body scattering equations. Of those obtained by
generalizing Faddeev's three-body theory, ' the
approach due to Yakubovskii' is the most well
established, in particular because its equivalence
with the Schrodinger equation has been demon-
strated. The most characteristic feature of this
formalism, and also its main weakness, is its
vex'y detailed classification of the clustering pro-
perties of the four-body system.

In some alternative approaches (such as that due
to Sloan'), a less detailed index structure is con-
sidered, for instance, using only a two-cluster
classification of the four particles. As compared
to Yakubovskii's, the resulting equations exhibit
in general a more complicated structure, and
their connection with the Schrodinger equation re-
mains unclear.

A common feature of all these formalisms is that
they have been developed almost exclusively at the
fox mal operator level: The actual complexity in-
volved (such as the singularity structure of the
considered entities) is therefore not explicitly
shown.

In the present work, we seek to establish a four-
body formalism based on the Faddeev- Yakubovskii
(FY) theory in a way that makes the actual struc-
ture of the fox'malism more evident. For this
purpose we follow a method suggested by our
previously developed three-body formalism, ' in
which a thox'ough singular'ity analysis of the Fad-
deev kernel led us to singularity-free physical
amplitudes that obey dynamical equations with a
considerably simplified input.

%'ith these results in mind, we carry out a
similar singularity analysis of the four-body ker-

nel. As in the three-body case, this task is con-
siderably simplified by using the complete sets of
eigenstates of the channel Hamiltonians. The
analysis turns out to be particularly straightfor-
ward for FY entities labeled by two-cluster indices
only —such as the wave-function components 4"
=Z~4"~, 4 ~ being the conventional four-body FY
component —and leads very naturally to new sin-
gularity-free amplitudes components for four-body
scattering.

In order to obtain equations for such amplitudes,
however, the FY formalism requires that we also
analyze the wave-function component 4 z itself;
i.e. , it requires that the singularity analysis be
made taking into account the full index structure
of the formalism. Unfortunately, this more de-
tailed analysis turns out to be less straightfor-
ward than the first; in addition to the physical
transition amplitudes, we are forced to introduce
a nonphysical amplitude which, although not pres-
ent in the full four-body wave function, still ap-
pears in the dynamical equations.

Nevertheless, the set of equations we are led to
exhibit essentially the same features as our cor-
responding three-body equations: namely, a multi-
channel Lippmann-Schwinger structure with ener-
gy-independent effective potentials that require a
simplified subsystem input (i.e. , only half-on shell
subsystem scattering amplitudes and bound-state
wave functions).

In Sec. II we review the main techniques and re-
sults of our three-body formalism. In Sec. IQ we
introduce the four-body notation that will be used
throughout the paper, some basic aspects of the
FY fox'malism, and the appropriate complete sets
of the channel Hamiltonians. The singularity
analysis of the component 4 ' is carried out in
Sec. IV, where the physical scattering amplitudes
ax e identified.

The fully split FY components 4"~ are analyzed
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in Sec. V, and the equations that the scattering
amplitude components satisfy are obtained in Sec.
VI. Finally, in Sec. VII we generalize our form-
alism to the fully-off-shell case and connect our
amplitudes to the operator formalism. In the

Appendix we confirm that our amplitudes are in-
deed components of the physical scattering am-
plitudes.

II. THE THREE-BODY CASE: A REVIEW

The main feature of our three-body formalism4
is the analysis of the singularity structure of the
kernel G,tBGB„of the Faddeev equations

—G,(E+io)f,(E+io)g I4;...&. (2.1)

In (2.1),
I
4 s&,& is the Faddeev component of the

three-body wave function corresponding to an
initial state

I p "'P„& of a, bound pair in channel
a and a third free particle; E=p"' —g ' is the
total energy, ts(E+io) is the two-body transition
operator in channel p, G,(E+io}=(p'+q' —E —io) ',
6s„= 1 —5s„, and P, '=P, '/2q, , q„'=q, '/2P, with

q =m (ms+m„)/(m, +ms+m„), and p, =(msm„)/
(ms+ m„}.

Since G, ts = Gs Vs, where Gs = (p'+ q'+ Vs —E
—io) ', the singularity structure of the Faddeev
kernel is best exposed using the spectral decom-
position of GB, or equivalently, by considering
projections onto channel eigenstates, i.e. , onto
the complete set of eigenstates (Ipsps&, Ipse; &) of
the channel Hamiltonian HB=p +q + VB.

'
In this way, we obtained for the three-body

wave- function components the representation'

B

(psqsI@;(. )&= &s.&(P. -P."')0:(q ) —-, ", E .0 3'.(ps, P, E+iO)

dq'p,=, (qs), ,s E .0 8s (psqs, p' '; E+io),
PB +qB —E-iO (2.2)

where the elastic/rearrangement and breakup poles
occur explicitly in separate terms, and XB and

ZsS~ are the corresponding physical scattering
amplitudes. It is important to note that these am-
plitudes are free from primary singularities. ' We
then proceeded to show that, when expressed in
terms of XB and 5B, the three-body equations
(2.1) take a particularly simple form: They be-
come coupled multichannel Lippmann- Schwinger-
type equations, whose "effective potentials" are
energy independent, and require only half-on-shell
two-body input (in contrast, in all previous exact
formulations of the three-body problem such ef-
fective potentials are energy-dependent and re-
quire fully-off-shell two-body input).

III. THE FOUR-BODY CASE:
PRELIMINARY CONSIDERATIONS

The wave-function components are labeled both

by two-cluster indices o, p, 7, etc. [i.e. , of the
type (123)(4) or (12)(34)], and by three cluster
indices n, p, y, etc. [of the type (12)(3)(4), i.e. ,
pair indices]. The decomposition is such that
Z, Zs„@s'" is the full four-body wave function.
A three-cluster index below a two-cluster index
(as in 4 s '}indicates that the three clusters have
been obtained by further splitting one of the two
clusters [as in o = (123)(4)—(12}(3)(4)= p].' This
is also described by writing p(: v.

In Eq. (3.1), 4s"' denotes the p component of the
initial-state wave function"; the operator KB„ is
the three-body kernel operator of subsystem o.

(more precisely, it is the two-cluster subsystem
kernel operator, since o can be either of the 3+ 1
or the 2+2 type}, defined as

For our treatment of four-body scattering we
make use of the FY equations for the FY wave-
function components, "i.e. ,

—Q G,(E+ i0)K s„(E+i0) Q O'
I
4"„"'& .

Ks), = Q (Us5s~ —VsG'V~)5

where
~]

G'=(H' —E —io) ~= Hs+ g V„—E —io
yco

(3.2)

yce p&y

(3 1)
In order to proceed with our treatment of the

four-body case, we need to define the appropriate
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complete sets of eigenstates of the channel Hamil-
tonians H'. For cr of the 3+1 type, the complete
set of eigenstates of the three-body Hamiltonian
P'+ q'+Z„„V„ is given by Faddeev" as being

1&1(-;&}, all 5(:a (3.3)

where 1C'& is a three-body bound state (we only
consider one three-body bound state per channel)
of energy —((,', 1&1(«»,- is the (outgoing wave) scat-
tering state corresponding to an initial state of a
bound pair 5 and a third free particle with relative
momentum p, and 14';-;& is the (outgoing wave)
scattering state corresponding to an initial state
of three free particles of relative momenta p, q.

Therefore, in the 3+1 case, the complete set
of four-body channel eigenstates can be written

(3.4)

where if, say, a= {123){4),r, is the momentum of
the fourth particle relative to the center of mass
of the other three. (Note that we suppress the
channel indices of all variables. )

On the other hand, if o is of the 2+2 type, the
complete set of channel eigenstates is given by

(1s4 "», 1s@',;,';-&, 1se&'-»') . (3 5)

ln (3.5}, if we let 5, y label the two subsystems of
a [i.e. , if a = (12)(34) and 5 = (12), then y = (34)],
1sc ( '&=1s&f&'„@„"&represents a state of two bound
pairs moving with relative momentum s and cor-
responding to a total energy E= s' —z,' —z„', where
S~ = S~ /2'~, with 7/~= (tttt+ &tt2)(tt(3+ tt&4)/(tttt+ ttt2

+ m, + m, ) if a = (12)(34). Similarly, 1sk((6»;-&

=1s(f„'q',- & represents a, state where the 5 pair is
bound, while the y pair is in a scattering state of
initial momentum q„, and so forth.

In what follows, we will in general not treat the
two kinds of indices 0 separately, but use only

the set (3.4}, with the understanding that when a
is of the 2+2 type, the labels r, p, q of (3.4) should
be replaced by the labels s, q, q' of (3.5}.

IV. SINGULARITY ANALYSIS OF +~(»-
THE SCATTERING AMPLITUDES

1

&1( «& » —5«1 r (0 & 4& (~ &

&

G&(E+to) g g v«r&5ap1&yn(~&&

(4 1)

where V„"'=Z„„V„5,„(it is understood that y(: a),
and we have used the relation

g lf(& —Gv V(s&

8

which follows from (3.2).
%ith the explicit appearance of the channel

Green's function G' in (4.1), the singularity
analysis of 4""'becomes straightforward.
Using the complete set of channel eigenstates
(3.4) or (3.5), we obtain

(4.2)

The most natural generalization of our three-
body formalism would be to consider four-body
wave-function components labeled only by a two-
cluster index a. As we have seen in Eq. (3.1),
however, the FY components 4'~"' represent a
more detailed splitting of the full wave function,
since in them not only the last interacting sub-
system is specified (labeled by a), but also the
last interacting pair (within the subsystem labeled by
a).

Therefore, we first consider the singularity
structure of the "partially summed" wave-func-
tion component 0 ""=+~„+~"&. Using Eq. (3.1),
w'e flQd

—g, —F. —zO 6c (y

r'+ p'+ q'- F. - zO
(4.3)

where p2 and p are defined in Sec, 11, and t' =F / 2'g, wlill ti = t&t4(ttt&+ Pt2+ ttt3}/(mt+ tvttt2~++)titft4

a = (1,23){4). y&tith the aid of Eq. (4.3), Eq. (4.1) can now be written as

Qfrf / r r(o) g+ 'A
($~~1&1(s(r&& 5av5( r r (0&)@(v&{ q) @(a&( q) (r' —x,' —F. —iO

I

4'I(;&(; (pq) -2 —,. 2 . 5'((»(rip'~r ' ted+to)2
5c ty r+P —~, —E —zo

S
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3Q+&(r r(s) ~ @+f0)— r@(v) ~ ~ 5ePV(e} yP(r)
r

rcpt

p&r

5'" (r p'r"'E+i0}= r4'"=, ~~~~5"V'" 4""(6) » ~ (g)p' (4.5)

Equation (4.4) constitutes a four-body analog
of Eq. (2.2); i.e., it explicitly exhibits all the phy-
sical poles of the wave-function components 4'")
in separate terms. The residues at these poles-
i.e. , the amplitudes (4.5)—are free from primary
singularities (just as in our three-body formalism},
and are the components of the physical scattering
amplitudes: As is shown in the Appendix, the on-
shell values of 3P', Z„sF «&, and Z, 8" are the
amplitudes for elastic/rearrangement, partial
breakup, and full breakup, respectively. "

The remaining step in the generalization would
now be to find equations for these amplitudes. Un-
fortunately, as can be seen from Eq. (4.1), W"'
is coupled to att the FY components 0;"', and not
simply to the remaining 0 "'. As a result, no
equations for the wave-function components 4'""
are available mithin the FY for malism, and it is
therefore not possible to obtain dynamical equa-
tions for the amplitudes (4.5) at this stage.

To proceed within the FY formalism, it is also
necessary to perform a singularity analysis of the
FY components 4 s" [for which, of course, Eq.
(3.1}is available]. This, however, is not straight-
forward, as will be seen in the next sections, and
is certain to lead to a larger number of amplitude
components (which is the weak point of the FY
formalism in general}.

At this point one could therefore abandon the FY
formalism and use other dynamical equations for
the components 4'", for example, those dis-
cussed in Refs. 3 and 13. However, all such al-
ternatives we are aware of lead to dynamical equa-
tions with effective potentials that are not only
energy dependent, but also require fully-off-shell
subsystem input. In addition, these alternative
equations may possibly admit spurious solutions.
For these reasons, we choose to remain within
the FY formalism for the present work.

is GsKs„. In analogy with (4.2), we write

(5.1)

is the Faddeev component of the Green's function
G', with the property that ZsGs„=G'. Therefore,
we see that for the pole decomposition of 4z", it
is necessary to analyze the Green's function com-
ponents G~, rather than G' itself. As is evident
from (5.2}, use of the spectral decomposition of
G' [E|I. (4.3)] is not sufficient, since there is also
a pole in C,. This pole is accounted for in the
following way: In each term that results from
applying the spectral decomposition (4.3) to the
product G,(E+i0)VsG'(E+iO) of (5.2) we use the
resolvent identity

(5.3)

G.(&'+P' —&s' —'&') Vs I
r@ (s]i &

= —
I
r+ s';Is) v &

G,(f'+p'+q' —ie')Vslr+ 's )= —Ir-ys:.-.
(5.4)

with z' equal to the energy of the corresponding
channel eigenstate (with an imaginary part q' that
is always understood to go to zero before q). Then
the G,(s') Vs factors in (5.2) can be eliminated using
the three-body relations

V. SINGULARITY ANALYSIS

OF THE FY COMPONENTS 4p (')

Recalling Eqs. (3.1) and (3.2), we see that the
kernel that must now be analyzed for singularities

where g~"' is mhat remains of 4 ~" once the ini-
tial-state plane wave has been subtracted.

As a result, we obtain a "pole decomposition"
of the Green's function components given by
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p;, (p+ p)=f'~pp)), , ( p"'~ +I [pp". ', -) ., - P . ( p"-~x' —z,' —E —iO 8;(5)y &2+p2 &
2 g &(} {5)y

( ) d rdpdq ~ (q)+ Irons&&;" & - - - ~ 0{r+'
+p +g —F —Ev

~ p, (p+'D)lp„—J ~pp' )p (

—F f ~

pp')&;) pdp(pp), ,";~ —f ~

p,"„',
, .-;)prppdt)(pp!;. '

~), (5.5)

w"ere we "ave also»rep»ced Irons', ls& by
I 4's»&;ps& —6s~lrpq& and made use of the fact that G, is diagonal in

an
l
rpq) representation.

In (5.5) we see that upon summation over p& o, the factor multiplying G,(E+f0) vanishes identically. In
addition, the first three terms become equal to the expression (4.3) for G', since the Faddeev compo-
nents of (5.5) add up to the full channel eigenstates.

Using (5.5), we finally obtain the sought-after pole decomposition of the FY kernel (5.1}, and also
of the FY wave-function components (3.1),

(CI }(
(rpql4s'"&= P'6(r —r "))Cs"&(pq}—,s, ' ', X"(r,r"', E+i0}x' —K

' —E-go
~)&

s;)s)p(Pq) -s pi2 s E 0 6')s)(rP p r p &+)0)
5t e '7 +p —K5 E —Z&

~))'

A, C fy

s()).p q(pq) -p -)s -is )p), (rp 'q pr 'p&+'0)
~ +P' +~' —E- 0

'JJs'(rpq; r "', F. + f0), (5.6)

where K" and 5&'s& have already been defined in (4.5), and )p is a decomposition of the amplitude S"of
(4.5}, i.e. ,

8„"(r p'q', r "',8+ i0}= ( r O' -";-',
I

V~ Q 6~ Q 6 pp
I

4& p'p' (5.7)

with Z),~p S) = )p . Tile rema)ning amplitude )I p ls given by

&) ( ps' "':p~ p)=)pfslZ ' —f I"'l"&p'("'""I-I
I

'p"' "&pp'"P'&"'pt'l;I
Xc c 5C II

(5.8)

Equation (5.6) constitutes a further generalization of our previous decomposition (4.4}, where now aII
physical singularities of the FY component 4~(" are explicitly exhibited in separate terms. It is a re-
markable fact that in (5.6) the p dependence in the terms containing X and 6: factorizes, so that these scat-
tering amplitudes still depend only on the two-cluster index 0 of the wave function. In other words„ fur-
ther splitting of 4 '" in (4.4) into 4& s'" in (5.6) only produces a splitting of the amplitude h".

In addition, the amplitude 'JJs' must now be introduced. Just as in (5.5), this amplitude vanishes identi-
cally upon summation of 4's " over all p c o [as did the last term in (5.5)], and is therefore also absent
from the full wave function. Consequently, 'g~' is not a physical scattering amplitude.

VI. EQUATIONS FOR THE SCATTERING AMPLITUDES

Let us now derive the equations that our amplitudes K", F;;), and 8~' satisfy.
Replacing the pole decomposition (5.6) for

l
4,P")& in the definitions (4.5) and (5.'I) for these amplitudes,

and in the definition (5.8) for 'JJ s', the following (half-on-shell) equations are immediately obtained:
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~a~( r. r (0). E+f0) 6 wZ&((cx)&&&(~r. r (0))

~(acÃ)«n(r. r~) 3CP&( r' r &» E+ z0)~12 ~ 2 E ~0

~/ ~/

p/ty 5L p +~ K6

W)
g . . . (f dp dq

@ , , (& )
p/&y X& p

'v +p +g —E- g0

d 'd 'd
pity ) cp +p'2+ q —E —j0 (6.1)

The corresponding equations for 6'&()&, gp, and 'JJ))' aze obtamed from (6.1) by ze
placing, respectively, «~) by v(~+), V~~+' and ~(~', and so on.

Examples of the potentials appearing in (6.1) are

/( cK)&)P( r. r&) —g (z &I) (&&)~ y 6 @&4)(P)&
gc&y

'U'a~"'(r r'p') = g (r4"'~ V 6 ~r'&I("' -)
gC&y

(6.2)

where the indexy is uniquely determined by the conditions &
&: o and y&: p ((zx p). (Note that when both (z and

p are of the 2+ 2 type, &z A p -=0, so the corresponding potentials vanish. )
In spite of the fact that two-body potentials appear in (6.2), all effective potentials in (6.1) can be ex-

pressed in terms of half-on-shell subsystem scattering amplitudes and bound-state wave functions, with
no two-body potentials remaining explicitly. For example, 'U&~~& in (6.2) can be written as

p r (2)
Z(xp&&&p( r . r&p&) — (4)(a& (p (z)pr) (p ())&

& 2+ & 2) 6 6(p (2) r) )iL(p r & p)je px
tfe P r ft y y ty y)t X X X(2)2 2 ~ i2+ 2+Py ~ Ky Pg +K) +$0

+q +(( ) -(2)a - -» 2 0 z(P q PziPz —)(z —(0))

(6.3)
wllel'e, as zz& (6.2), y= &zP p zs uniquely determined by &z and p (&zw p). Also

where if, say, (r=(123)(4) and p=(124)(3), y=12, M„=M»=mz+m„M, =m„and M, =m, .
The factors appearing to the left in (6.3) are projections of the three-body bound-state wave function onto

the complete set of two-body channel eigenstates. The amplitudes X and S are the scattering amplitudes
of our three-body formalism, taken half-on-shell.

The potentials coupling 'JJ8" to the physical amplitudes differ somewhat from those in (6.2), e.g. ,

(6.4)

As expected, all these potentials vanish upon
summation over p(: 0. Again, all two-body poten-
tials that appear explicitly in (6.4) can be elimi-
nated in favor of half-on-shell subsystem ampli-
tudes and bound-state wave functions [the first

term 68„ in (6.4) is actually cancelled by a piece
of the fourth term].

The coupled integral equations (6.1) constitute
a generalization of our three-body equations to the
four-body case. We obtain in this way a formalism
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with advantages similar to those present in our
three-body theory as follows:

(i) The dynamical equations are expressed in
terms of components of the physical scattering
amplitudes.

(ii) The amplitude components defined in the
formalism are free from prima. ry singularities,
i.e. , from poles (in the off-shell variables).

(iii) The equations have the structure of a multi-
channel I.ippmann-Sehwinger formulation, with ef-
fective potentials that are independent of the four-
body energy.

(iv) The equations require as input only half-on-
shell subsystem transition amplitudes and bound-
state wave functions.

As pointed out before, however, the equations
also include a nonphysical amplitude 'JJ~~, and our
goal is therefore not fully achieved. The presence
of this nonphysical amplitude can be understood as
follows.

The FY equations are obtained from the four-
body I.ippmann-3chwinger equations by means of
a two- step procedure'. The two-body disconnected
pieces are first removed from the kernel, and only
then a,re three-body disconnected pieces removed.
(This is done in such a way that the resulting FY
kernel connects three particles after one iteration
and all four particles after two iterations. '} As a
consequence, the full wave function is split fi~st
according to three-cluster indices and then split
further according to two-cluster indices.

Qn the other hand, as we have seen, the singu-
larity structure of the full wave function is most
naturally exhibited by considering the wave-func-
tion components 4"', split only according to the
two-cluster index o. The (prior) additional splitt-
ing according to three-cluster indices required by
the FY formalism (in order to achieve connected-
ness of the kernel) appears therefore far less natural
from the point of view of the singularities of the
kernel (or from the point of view of asymptotic
channels}.

The FY formalism nevertheless requires that we
perform the more complicated singularity analy-
sis of the fully-split wave-function components
4 ~"), i.e., that we retain the full index content
of the FY equations. In choosing to remain within
the FY formalism and insisting on energy-inde-
pendent half-on-shell input, we are not only re-
quired to split the breakup amplitude 8" further
into components b»" (an expected complication) but
also to introduce the nonphysical amplitudes 'g~'.

VII. GENERALIZATION TO THE FULLY-OFF-SHELL CASE

In the previous sections we constructed our four-
body formalism keeping the use of four-body

operators and operator relations to a minimum,
i.e. , staying essentially within the wave-function
approach. It is illustrative, however, to consider
how our formulation relates to the four-body
transition operators, and how a fully-off-shell
version of our amplitudes can be obtained from
these operators.

To do so, we first recall that in our three-bodv
formalism the fully-off-shell amplitudes are de-
fined using the three-body operator'

Z». (z) = V»G, (z)U,.(z)G,(z) V. , (V.l)

T 8' = VBGoT s' Go V

or, more explicitly,

r;: v,c, P Q=n„ic,U ;a, i,n„}, c,v'.„.
gee ACT

(7.3)

(V.4)

The equations these operators satisfy are easily
obtained using the four-body equations for V~', '

Z»".(z)=6 "5,„V,G,(z) t„(z)G,(z)V.5„.

V~5~„.G'.
~ z T~~ z

pea )t&p

(V. 5)

where G„',„has been defined in (5.2) [recall also
(5.1)], and y, y' are determined by the conditions
y = o A w and y' = v 0 p.

By analogy with the three-body case, we expect
matrix elements of the operators (7.4) (rather than
matrix elements of just U ) to be closely related
to the amplitudes of the previous sections. Indeed,
by applying the pole decomposition (5.5) of G „'.,
(with F+iO- z) to (7.5), and projecting onto chan-
nel eigenstates, we easily verify that the resulting
kernels are identical to the kernels of Eqs. (6.1}.
Moreover, when z is chosen to be the energy of
the initial state, the resulting driving terms also
become identical to the driving terms of (6.1).

We can therefore identify the half-on-shell ma-

where U» (z) is the three-body Alt-Grassberger-
Sandhas (AGS) transition operator. " The on-shell
matrix elements of the operator (7.1) between ap-
propriate channel eigenstates give the various three-
body physical transition amplitude components.

In order to obtain the corresponding four-body
operators, it is convenient to make use of the
matrix formalism . We first define a matrix ver-
sion of (7.1) by means of the four-body matrix of
operators T"={7 }, according to

y
ff7' y(ff )g(ff ) ya7'g(7') y(T ) (V.2)0 0

where V"'=f-5» G, '},6,"'=(-6»,G, t»G,}, etc.
(with P, nc:o), and T"=(U»'} stands for the matrix
of four-body AGS operators. '

Next, as in (7.1), we define
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trix elements of T &' between appropriate initial
and final states with our previously defined scat-
tering amplitudes X", 5'

«& of (4.5), and h 0' of

(5.V) (recall that h" = Z0„$&'&')-
%'ith this identification it is straightforward to

define the corresponding fully-off-shell versions
of oul amplitudes as

K"{r. r "'8) = ( r 4&('~ T"(2)
~

r "'4&"'),

(y &t( ( PP. r (0). g) ( r&l& (0))-
~

T 0&'(g)
~

r (0)C&(&))

gllT(ppq~. r (0). g) — I. &I&
(0&- g T0('(g) z. (0)4&(('&

(V.V)

It is important to note that it is from the appro-
priately "dressed" operator (V.4) that we can obtain
singularity-free scattering amplitudes. This is in

analogy with the three-body case, where the factor
V0G0 in T0 [Eq. (V.l)] is present to eliminate the
primary singularities of the matrix elements of

U~ . In the four-body ease, the factor VBG,6»E,G,
in (V.4) performs a similar function.

The equations satisfied by the a,mplitudes (V. 6)
can be directly obtained from the operator equa-
tloII (V.5) llslllg (5.5) wltll E+ t0 1 ep'laced 1)y 8 ~

The effective potentials in the resulting equations
are identical to those of Eqs. (6.1), but the driving
terms are slightly different.

At this point, in view of the complications we

have encountered in generalizing the three-body
formalism of Ref. 4 (in particular the appearance
of the nonphysical amplitude 'JJt'), one may ask
whether the off-shell four-body amplitudes have
really been chosen properly. %'e therefore con-
clude this section by giving another argument in

favor of our choice.
For this we turn to the full four-body Green's

function G, and note that in terms of the transition
operators we have defined, it is straightforward
to write

=G0 —Q G0t„G, —Q QGBT0(0&G,
ty PC Iy

(V 6)

wllel'8 T
(&

Is tile three-body (1.8. , two clust)er-
transition operator [Eq. (V.l)], and T" has been
defined in (V.V).

In (V.B) we observe that the four-, three-, and
two-cluster disconnected pieces of G have been

separated from the true one-cluster (i.e. , four-
body connected) piece in a very natural manner.
In addition, it is easy to verify that the four-body
connected pieces of G ean be written as

G GT ff'TGT G (y T OV'G V'

gy yA, Xe &

g( 0

(V 9)

where G ~, is the "left-hand" splitting of 6' as de-
fined III (5.2), alld G 10 = 61060 —G I 0G(& Is t118 coI'-
responding "ri.ght-hand" splitting of 6 '.

We thus see that both the operators T" of (V.V)

and T of (V.4) appear in the cluster decomposi
tion of the four-body Green's function in a very
natural manner, suggesting that they are indeed
the proper choice of transition operators in this
formalism.

VIII. CONCLUSIONS

In a previous paper, w'e have shown how a
thorough singularity analysis of the Faddeev ker-
nel leads to a three-body formalism that holds
several advantages over Faddeev's formulation,
although remaining completely equivalent to it.

In the present work we have carried out a, gen-
eralization of this method to the four-body case
by performing an analogous singularity analysis
of the Faddeev- Ya3axbovskii four-body kernel.
+%en performing such an analysis on the wave-
functloQ components 4' —whel"e 0' ls a two-clus-
ter index —we find, as expected, a natural expan-
sion of 4 '"' in terms of singularity-free scatter-
ing amplitudes that exhibits all the physical sin-
gularities of the full wave function. In addition,
we also find a corresponding natural separation
of the four-body Green's function into pieces of in-
creasing degree of connectedness.

However, since this analysis is carried out on

objects that are labeled only by two-cluster in-
dices, while the FV formalism involves objects
labeled by both two- and three-cluster indices,
no dynamical equations within the FY formalism
can be obtained in this manner; it becomes neces-
sary to carry out a more detailed and much less
transparent singularity analysis of the FY com-
ponents Il'

g

Such an analysis does yield dynamical equations
that exhibit advantages analogous to those obtained
in our three-body formalism as follows

(i) The equations are expressed in terms of com-
ponents of the physical amplitudes.

(ii) The amplitude components defined are free
from primary singularities, i.e. , from poles (in
the off-shell variables) that correspond to physical
s1Qgularltle s.

(iii) The equations have the structure of a multi-
channel Lippmann-Schwinger formulation, with



effective potentials that are independent of the
four-body energy.

{iv) The equations require as input only half-on-
shell subsystem transition amplitudes and bound-
stRte w'Rve functions.

However, the equations also include a nonphysi-
cal amplitude 'g~', which is an unexpected compli-
cation. This additional amplitude is the result of
a lack of cox'respondence between the singularity
structure of the FY equations and their detailed
index structure. In fact, to our present under-
standing, the connectedness of the (twice iterated)
FY kernel has been obtained through a procedure
that is incompatible with a straightforward singu-
larity analysis. The nonphysical amplitude ~j~

serves to compensate for this incompatibility, in
a way that allows the desired features (i) to (iv) to
be carried over directly from the three-body case.

'Qfhether or not to remain within the FY forma-
lism becomes therefoxe a, matter' of deciding which
characteristics of the foux'-body equations one
chooses to emphasize. As was pointed out, we
could have chosen to consider formalisms other
than that of FY to obtain equations for the compo-
nents 4"". None of these formalisms, however,
a.x'e eleRX'ly fx'ee from spux'ious solutions~ Rnd,

more importantly for our present treatment, all
the alternative formalisms we are aware of lead
to equations with an input that is not only energy-
dependent, but also fully-off-shell. In keeping
with our aim of obtaining a theory without such
features, we have chosen f'or the present work to
remain within the FY formalism. Nevertheless,
further work on alternative formulations of the
four-body theory is clearly called for.

whex'e lt 18 under'stood thRt Rll opex'Rtox's Rle to
be taken on-shell.

Combining now relations (V. 6), (7.4), and (Al),
we get for the half-on-shell amplitude K" the ex-
pression

X"(r;r "', E+io)

(A2)

ff we now take (A2) fully-on-shell, we can again
use (Al) to obtain

which is known to be the expression for the elastic
and rearrangement scattering amplitudes. '

Next we turn to the full breakup amplitude. Tak-
ing the expression for A"" in (V.6) fully-on-shell,
and applying (Al), we get

8"(rpq; r"'; E+ io}

In ordex' to proceed we need the expression for
~

r 4','-'&'
& in terms of the initial state

~
rpq&. This

is obtained from three-body theory by x ecalling
that

~ y,". ,-& ='-G,(E- iO) g i';„(E iO) ~pq&, (A5}
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where M»= Va 68„- VBC'V„ ls the three-body Fad-
deev operator in subsystem cr. Combining (A5)
with the last of Eqs. (5.4) we obtain

C,(E iO)V„~r4 &;& &=G,(E

iO)pilaf'„„{E

iO)~pq&.

APPENDIX

%'e show here that the on-shell values of our
amplitudes K", F ~«), and 5"yield the transition
amplitudes for all physical processes starting
fxom an initial state of the 3+ 1 type.

In order to do so we first establish some inter-
mediate results, such as the relationship between
the three-body initial-state wave function and its
Faddeev components. Combining the relations

C' „"'&= -G, V„C' "'& with the Faddeev equations

(A6)

With (A6), the on-shell amplitude 8" can be writ-
ten [recall that G;(E —io}=G,(E+io), etc. ]

h"=g pp g&rpq~iif;„6,.c, f„c,fJ„".jr"'4.'"&.
BCC yCfJ )tCO' Gl+1'

To simplify this expression we recall from the
matrix notation' that G,"'= (- 6"G,WB, Gj, where

is the connected part of M ~, i.e. ,

}to T

(AB}
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Using the fact that 6"'T"' = N'" =fG, K"], w"ere
KB' is the four-body kernel operator, we can now

write instead of (AV)

ond of E(ls. (5.4) on the left hand side, we get

—Q tq(E —i0)5q~GO(E i-O) V~
I

)I( ((~)),-&

go T Q Q ( r p~ «(I
I
If C~T

I
r (0 )4) (T )& (A9) =A-;,(E io)IPy„'&. (A12)

When summed over (r, (A9) becomes identical to
the expression for the full breakup scattering am-
plitude given in Ref. 8.

%'e conclude by consider'ing the partial breakup
amplitude. V/e proceed as before„and take ex-
pression (V. 6) for 0';;) fully on-shell,

S;;,= P P g (rg ( „-IV„e„„G,~„G,V'„:Ir")4("&,
yea Xccr ec v

(A10)

again using (Al). Further, we recall from three-
body theory that

I
@s';(6).-& = [58 —G,(E—i0)K'„(E i0)]

I
p-

(A11)

If this expression is multiplied by t~(E —iO)f')~„ the
Faddeev equation for K' can be used to simplify
the right-hand side, Using, in addition, the sec-

Finally, with the relation K B, = —/BE, U B, we get for
the on-shell value of (A10),

(A13)

%e compar'e this with the expression obtained in
Ref. 8 for the partial breakup amplitude, i.e. , with

2 (+'"'I s""I&'"'&' (A14)
b~

with the definitions 4"3)=(58„4)(,)], 4'2) =(f) 4(')),
and

a(3,2) -fE()(') —[ ~ Ps G f G Pv", t
Bo. ~ By 0 y 0 ye

(A14) becomes identical to (A13) when the latter
is summed over all o( 5.

*Vfork suppol"ted ln pal. t by the U. S. Energy HeseaI ch
and Development Administration.

)Present address: CEHN, CH-1211, Geneva 23,
Switzerland.

'L. D. Faddeev, Matheynatien/AsPeets of the Three-
Body ProMem in Quantum 5'eattering 7'heory {Davey,
New York, 1965).

2O. A. Yakubovskii, Yad. Fiz. 5, 1312 (1967) ISov. J.
Nucl. Phys. 5, 937 (1967)].
I. H. Sloan, Phys. Hev. C 6, 1945 (1972).
B. H. Karlsson and E. M. geiger, Phys. Hev. D 11, 939
(1975).

~The choice of incoming wave scattering states was
motivated in Hef. 4.

~Primary singularities (i.e., elastic, rearrangement, or
breakup poles) can be distinguished from secondary
singularities by the fact that the former are present
in all terms of an iterative series of the amplitudes,
while the latter get pl"oglesslvely weakel Rnd dlsRp-
pear after a few iterations.

TB. H. Karlsson and E. M. geiger, Phys. Hev. D 9, 1761
(1974).

B. H. Karlsson and E. M. geiger, Phys. Hev. D 10,
1291 (1974).

~More details on this four-body index notation can be
found in Hef. 7.

IOFor definiteness we will always consider a two-
cluster initial state of the type (123)(4), i.e., a
three-body bound state and a fourth free particle.

~~Hef. 1, Chap. 9.
~~As in the three-body case, we must use incoming

wave scattering states in (4.3) in order that the
entities defined in (4.5) be the scattering aInplitude
components.

'3T. Sasakawa, in Eeu Body g)ynamies, edited by
Asoke N. Mitra et al. (North-Holland, Amsterdam,
1976), p. 116; Phys. Hev. C 13, 1801 (1976).

4E. O. Alt, P. Grassberger, and W. Sandhas, Nucl.
Phys. B2, 167 (1967).


