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The role of pseudoparticles in the breakdown of chiral U(N) symmetry is studied in a two-dimensional
model. Chiral U(1) is always destroyed by the axial-vector anomaly. For N = 2 chiral SU(N) is also
spontaneously broken yielding massive fermions and three (decoupled) Goldstone bosons. For N > 3 the
fermions remain massless. Realistic four-dimensional theories are believed to behave in a similar way but the
critical N above which the fermions cease to be massive is not known in four dimensions.

I. INTRODUCTION AND SUMMARY OF RESULTS

It has recently been discovered'™ that gauge
theories exhibit the peculiar phenomenon of tun-
neling between distinct vacuum states via the
pseudoparticle mechanism. The existence of this
effect means that the standard perturbation theory
vacuum is not really a vacuum state (cluster will
be lost). The correct vacuum (6 vacuum) is con-
structed by an appropriate superposition of naive
perturbation theory vacuums.®* Although previous
arguments have been more kinematic than dynamic
in nature, we have been able to identify® a number
of interesting ways in which the § vacuums will
have qualitatively new properties.

By far the most interesting of these qualitative
features arises when massless fermions are pres-
ent. Then a vacuum-tunneling event automatically
produces fermion pairs of nonzero chirality [hence
the breaking of chiral U(1) invariance by the pseudo-
particle] and would appear to suppress pure vacuum
tunneling. However, a tunneling followed by an
antitunneling (to absorb the pair) is not forbidden
but does have an amplitude which falls off (owing
to the massless fermion propagators) as a power
of the separation between the two events. In short,
the massless fermions produce a strong long-range
correlation, or effective potential, between pseudo-
particles. It is therefore necessary to ask whether
the qualitative properties of the vacuum are not
quite different from what we found in the more
general case where the pseudoparticles do not in-
teract significantly.

The answer to this question is both yes and no,
and to obtain a clear idea of what is going on it is
necessary to go somewhat beyond the rather ki-
nematical weak-coupling arguments so far de-
veloped to study this subject. Of course, suffi-
ciently powerful general methods do not at the
moment exist and we are obliged to turn for gui-
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dance to semisoluble special cases.

The special case which is the subject of this pa-
per and which will turn out to be very instructive
is charged scalar electrodynamics in two space-
time dimensions. It possesses pseudoparticles
(Euclidean Nielsen-Olesen vortices®) and, while
not soluble, turns out to be quite manageable. In
the absence of fermions, and in the weak-coupling
limit, the vacuum of the no-fermion model is ac-
curately described as a noninteracting gas of low
density (particles are pseudoparticles and the
chemical potential is the classical action of a sin-
gle pseudoparticle). One of our main points is
that when N species of massless fermion are
added, an effective Coulomb interaction between
pseudoparticles appears and the vacuum functional
becomes essentially the partition function of a
Coulomb gas at temperature g<N. We then make
use of existing statistical mechanics arguments®’
to show that the system has two quite different
phases: a dielectric phase for large N in which
the fermion remains massless and vacuum-tunnel-
ing effects are strongly suppressed and a conduct-
ing, or plasma, phase for small N in which the
fermions acquire a spontaneously generated mass
and vacuum-tunneling effects are not suppressed.
The phase transition is such that it must have a
four-dimensional analog which could provide a
four-dimensional mechanism for breaking not just
chiral U(1) but chiral SU(N).

Actually, the phase transition uncovered in this
way is more general than the particular problem
(massless fermions in two-dimensional models)
which called it to our attention. (It also occurs
in a number of two dimensional problems® in sta-
tistical mechanics and in the one-dimensional Ising
model with a ‘j -j’ |‘2 interaction.) Being logarith-
mic in nature this kind of phase transition is natu-
ral in a scale-invariant theory such as four-dimen-
sional quantum chromodynamics. We have, infact,
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already suggested® that a phase transitic1 of this
kind could be responsible for quark confinement.
This will be briefly discussed at the end of the

paper.

II. TWO-DIMENSIONAL MODEL WITHOUT FERMIONS

The model we will use to study the phenomena
mentioned in the introduction is the familiar one
of charged scalar electrodynamics in two space-
time dimensions. The Lagrangian is

£=3(8,4, -8, A+ (D, d)X(D, ) - V(*¢),
(2.1)

where D, ¢=(8, —ieA, )¢ and V(dp*¢)=—-pu2p*¢p

+3 A (d*¢)? with both 12 and X taken positive. The
minimum of the potential V is not unique as long
as u®>0 [it occurs for any ¢ such that |¢|= ¢,
=(u2/1)1/2] and one has the usual degenerate-vac-
uum-spontaneous-symmetry-breaking problem.
The standard treatment assumes that by a choice
of gauge one can bring any relevant field configu-
ration to a form which is a small perturbation on
¢=¢, everywhere. Then an examination of the
small perturbations about this vacuum shows that
of the two degrees of freedom of ¢ one is a bona
fide massive scalar while the other is a would-be
Goldstone boson which, by the Higgs mechanism,
combines with the electric field degree of freedom
to create a massive “photon” of mass u,=ed,.
These two particles are manifestly neutral and
one usually concludes that there is no way of in-
troducing charged sources into the system because
the long-range Coulomb interaction is screened
(since the “photon” is massive).

However, as we have recently learned from the
study of the topology of gauge theory vacuums, one
must consider field configurations which cannot be
brought to the form ¢ = ¢, by a nonsingular gauge
transformation. This is best understood by con-
sidering the vacuum functional integral of the
theory in two-dimensional Euclidean space-time.
The requirement of finite action imposes only the
constraint that on the circle at infinity | ¢|= ¢, and
$dx,A,=2rn/e (in a gauge where A, =0, for in-
stance, this implies that A;~n/er, ¢~ ¢,e'™ for
large 7). The finite-action field configurations
thus fall into topologically distinct classes indexed
by »n and it turns out that to construct a true vac-
uum functional it is necessary to add together the
contributions of all possible classes with phases
e"® (q fixed but arbitrary).

The basic configuration out of which we construct
everything else is the minimum-energy configura-
tion in the n=+1 sector. It is not too hard to see
that this is just the Nielsen-Olesen vortex,’ thought
of as a pseudoparticle in 2-dimensional Euclidean

space rather than as a soliton in (2+ 1)-dimension-
al Minkowski space-time. The vortex solution has
a region, which may be centered anywhere, of
radius ~ u, in which 8,4, -9, A;=E+0 and | ¢|

# ¢,. Outside this core region, ¢ and A, approach
vacuum values exponentially rapidly [in the Landau
gauge, if the vortex is centered at x=0, ¢
~¢oe' A, ~(1/e)(e,, x,/x?)] and the total action of
the configuration is S,~ u?/x. There is also an
antipseudoparticle with opposite sign for A. Since
the region of nonvacuum field is well localized it
is easy to construct approximate solutions of any
desired n by superposing »n, pseudoparticles at lo-
cations x ; and n_=n, — n antipseudoparticles at lo-
cations x7 so long as all separations are large
compared to u,™. The method of superposition is
just to add the pseudoparticle vector potentials
[A,=20"A%(x — x})+ 22" A3 (x - x7)] and to construct
¢ outside the vortex cores according to |¢> [= Do>»
D,¢=0. This is equivalent to ¢(x)

= ¢, exp(i f‘ dx“A ), the integral being taken along
any path a\?mdmg vortex cores. Since 95dx“A

a multiple of 27 this leads to no ambiguity.

It is then easy to construct a reasonable approx-
imation to the true vacuum functional by summing
over all such configurations and doing Gaussian
functional integration over small perturbations
about them. Up to exponentially small corrections
the action of » widely separated pseudoparticles is
just nS, and the §-vacuum functional is well ap-
proximated by

(8]e#7|6)

j Hd x, Hd x' < -so>nun- eif(ny=n.)

)t ot \ v,
(2.2)

The x} integrations are taken over a finite but
large volume LT and V, is a normalization factor
of order p,™® summarizing the result of doing the
small fluctuation integral about the multipseudo-
particle configuration. Apart from the phase fac-
tor e'n-) this is nothing other than the grand
canonical ensemble expression for the partition
function of noninteracting particles of chemical
potential S, per particle. The partition function of
a noninteracting gas is trivial to evaluate and one
finds

(ele"”']e)zexp<vl 2cos9e‘st§ s (2.3)
o

the most probable configurations being those where
the mean pseudoparticle density is approximately
VyteSo,

Now that vacuum topologies have been properly
accounted for, there are some important qualita-
tive features of the physics of the model which
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differ from expectations based on naive perturba-
tion theory. First of all, in the standard pertur-
bation treatment, there is a sense in which the
scalar field has a nonzero vacuum expectation
value ~ ¢: Although ¢ is gauge variant, one can
find a gauge in which, up to small quantum fluc-
tuations, ¢=¢,. Once one has properly taken ac-
count of transitions between different vacuum to-
pologies by summing over the pseudoparticles, it
becomes clear that the only possible vacuum ex-
pectation value for ¢ is zero. The magnitude of ¢
is ¢, essentially everywhere, but the phase varies
randomly in a way which cannot be undone by a
nonsingular gauge transformation when one aver-
ages over pseudoparticle positions. In the present
context, however, nothing of physical interest de-
pends on the vacuum expectation value of ¢ (the
heavy photon mass is proportional to (¢*¢), which
quantity is still approximately equal to ¢,?). On
the other hand, the assertion, based on naive per-
turbation theory, that the system cannot support

a long-range Coulomb field and that any charge
introduced into the system must be completely
screened appears to be falsified by the proper in-
clusion of pseudoparticles. Indeed, the distin-
guishing feature of a § vacuum is that it is a state
in which the expectation of E=3;A, -8, A, is non-
zero. In the noninteracting plasma approximation
of the previous paragraph, one finds explicitly (E)
=-2sing e"SoV!. Since such an electric field must
have a nonzero source, it is manifestly possible to
introduce incompletely screened charges into the
system.

A particularly revealing way of discussing this
question is to calculate the energy of two widely
separated charges + @ in a § vacuum. By the well-
known argument of Wilson this amounts to calculat-
ing the #-vacuum expectation value of
exp(iQ §dx“A,), the closed loop being of dimen-
sions large compared to the characteristic lengths
of the system. But this just amounts to the con-
struction of a system in a § vacuum outside the
loop and in a 6+27(Q/e) vacuum (recall that e is
the charge carried by the Higgs field) inside the
loop. Since the 6 vacuum is characterized by an
energy per unit volume, the energy of the loop is
proportional to the area of loop, which corre-
sponds by Wilson’s argument to a linear or confin-
ing potential between external charges @ which are
nonintegral multiples of e. Note that if @ is an in-
tegral multiple of e, the energy is zero because
the vacuum energy is periodic in 6 with period 27.
Indeed, any external source whose charge is a
multiple of the charge carried by ¢ can obviously
be screened by the formation of neutral bound
states. Note also that the field set up by noninteger
Q (which is a sign of incomplete screening) is a

purely quantum effect since E is proportional to
eSo~ e/ Therefore, even though classical
arguments would indicate that any @ is completely
screened, the qualitative nature of the screening
process is changed by the quantum-mechanical
vacuum-tunneling process.

III. MASSLESS FERMIONS

For the reasons outlined in the Introduction we
would now like to add to the system just described
N identical species of massless fermion, coupled
only to the gauge field

N -
AL=Y "Dy (8, —ieA,)Y; . (3.1)
1=1
The vacuum functional integral is now
©|e#7]0y= f DA e S [Det(A,)]", (3.2)

where Det(4,) is the functional determinant of the
operator y*(9, —ieA,) and Det(A,) appears raised
to the Nth power because we have N independent
species of fermion. We still expect the important
A, configurations to be (at least for weak coupling)
superpositions of multiple pseudoparticles and
antipseudoparticles, but we expect the properties
of the vacuum functional itself to be quite different
because of nontrivial dependence of the determi-
nant of v+ (8 —ie A) on pseudoparticle locations.
Thus our major problem is to evaluate Det(4 ).

Before turning to that problem we should com-
ment briefly on the symmetry properties of the
system. Formally, the N identical massless fer-
mions support a global U(N) @ U(N) symmetry. We
will see that in certain cases there is spontaneous
generation of fermion mass which would normally,
because of the spontaneous breaking of the chiral
symmetry, lead to Goldstone bosons. Since mass-
less bosons are forbidden in two dimensions such
mass generation would seem to be forbidden by
general principles. The resolution of this paradox
is provided by the peculiarly two-dimensional pos-
sibility of boson representation of Fermi fields.
Each y; may be written as the exponential of a
massless boson ¢; and the total current E,gﬁb‘yuwi
may be shown to be a function only of the normal-
ized field

1 N
—‘/ﬁ;fpi:é.

The other N ~ 1 fermion degrees of freedom, in-
dependent of Z?ﬂd) ;» remain free and massless
even in the presence of A, and provide a basis for
the symmetry SU(N) X SU(N). The remaining chi-
ral symmetry is just U(1) and corresponds to the
freedom to translate ®: & -~ &+ «. The chiral



16 PSEUDOPARTICLES AND MASSLESS FERMIONS IN TWO... 2529
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FIG. 1. Graphical expansion of the fermion determin-
ant for an external vector potential. The wavy line
stands for the specified external field and the loop is
constructed out of free massless fermion propagators.

anomaly automatically reduces this continuous
symmetry to a discrete translation group which
for N>1 is enough to forbid a fermion mass term.
The point is that the effective determinant interac-
tion generated by the anomaly can easily be seen
to depend only on ¢ and to have the explicit form
cos(nN)t/2®. This now supports only the discrete
translation symmetry & — &+ 2 w/? n/VN for inte-
ger n. Since a mass term would have the form
cosVr ®, this discrete symmetry suffices, for
N>1, to forbid a mass. The spontaneous sym-
metry breaking we shall find is a breakdown only
of a discrete chiral symmetry and generates no
Goldstone bosons.

Let us turn now to the evaluation of Det(Au). For
a sufficiently well-behaved A,, Det(A,) has an ob-
vious graphical expansion, illustrated in Fig. 1.
For massless fermions in two dimensions the
four- (and higher-) point current correlation func-
tions vanish identically. (This is why the Schwing-
er model is soluble.) Therefore

h‘@:—?&g» -3¢ fdxdyA ()G (x = M)A(Y) -
(3.3)

The current two-point function, if we include the
anomaly term needed to guarantee current con-
servation, has the value

1 1
Guu='1; Euv G(x)‘z_?auavlnxz' (3.4)

If we adopt the gauge 3 *A=0, only the 6-function
term contributes, and we have the simple explicit
result

1“(3:—:%)):‘56; fd"’fo(x). (3.5)

An immediate consequence of this result con-
cerns the relative contribution of the different
topological classes of A, mentioned in Sec. II.

Recall that except in the n=0 class, A, must fall
off as ™ for large v (2yn=$dx - A). Therefore
for n+0, f d?x A? must diverge logarithmically
and Det(A) must vanish. This is the two-dimen-
sional analog of ’t Hooft’s discovery? that mass-
less fermions have a zero eigenvalue in a topo-
logically nontrivial gauge field configuration and
therefore vanishing determinant. It signifies the
suppression of vacuum tunneling as an asymptotic
process (though not as an intermediate process
with finite lifetime) and tells us that in computing
the vacuum-to-vacuum amplitude we need only
include n=0 configurations (equal number of
pseudoparticles and antipseudoparticles).

For such configurations we shall adopt the vec-
tor field trial function

A=Y (AP (x - x) - AL - %), (3.6)

where A? is the Nielsen-Olesen vortex solution

in the 8 -A =0 gauge. In this gauge we may, of
course, write A% =¢ 3,0 with ¢=(1/e)Inrp,, out-
side the vortex core, VZ(e¢)=p, with p=0 outside
the vortex core, and fdzxp= 1. Then as long as no
vortex cores overlap, the quantity 3 e? f d3?xA? is
identical to the two-dimensional Coulomb energy
of n charges +1 at locations x} and » charges -1

at locations x;. Explicitly,

J’d x A 2-Zlnuwz(x —x7)? —Z Inp,2(x] - x3)?

i, i>j

- 2 Inp 2 - %)’

i>j

=U({xih {x3) (3.7)
and
%Y) =exp[-U{xi}, {x})]. (3.8)

Having evaluated the fermion determinant we
may now integrate over the relevant gauge field
configurations to construct the vacuum functional
itself. As in the no-fermion case, we expect that
we need only integrate over the locations of
pseudoparticles and antipseudoparticles as well
as summing over their number (keeping net pseudo-
particle number equal to zero). The result for the
6-vacuum energy is, for N massless fermions,

clerro=3 [T 55 TG () ewl-nuadh sy, (3.9)

Of course since n, =n_ there is no longer any ex-
plicit dependence on §. Also, we never allow vor-
tex cores to overlap in integrating over xj. More
importantly, we see that if in the no-fermion case,

r

the vacuum is essentially a grand canonical en-
semble of noninteracting particles with chemical
potential Vo'le'SO, N species of massless fermion
convert the system into a two-dimensional Cou-
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lomb gas with the same chemical potential, but a
temperature Rg®=N. We will see that the quali-
tative features of the system can be very different
from the N=0 case and that phase transitions in
this classical statistical mechanical system lead
to drastic changes in the qualitative physics.

Consider for instance a nearby pseudoparticle-
antipseudoparticle pair at locations x and y. As
long as they are far from all other pseudoparticles
we will have

e Moo [ 2 - 9] (3.10)

In other words, the larger N, the more strongly
the pseudoparticles and antipseudoparticles will
clump together in pairs whose mean separation is
the order of the vortex core size. Qutside each
pair, since its net topological charge is zero, the
vacuum is indistinguishable from the standard
perturbation-theory vacuum and the previously
discussed qualitative effects of vacuum tunneling are
suppressed. Another way of saying this is that
because of the interactions between pseudoparticle
and antipseudoparticle, each vacuum-tunneling
event is immediately followed by an antitunneling
which cancels out any physical effects of either
event. In order for the effects of tunneling to be
felt the correlation between tunneling and antitun-
neling should not be too close. We reduce the
correlation by decreasing N (increasing T) and
the key question is whether a phase transition to
a phase in which pseudoparticles and antipseudo-
particles are essentially decorrelated occurs for
a physically useful value of N (N >1).

IV. EQUIVALENT GRAPHICAL METHODS

The classical two-dimensional Coulomb gas
may, of course, be studied directly in order to
determine the location and nature of its phase
transitions. We shall find it convenient to first
pass by another route which makes use of the fact
that for us, only integer values of N are relevant.
In that case we can find an equivalent graphical
representation for the partition function which
makes explicit the notion that each pseudoparticle
is, because of the chiral anomaly, the source of
massless fermions in a state of nonzero chirality.
The resulting graphical rules will give us a useful
intuitive preview of the subject of phase transitions
and will allow us to see in advance what new phy-
sics arises at a phase transition.

Recall that we found that the fermion determi-
nant in the vector potential corresponding to »
pseudoparticles and » antipseudoparticles at lo-
cations {x?} and {x;} was just exp[-U.({x3},{x:})]-
Given the explicit form of U, as a sum of loga-
rithms we may easily show that for » pseudopar-

ticles and n antipseudoparticles

[H:lm'(x: - x})"‘][H'Lj(xE - x;')z]

H:, i(xi = x3)%]

(n,2)eVe=

(4.1)

It is well-known from studies of the Thirring mod-
el and other two-dimensional models with mass-
less fermions that this rational function of coordi-
nate differences can be reexpressed in a form that
has a simple interpretation in terms of fermion
Feynman graphs. To construct this expansion, it
is best to introduce the notion of a “cycle,” an
ordered set of 2m points (x x7 #},%7, *** x5, x7,)
which is thought of as invariant under cyclic per-
mutation. The entire set of 2n points can be de-
composed in a number of ways into a product of
cycles. To each cycle we assign a value by the
rule

+ -~ + LY + =
(w247, %%, Xy x7)

= (lele)(x;IxEZ) te (x;mx;m)(xl mle) ’
(4.2)

e 1
*x)= ——,

1
(x"x*)= T’
where z(x) is a complex number constructed out
of the two-vector x according to z(x)=x, +ix,. To
a given decomposition of the 2x points into a pro-
duct of cycles we assign a value equal to the prod-
uct of the values of each cycle. Then the theorem
is that the rational function (u2)"e V¢ is equal to
the sum over all possible decompositions into
cycles of the 2x points {x}}, {x;} (values being as-
signed to each cycle decomposition as above).

It is perhaps helpful to consult Fig. 2 where this
theorem is stated pictorially for the case n=2. It
is not too hard to recognize the vacuum diagrams
for multiple insertions of ¥ 5 (1+ %) (correspond-
ing to the x*) and ¥ 3 (1 - ¥,)¢¥ (corresponding to the
x7). The oriented propagators (x*x”) and (x"x*) are
nothing more than the Euclidean-rotated and y,-
projected massless fermion propagators. We will
use this graphical interpretation of the partition
function to construct a particularly useful inter-
pretation of the Coulomb gas at the special tem-
peratures corresponding to integer N.

Consider now the partition function for N=1. The
decomposition theorem just described may be used
directly: We have to integrate over the 2x coordi-
nates {x}, x;} and then sum over n. At the same
time we have in principle to remember the cutoff
instruction that forbids any coordinate difference
to be less than twice the vortex radius. The chem-
ical potential and associated normalization factors
in Eq. (3.9) give a weight (u,V,e50)™ ~ (™ eS0)™
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(42) exp {-Uc (xt xb x; x3)}=

+ + + + - -

Xy X2 Xy X2 xf oxy xf x3

- - - - - - +

X; X3 X; X7 Xz X3 X{ X}
+

+
_ { _ {
Tz, -2 Tz, -z )%

FIG. 2. Graphical interpretation of the contribution of
two pseudoparticles and two antipseudoparticles to the
partition function in the case of one flavor.

to each of the vertices labeled by x} and the various
terms in the partition function expansion have an
obvious interpretation as multiple insertions of the
vertices (p,V,e50)™ 3 (1+y,)¥ on fermion loops.
These operator insertions summarize the effect of
the pseudoparticle on the system and we see ex-
plicitly in the case N =1 that the pseudoparticle
(antipseudoparticle) is replaced by an effective
interaction (p,,V,e50) 3 (1+ v,)/2](p,,V,e50)™

X P[(1F ¥,)/2]p which is precisely the sort of
chiral-invariance-breaking term found by ’t Hooft
in four dimensions.? It should be noted that the
technique for constructing this effective interac-
tion in four dimensions which relies on finding
normalizable zero-energy solutions of the Dirac
equation would not work here: Although zero-
energy solutions can be found, they are not nor-
malizable and there is no clear way of deciding on
the correct normalization.

With this simple graphical interpretation of the
N=1 partition function it is easy to recognize that
it is just the exponential of the connected loop
graphs constructed according to the same rules
(Fig. 3). But the sum of the connected graphs is
obviously just the expansion in powers of mass
of the vacuum loop graph for a free fermion of
mass operator F(g®)(u,V,e59)™* [where F(g?) is a
momentum-space transform of the position-space
cutoff instruction used in integrating over x3:
F(0)=1, F(»)=0, and F passes from 1 to 0 roughly
at ¢*=pu,?]. Owing to the cutoff, the loop integral,
otherwise logarithmically divergent, is conver-
gent, and there are no divergence difficulties in
defining the partition function. More importantly,

Deo (O + [+

FIG. 3. Resummation of the partition function for one
flavor.

+ + -
Xy X2 X,+ Xz
@ @ + @ + -
- - - +
Xy X2 Xy X2
FIG. 4. Graphical interpretation of the two-pseudopar-

ticle—two-antipseudoparticle contribution to the parti-
tion function for two flavors.

the fermion clearly behaves as if it has acquired a
mass (u,V,e50)?, and all correlation lengths must
be finite and roughly of the order u,V,eS°, large
insofar as S, is large, but finite. For a tempera-
ture corresponding to N=1, the Coulomb gas must
therefore be in the plasma phase with a finite
screening length of the order of u,V eSo. On the
other hand, for large N, as argued before, the
system must be in a dielectric phase, with infinite
screening length, and there must be some inter-
mediate value of N at which a phase transition oc-
curs.

Insofar as the plasma phase is associated with a
nonzero, spontaneously generated fermion mass
mg, we should find that as we increase N from
N=1, mj should decrease and at some critical
value, N,, should vanish. For integer N greater
than 1 the graphical treatment of the partition func-
tion is significantly different from the discussion
we have just given. Consider first the case N=2.
For a given set of pseudoparticles and antipseudo-
particle we need the graphical expansion of
[p*" exp{-U.({x'},{x N]? (i.e., its expansion as a
sum of products of fermion propagators). The
general rule is easily extracted from the particular
example of Fig. 2. The square of that sum of
graphs is displayed schematically in Fig. 4 and is
clearly the sum of vacuum graphs constructed out
of quadrillinear vertices ¥,(1+ ¥,)¥,¥(1+ v,)¥, for
the pseudoparticles and ¥,(1 - ¥,)¥,3,(1 - ¥5)¥, for
antipseudoparticles. To construct the full parti-
tion function, it is necessary to weight each ver-
tex with (u,2V,e50)™ and sum over numbers and
locations of pseudoparticles as before.

The partition function is again the exponential
of the sum of connected graphs constructed out
of these new vertices. Some of the possible struc-
tures are displayed in Fig. 5. Now, of course,
the connected graphs have a rather complicated
structure, and in particular cannot be interpreted
as generating a fermion mass in any obvious way.

T - exp {®+ @4..}

FIG. 5. Resummation of the partition function for two
flavors.
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me ) oL

”n = TS

p P r

FIG. 6. Graphical expression of the Hartree- Fock
equation for two flavors.

This is in line with our discussion of the chiral-
symmetry properties of the effective fermion in-
teraction generated by the pseudoparticles: Al-
though it “breaks” the continuous chiral symmetry,
it leaves unbroken a discrete symmetry which
suffices to exclude a fermion mass operator. How-
ever we still may ask whether this formal discrete
symmetry is not spontaneously broken, and a fer-
mion mass generated in a nonperturbative fashion.

The simplest, and probably reasonably accurate
approximation to the integral equation for the fer-
mion mass operator is shown in Fig. 6 where the
left-hand side is the mass operator, the internal
line on the right-hand side is the full fermion pro-
pagator including the mass operator, and the ver-
tex is the pseudoparticle-generated effective fer-
mion interaction. The resulting integral equation
is

F(p)F(q) (4.3)
ErmAq)’ ’

where £ is a pure number of order 1 and we have
included the cutoff function F(p)F(q) in the defini-
tion of the vertex. The structure of the equation
is such that mz(p)=m F(p) and m . is either zero
(of no interest) or satisfies

mp(P)=£e‘S°f rg?()]mF(q)

1=e-SO d2q Fz(q)
(27 q*+mp"F*(q)
23] d2q 1
~ p=S
>e Of (Z_WF m . (4.4)

Because of the infrared divergence as m -0, it is
clear that this equation has a solution with m 5

~ i, exp(-£eSo), In other words, for N=2, there
is a solution with nonzero (although exceptionally
small) spontaneously generated fermion mass and
the system is still in the plasma phase with finite
correlation lengths. On the other hand, the ex-
treme smallness of m, suggests that we are near
the critical point where m  vanishes and that for
N =3 or greater we should not be able to find a
solution with m # 0.

Indeed, for N=3, the same crude ap proximation
to the integral equation for the mass operator
yields the system pictured in Fig. 7. Proceeding
in the same way as above, we obtain the equation

o mi o [ 4% FQ) ]
me=f ¢ { @ Fmrg) - 4

Under the assumption that m/p, is small, this

q
P P P 0 P
ql
FIG. 7. Hartree-Fock equation for three flavors.

becomes, approximately

32 w(22)]

which manifestly does not have a solution when
S,>1, which is the basic validity criterion for
all the approximations we have been making. So,
for N=3 (and by extension for any N> 3) we have
m =0 and the system is no longer in the plasma
phase.

V. RENORMALIZATION-GROUP METHODS

Needless to say, the two-dimensional Coulomb
gas has been studied intensively on its own merits
by the statistical mechanics community and we
should be able to verify the picture we have de-
veloped in Sec, IV by comparison with known re-
sults. In this connection we find the work of Kos-
terlitz” most helpful and in this section we would
like to paraphrase his results on the two-dimen-
sional Coulomb gas in a way which will, we hope
give weight to the picture we extracted from crude
diagrammatic arguments.

The Coulomb gas partition function has the ex-
plicit form

1 n
Z:";(n—!)sz

xj ﬁ d?x;exp| BQ%2ue;e;In|(x; - x,)/T 1,

(5.1)

where K is the chemical potential, ¢;=+ according
to the sign of the charge located at x;, and the in-
tegrations are carried out within a large volume

V with the instruction that a circle of radius 7
around each charge is excluded. For us gQ*=N,
K=V,eSo, and 7~ ™, the pseudoparticle rad-
ius. On dimensional grounds alone we may say
that z=2(vV/7%,1°K,N)=2Z(V/7%,K,N). The quan-
tity K is the dimensionless chemical potential,

and in our case essentially equal to ¢ So. Thus,
varying 7, holding K, N fixed, is the same as
varying V and should cause no change in intensive
quantities such as m, (assuming here to be a
thermodynamic limit). On the other hand, Kosler-
litz has established rescaling equations, valid

for small chemical potential, which show that
small changes in T may be replaced by small
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changes in the parameters K and N. For quan-
tities like m  which are independent of 7, the
rescaling equations therefore define trajectories
in K, N space along which these quantities are con-
stant.

Kosterlitz’s rescaling equations are easily
stated in terms of the parameters y=47K, x=N -2
(they are valid only for y< 1 and ¢=1nT)

= =1y (x+ 20,
(5.2)

These equations have a fixed point at x=y=0 and
standard renormalization-group lore suggests
that the trajectory passing through the fixed point
is associated with a phase transition. We already
expect a phase transition associated with the van-
ishing of the spontaneously generated fermion
mass somewhere near N=2, and the important
question is how N_;, depends on density. In the
immediate neighborhood of the fixed point we may
replace the rescaling equations by

d—x ﬂ:

=_2
A Ak (5.3)

The solution of this system which passes through
x=y=0is x?2-%?=0 and we find that

Ncrit=2+4771—{->2' (5.4)

The critical value of N is precisely 2 for zero den-
sity, but for small K(~ e™S0), N_,, is slightly lar-
ger than 2 and the physically interesting value
N=2 lies in the plasma regime, which is one of
the important things we wanted to show.

We may also get an impression of how the spon-
taneously generated fermion mass varies with N
from the following argument. For N<2 (x<0) and
y< 1 (small density) we can easily show that to
first order in y,, the solution of the trajectory
equations is

(1) =2,  Y(T)=y,(T/7,)70. (5.5)

On dimensional grounds the spontaneously generat-
ed fermion mass must have the functional form
mp=(1/7)®(x,y). Along a trajectory m , must be
independent of 7. Thus

1 T\ 1
2 o(x,, v (—) = L ®(xy, o) (5.6)
T <0 0 To To 0 o]

o(x,9)=p(x)y™/*. (5.7)

The interesting thing about this is that it tells us
how the spontaneously generated mass depends on
the chemical potential for varying N. For N=1

or

(x=1) we see that mp < (9)* « ¢ S0 exactly as speci-
fied by our diagrammatic argument. For N=2 we
cannot use the above formulas since we are close
to the critical point. The Hartree-Fock result

that at N=2, logm x<eSo, is not unreasonable,
since, according to (5.7) as N approaches 2, m
vanishes as a higher and higher power of ¢*So. On
the other hand, rescaling arguments do not seem
to be powerful enough to prove the precise form

of the Hartree-Fock result.

In sum, the rescaling argument of Kosterlitz
shows that there is a phase transition at N slightly
greater than 2. (The separation from 2 decreases
with decreasing density.) For N>N_,;, the fermion
mass is zero (dielectric phase of the gas), while
for N<N_,,, the spontaneously generated fermion
mass is nonzero (plasma phase, finite correlation
lengths) and varies with N in a manner consistent
with the findings of our diagrammatic calculations.

VI. CONCLUSIONS AND SPECULATIONS

Let us now summarize the results of our dis-
cussion before attempting to speculate on their
meaning for more physically relevant theories.
Our first achievement was to extract explicitly
the basic effective interaction between the pseudo-
particle and the massless fermions. Just as in
four dimensions, the pseudoparticle necessarily
creates massless fermion pairs of nonzero chira-
lity (as many pairs as there are flavors of ferm-
ion). The technique of evaluating this vertex by
finding zero-energy solutions of the Dirac equation
does not work in two dimensions (the zero-energy
solution exists, but it is not normalizable) and we
must resort to special trickery. This then allows
us to construct graphical rules for the vacuum
functional and establish that it is identical to the
partition function of the classical Coulomb gas at
special temperatures.

From the structure of the partition function it is
clear that adding massless fermions to the original
Higgs model changes the physics of the pseudo-
particle gas representation of the vacuum quite
drastically. Without fermions, the pseudoparticles
behave as statistically independent noninteracting
particles. With massless fermions there are
strong forces between pseudoparticles and anti-
pseudoparticles and in the large-N limit one must
expect pseudoparticles to be tightly bound to anti-
pseudoparticles in pairs. Qutside such a pair the
fields are those of a non-pseudoparticle vacuum,
and for all practical purposes, the pseudoparticles
have no effect on the system. For physical effects
of the pseudoparticle to manifest themselves some
finite fraction of the bound pairs must “ionize.”
Since the binding potential is logarithmic (and
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therefore rises without limit) ionization per se is
not possible, but by increasing the temperature
(decreasing N) one causes the mean separation of
the pairs to increase and one may expect that at
some critical N, the pseudoparticles become suf-
ficiently uncorrelated to reestablish significant
physical effects.

As a sign of this phase transition, we focus
on the mass of the fermion. The fermions are
added to the system with zero mass but the possi-
bility remains that spontaneous breaking of chiral
symmetry may cause m  to be nonzero. If m,#0,
then the long-range correlations between pseudo-
particles and antipseudoparticles which suppressed
their effects on the physics go away. For m#0
all correlations are short range, and the pseudo-
particles reappear as a significant dynamical
variable. By a combination of diagrammatic and
statistical mechanical arguments we find that in-
deed, for N=1 and N=2, m is nonzero and the
original chiral symmetry of the theory is violated
spontaneously. For N=1, this symmetry breaking
is identical to that arising from the chiral anomaly
via the pseudoparticle, while for N=2 it is a purely
dynamical phenomenon happening on top of the
anomaly. It signifies that despite their binding by
an infinite-range potential, the pseudoparticle
pairs have partially ionized and their constituents
behave in an uncorrelated fashion. For N >2 this
does not happen: The fermion mass is zero.

The existence of two regimes in the number of
fermion flavors—one like the no-fermion case
because the pseudoparticles are in an uncorrela-
ted plasma phase, the other like old-fashioned
perturbation theory because the pseudoparticles
are so tightly bound to antipseudoparticles that it
is as if there were no pseudoparticles at all is of
interest in its own right in order to understand the
physics of the two-dimensional gauge theory. More
interesting are the suggestions it makes about
various aspects of four-dimensional gauge theories.
Consider for instance the question of spontaneous
breaking of chiral SU(N) flavor in four dimensions.
With N massless fermion flavors, the chiral
anomaly only breaks the chiral U(1), leaving a

chiral SU(N) and leaving open the possibility that
dynamical effects further break this down to or-
dinary SU(N). In the “dilute pseudoparticle gas”
approximation, the diagrammatic picture is nearly
identical to that presented in Sec. IV. For N=1,
the fermion directly acquires a mass from the
anomaly. For N >1, clearly the pseudoparticles
and antipseudoparticles will be tightly bound in
pairs, there will be no surviving effects of pseudo-
particles and m  will be zero. Somewhere in be-
tween there clearly must be a phase transition.

If it happens for N >2, then there will be at least
one case (N=2) in which the pseudoparticles not
only solve the U(1) problem, but are responsible
for the dynamics of ordinary chiral symmetry
breaking. In four dimensions we would expect
Goldstone bosons which do not decouple. How-
ever, the four-dimensional pseudoparticle gas plus
fermion system is not equivalent to anything as
simple as the Coulomb gas and we do not have a
quick way of estimating N_,.

Finally we note that the key feature behind the
phase transition discussed above is not the dimen-
sionality of space but that the potentials are log-
arithmic. In an earlier paper® we pointed out that
in four dimensions a pseudoparticle can split into
two half pseudoparticles (merons) at a cost in ac-
tion which is proportional to the logarithm of the
distance between the merons at small coupling
(low temperature). The merons are permanently
pairwise bound into pseudoparticles. However,
because the potential is only logarithmic it is
likely that at moderate or large coupling (high
temperature) there will be a phase transition in
which the merons become free and the quarks be-
come confined. Whatever its intrinsic merits,
the theory studied here is an interesting model for
the phase transition which we believe to be re-
sponsible for the dynamics of confinement in four
dimensions.
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