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The Feynman path-integral method is applied to the quantization of a scalar field moving in a
cosmological background spacetime. The method is illustrated by computing particle production from the
vacuum in a spatially flat, Robertson-Walker spacetime with scale factor R(t) = t. The result is a
distribution of produced particle pairs which at large energies becomes a thermal distribution with a
temperature T = %ic/mkgR(t). The relation to other methods of quantization is discussed.

I. INTRODUCTION

The process of pair creation may play an impor-
tant role in the dynamics of the early universe.!
As a consequence the problem of the production of
particles by the dynamical background geometry
of cosmological models has been much studied.?
To determine the amount of particle production in
such models one must calculate the overlap ampli-
tude between the initial state of the universe where
there may or may not have been particles present
and all possible states at late times containing dif-
ferent numbers of particles. The difficulty with
doing this lies not so much with solving the quan-
tum-mechanical equations of motion as it does in
determining what these states are.

Determining the particle states defined by unac-
celerated observers at lafe times is a compara-
tively simple matter if the universe becomes near-
ly homogeneous and isotropic and the curvature
becomes arbitrarily slowly varying on the scales
on which measurements are made. We shall call
such a time domain an adiabatic region. The prop-
erties of an adiabatic region are close to those of
flat space. In particular, one can find WKB solu-
tions of the particle wave equations which have
either purely positive or purely negative frequen-
cies throughout the adiabatic region, and which
therefore give rise to a natural definition of parti-
cle states.’

Much more problematical is the definition of the
initial particle state of the universe. If the uni-
verse had an initial adiabatic region, then one
could define initial particle states in a way similar
to that discussed above for late times. One could
then calculate, for example, the transition ampli-
tude between the initial vacuum and states at late
times containing definite numbers of particles.
Unfortunately, in the cases of greatest interest the
universe does not have an initial adiabatic region
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but rather an initial singularity. What is the analog
of the initial vacuum in these cases? Some ap-
proaches to this question have involved procedures
which are equivalent to abandoning Einstein’s
equations and their consequent singularity before
some early time ¢,. Instead, the universe is joined
either smoothly or suddenly, onto an adiabatic re-
gime before ¢,. Initial particle states can then be
defined, and the transition amplitudes to states
with definite numbers of particles at late times

can be computed. Results which follow from pro-
cedures of this type, however, will depend on the
choice of ¢, even if they are insensitive to the ad
hoc choice of the geometry prior to this time.
Another physical principle is therefore needed to
fix this transition time.

In this paper we shall present another approach
to the problem of defining the initial particle
states inuniverses with singularities which does
not involve changing the dynamics of the universe
at early times. The approach is a natural exten-
sion to cosmological background geometries with
initial singularities of the complexified spacetime
Feynman path-integral method already applied to
particle production in black-hole geometries, * de
Sitter space,® and the Taub-NUT (Newman-Unti-
Tamborino) geometry.®

To illustrate the application of the Feynman
path-integral method to cosmological particle pro-
duction, let us consider a homogeneous isotropic
universe with an initial singularity and calculate
the amplitude that a pair of particles are produced
in the time since the initial singularity and detect-
ed at spacetime points x and x’ at very late times.
Call the amplitude for this process relative to the
amplitude that no particles are produced at all the
propagator K(x,x’). In Feynman’s prescription
this is given by

K(X,X')“’Z els(pnth)/ﬂ, (1'1)
paths
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where S is the classical action for the path. The
class of paths which contribute to this sum are
illustrated in Fig. 1. They are all paths which
connect x and x’ and which lie to the future of the
initial singularity. Each path is specified by giving
the spacetime coordinates as a function of a para-
meter time. The sum which occurs in Eq. (1.1) is
first over all paths which connect x and x’ in a def-
inite total parameter time and then over all posi-
tive values of this total parameter time.

To give a quantitative meaning to an expression
like Eq. (1.1), the sum over paths must be defined.
In this paper we will not attempt a totally mathe-
matically rigorous discussion of this question.
Rather, we will give a series of steps which will
lead us from a formal expression for Eq. (1.1) in
terms of an iterated integral to a well-defined pro-
cedure for calculating K(x,x’') by solving a differen-
tial equation with prescribed boundary conditions.
We hope that these steps can be given a firm justi-
fication in the future. The details of this discussion
will be given in Secs. Il and III, but the essential
points can be summarized here. Expressed as an
iterated integral the integrals involved in defining
Eq. (1.1) are not well defined because of the oscil-
latory character of the integrand. We therefore
deform the contours of the integration to a domain
of complex coordinates where the imaginary part
of the action is positive. The integrals are then
exponentially damped and the path integral in the
complex section can be defined. Its value can be
obtained by evaluating the iterated integral or
equivalently by solving a differential equation with
associated boundary conditions which the iterated
integral implies. The physical propagator K(x,x’)
is the propagator in this complex section analytic-
ally continued back to real values of the spacetime
coordinates.

The great advantage of this procedure is that the
singularity is handled in a natural way. Ad hkoc
specifications of the initial vacuum are replaced
by a simply interpretable restriction of the paths
summed to those to the future of the initial singula-
rity. Our justification for this path-integral formu-
lation is twofold: First, a similar procedure ap-
plied in flat spacetime (Euclidean quantum field
theory plus the Euclidean postulate) yields the cor-
rect flat spacetime quantum field theory. Second,
when this procedure is applied to black-hole geo-
metries with singularities, one obtains® in a natural
way the thermal radiation already calculated by
more standard techniques.

The creation of particles in the time interval
since the singularity can also be discussed in the
language of fields and states. The sum-over-paths
prescription described above defines in a natural
way initial and final particle vacuum states for the

universe. With this definition states with various
numbers of particles already present at the initial
time can be defined and the particle creation from
these states calculated. No principle to single out
any one of these states or any mixture of them as
the physical state of the universe is advocated here.
We will, however, concentrate on the calculation
of the particle production from the vacuum as it is
the basic calculation from which the others can be
derived.

In the following sections, in addition to putting
forward these ideas in greater detail, we will also
illustrate them by calculating the production of
scalar particles in a particularly simple cosmo-
logical model, chosennot so muchforitsrelevance
to our own universe, but because the procedure
outlined above can be carried out simply and di-
rectly. In this example we will not evaluate
K (x, x') by carrying out the sum over paths directly.
Rather we shall solve the differential equation with
associated boundary conditions which are implied
by the path-integral expression in the complex
section. It would be possible to regard this differ-
ential equation and associated boundary conditions
as the starting point for a definition of the propa-
gator rather than as the consequence of the path-
integral prescription as we have done here. Simi-
larly, but alternatively, one could begin with the
wave equation for the propagator, continue to a
suitable complex section, impose appropriate
boundary conditions, and continue back to the real
section to define K(x,x’). Thus an analytic-con-
tinuation algorithm for defining the propagtor
could be given without resorting to a formulation
of quantum mechanics in terms of path integrals.
As yet missing from this type of approach is any
physical justification for identifying a particular
complex section and for singling out the boundary
conditions to be imposed there on those differen-
tial equations which determine K(x, x’). It is just
this physical justification which is supplied in the
path-integral formulation by the analysis of which
paths contribute to the sum.

In the next section we shall review the details of

tlh

FIG. 1. A typical path corresponding to the produc-
tion of a pair of particles in the early universe and-
their detection at x and x’ at a late time ¢.
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the path-integral quantization method. In Sec. III
we shall calculate the propagator in the simple
cosmological model. In Sec. IV the amplitude to
produce a particle pair in this model will be de-
duced. In Sec. V we shall explore the connection
with the usual quantum-field-theory methods, and
in particular identify the initial particle state dis-
cussed above. Section VI contains some brief con-
clusions.

II. PATH-INTEGRAL QUANTIZATION IN COSMOLOGIES

In the quantum mechanics of a free particle
moving in a curved background spacetime a central
quantity is the propagator K(x,x’). A knowledge of
the propagator allows all other physical questions
to be answered. In this section we will briefly re-
view, following the discussion of Ref. 4, the pro-
cedure for implementing quantitatively the path-
integral definition of K(x, x’) contained qualitatively
in Eq. (1.1). For simplicity we will restrict our
attention to scalar particles of rest mass m.

The path-integral prescription for the propagator
begins by specifying the amplitude F (W, x, x’) for
the particle to propagate between two points x’ and
x both to the future of the initial singularity in a

total parameter time W. Formally this is
J

; w
F(W,x,x’)szx(w)exp (ﬁ-‘f; g(i,&)dw>.
(2.1)

The integral is over all paths x(w) which connect
x' atw=0 to x at w =W and which lie to the future
of the initial singularity. The quantity g is the
metric on the spacetime and x=dx/dw. Since the
parameter time W is not an observable, the propa-
gator K(x,x’) to go from x’ to x is a sum over all
possible parameter times W with a weight deter-

mined so that K(x,x’) becomes the usual field
theory propagator in flat spacetime,

T e L,
K(x’x)'?*n?,’_l dWexp(-W—zm W)
x F(W,x,x"). (2.2)

The convergence factor has been inserted so that
the integral converges at W=0. This is essentially
requiring that the particle propagate forward in
parameter time. The choice of weights in Egs.
(2.1) and (2.2) is the natural generalization of those
which give the usual theory of relativistic scalar
particles in flat spacetime. They have no other a
priori justification.

More concretely, although still formally, Eq.
(2.1) may be interpreted as an iterated integral of
the propagator F(e, x, x’) to go between x’ and x in
a small parameter time e:

F(W, x,x') = lim fd“x,,[-—g(x,,)]‘/z oo fd“x,[ —g(x )2 F(e, x, xpFle, xy, xy,) - - - Fle, X, X') . (2.3)
N —»x

Here (N+1)e=x-x' and the integrals extend over
the domain to the future of the initial singularity.
For very small ¢, and at least for x and x’ suffi-
ciently close together, Fl(e,x,x’) is prescribed to
be

Fle,x,x') ~ Y(e, x,x") exp(ﬁleg(k, k)dw) , (2.4)

where Y(e, x, x’) is an appropriate real weight.

As it stands the iterated integral in Eq. (2.3) is
not convergent if only because Ffe, x, x’) does not
fall off fast enough at large separations between
x and x’. The expression can be given meaning by
analytically continuing W, x, x’ and distorting the

r
contours of integration in Eq. (2.3) and Eq. (2.4) to
a complex domain where the integrals do converge.
The value of F for physical values of W, x, x’ is
then defined to be the function F in this complex
section analytically continued back to real values
of its arguments.

In the next section we will illustrate this proce-
dure with a model cosmology for which the analy-
tic continuation can be accomplished by a simple
rotation of the x coordinates to values x for which
the analytically continued metric y(x,x’) is real
and positive definite. For such cases it is appro-
priate to rotate W, w, and e by an angle —n/2.
Writing €, w, and € for the rotated values, Eq.
(2.3) becomes

F(Q’ X, X') =limT) fd4XN[7(XN)]1/2 v [dqxl[‘)’(X1) 12 F (€,XrXN)F(€yXN’XN-l)“ * F(EJXUXI) ] (2-5)
N o

where 77 is a possible phase arising from the rota-
tions. The integrals over x range over the domain
arrived at by rotating into the complex section the
real domain lying in the future of the initial singu-

—
larity. Equation (2.5) is the functional integral
Q
F(Q,x,x')=nf5x(w)e><p<—%f y()’(,)’c)dw>,
0 (2.6)
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where x means dx/dw, and the integration is over
all paths connecting x’ and X in the domain just
described.

Equations (2.6) and (2.5) define F(®,x,x’). For
small § the exponent in Eq. (2.6) will be large. If
x and x’ are located so that there is a unique sta-
tionary path which connects them, then this sta-
tionary (geodesic) path will give the overwhelming
contribution to the path integral. For x and x’
located in this way we can write for small €

Fle,x,x")~nY(e, x,x") expl-s(x,x’)/4€], (2.7)

where s(x,x’) is the square of the geodesic dis-
tance between x and x’ and Y(e, x, x’) is an appro-
priate weight. The various choices of weight have
been discussed by the DeWitts” among others and
lead to theories of scalar particles in curved
spacetime with different amounts of coupling to
the scalar curvature. No principle is advocated
here for singling out any one of these theories over
any other. The path-integral method does not by
itself single out a particular theory since the dif-
ferent possible theories can be represented by dif-
ferent choices of the real weight Y. For illustra-
tive purposes we choose the weight which leads to
a conformally invariant theory of massless parti-
cles.

Y(e,x, x) = @m) 2 [y)r(x 4D (x, x"), (2.8)

where D is the Van Vleck-Morette determinant

2 ’
D(x,x’)=(4e)"‘det[%)—(s-%(’—,)—%)-]. (2.9)
This choice considerably simplifies the example
which will be presented in Sec. III.

Equations (2.5) through (2.9) are sufficient to
show (see e.g., Ref. 4) that the function F satisfies
a parabolic differential equation

aF

m:[y(ﬁ,e)_gm]p,

(2.10)
where V is covariant differentiation with respect to
the metric ¥ and *R is the scalar curvature. Solv-
ing Eq. (2.10) will often prove a more convenient
way of evaluating F(€, x,X’) than calculating the
iterated integral. The boundary conditions on Eq.
(2.10) which single out the solution F(,x,x’) de-
fined by the path integral are first that, for small
values of 2 and x and x’ located so that they are
connected by a unique geodesic, the function F
should approach the value given by Egs. (2.7)-(2.9).
In particular,

F(0,x,Xx") =n8%(x,x") .

where 8(x, x") is the four-dimensional & function
on the complex section. Second, as the separation

(2.11)

between X and X’ approaches infinity,

F(Q,x,x")~0. (2.12)

This is implicit in the definition of the path inte-
gral as an iterated integral.

The procedure outlined above for defining the
propagator in a curved spacetime is the natural
generalization of similar quantization procedures
in flat spacetime.® In the path-integral method one
is simply specifying the amplitude for a particle to
travel a particular path. Other amplitudes follow
from this through the quantum-mechanical law of
addition of amplitudes. Specifically, in a cosmol-
ogy, the amplitude to produce a pair from the ana-
log of the vacuum is given by summing over paths
which lie to the future of the initial singularity.
The restriction of the sum to this class of paths is
equivalent to specifying the initial vacuum state.

In order for such a procedure to have meaning it
is necessary that the resulting path integrals be
given at least a precise-enough definition that one
can compute them. Definition through analytic
continuation as employed here is the same proce-
dure which is used either implicitly or explicitly
in flat spacetime theories to accomplish this objec-
tive.

In Sec. III we shall apply this procedure to calcu-
late the propagator K(x,x’) in a simple cosmologi-
cal model, and in Sec. IV we shall use this propa-
gator to calculate the particle production in this
model. The path-integral formulation of these
questions has an obvious advantage over the usual
field-theoretical methods—it is not necessary to
prescribe initial conditions at the singularity. The
initial conditions in fact emerge naturally in the
calculation from the restriction of the class of
paths summed over and are discussed in Sec. V.
The one disadvantage of the method is that to actu-
ally perform the analytic continuation necessary to
calculate F, it appears at present necessary to
have an explicit solution to Eq. (2.10). It is for this
reason that we have restricted our detailed atten-
tion to the simple and unrealistic model presented
in Sec. IIl. Mathematical ingenuity may yet over-
come this difficulty.

II. R(t)=t COSMOLOGY

We shall now apply the Feynman path-integral
method described in the last section to the propa-
gation of a scalar particle moving in the Robertson-
Walker background geometry with scale factor
R(t)=t. The metric is

ds®= - dt*+ B[(dx*)? + (d £2)? + (d x°)?]. (3.1)

This metric has a curvature singularity at =0
with the scalar curvature *R given by 6/t%. We
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choose this example not because it is especially
relevant to any physical problem, but rather be-
cause it gives us a model cosmology with an ini-
tial singularity in which we can carry out our pro-
cedure exactly.

To begin, we rotate all four coordinates by an
angle /2 in the complex plane and write t=i2,
x'=ix'. Real values of A and X then define the
complex section on which the real positive metric
v is

do® = d\* + 2*[(dx*)* + (dx®)* + (ax®)?]. (3.2)

The region £>0 lying to the future of the initial
singularity is thus rotated into the region A >0 in
the complex section. The range of all integrations
in the iterated integral [Eq. (2.5)] is then 0 <A <<,
—o <yl <o,

The square of the geodesic distance between two
points (x,X) and (A", X’), which is the important
quantity for determining the small-§ behavior of
F, is easily evaluated in the present example.
Because the subspaces A =const are homogeneous
and isotropic, x and x can both be taken to lie on
one of the spatial coordinate axes, say x', and the
geodesic connecting them must also run along this
axis. The metric restricted to the two-dimensional
subspace spanned by x* and A is locally the metric
of a plane written in polar coordinates with A the
polar radius and x' the polar angle. The geodesics
are thus just the straight lines of a flat two-dimen-
sional plane written in polar coordinates, and the
square of the geodesic distance is

s, A, P)=A%+A2 - 2X1" cosp. (3.3)

where

p=lX-%- (Z(x X (3.4)

This expression is valid only for p<wn. For p=>7
there is no geodesic lying in the space A >0 con-
necting the two points. The path of shortest dis-
tance for p=>m is a curve of constant; from
()\’,')Z') to the singularity, a curve of zero length
along the singularity, and a curve of constant _)Z
from the singularity to (A,X). The length of this
curve is always A+’ independent of p. Thus, only
for p<m is there a unique geodesic connecting
(x,X) and (,X’) and only for this range of p do we
require the small-Q behavior determined by Egs.
(2.7)-(2.9). Explicitly, for p<7 and small €

sin,
(4116)2 p

Fle,\, )", p)~7

xexp(i AZ+a72 =2’ cosp)> .

(3.5)

It is important to note that this behavior is nonsin-
gular both at p=0 and also at the singularity at A
or A'=0.

Equation (3.5) together with the boundary condi-
tions of Eqgs. (2.11) and (2.12) determine F(8,x,X’)
as a solution of the differential equation Eq. (2.10).
To find this solution it is first convenient to de-
compose the spatial dependence of F(Q,x,x’)into
plane waves. Making use of the spatial homegenity
and isotropy we write

F@,x,x)=n™ [dke' ™ XF @,,1).
(3.6)

where k=|x|. Further, it is convenient to make a
Laplace transformation of the  dependence and
write

Fo(@,2,)) = f dpre " "F, (A, X) . (3.7)
0
Equation (2.10) then implies the following differen-
tial equation for F,,(x,X):

;3 d‘i<h~3 dx ) (PZ+ 1;2K2)FK =0 . (3.8)

Two linearly independent solutions_of this equation
are A73J(pr) and A" _ (pA), where J, is the
Bessel function of order v. Respectively, these
behave at A =0 like A™** and A™*~%. In order to
have the regular behavior at A -0 for small £ and
p<m that is dictated by Eq. (3.5), only the solutions
which behave like A™*** near A=0 can be incorpo-
rated in Eq. (3.7). The symmetry of F(£,x,x’) in
x and x’ (see Ref. 4 for a demonstration) then im-
plies that F,, (A, ') is proportional to

) "H T (pA)T (DA7) .

The proportionality factor can be evaluated from
Eq. (2.11) either using the identity (Ref. 9, p. 456)

f papd, (P, (pA") = 8(x — 1")/x, (3.9)
(]

or directly using Eq. (3.11) below and taking the

limit -0. Since the phase n=7 for the present

rotations the result for F,, is
Fpe X =i )Y (DA (P27 ) . (3.10)

Inserting this in Eq. (3.7), doing the integral using
the identity on p. 395 of Ref. 9 and inserting the
result in Eq. (3.6), one finds

EEEIER ST LSS VAoR
@n?2am

3 iR (X=X
fd Ke I, <2Q>

Equation (3.11) can be simplified if use is made of

F(Q,X,X')=

(3.11)
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the integral representation (Ref. 9, p. 181) where the contour C starts at o=~ - im, ends at
a=x+ {7 and may be chosen to lie in the right half
plane. Inserting this in Eq. (3.11), interchanging
(3.12) the orders of integration, and doing the k intergra-
tion, the result for F can be put in the form

—J

e-(A2+X?) Ma0) A coth a/(20) 1 1
_ge 1] 3.1
PP o) Ldae [ia—ipiz (a+ip)2] ’ 3.13)

where p = l)_('—_)Z’I. Distorting the contour C through the pole at o =ip and making use of the symmety of the
integrand, this can be written

P‘(Q’ X X')=

(41:9)2 Si: L exp[- (A2 + 1'% - 2\’ cosp)/ (4Q)]

F(ﬂ, X XI) =

+ie-()‘2+x")/(49) f+°°d AN’ coshy(20) 1 1
Grreawp J. V¢ <[¢+i(ﬂ—p)F_[¢+i(1r+pﬁ§>'

The first term of this explicit expression dominates the behavior of F as -0 and gives exactly the result
required in Eq. (3.5). Both terms fall off smoothly asp - =, A=, or as -« and are well behaved at
A=0. To rotate back to physical values of the coordinates one puts Q=iW, A =—it, and p=—ir = —i|X - X’|
in either Eqs. (3.13) or (3.14). The resulting expression remains well behaved at t=0 and ©, r=0 and ,
and at W=, as in most easily seen from Eq. (3.13).

The propagator K(x,x’) is computed from F(W,x,x’) by doing the integration over parameter time
in Eq. (2.2). An expression for the result is most easily obtained by using Eq. (3.11) for F(£,x,x’).
First find F(W,x,x’) by rotating ,1,A’,X, and X’ as above and simultaneously rotating x by an angle
n/2 so that the resulting expression for F is a decomposition in plane waves exp(i}?-i), where i=ik.

(3.14)

The result is

-

-1 e EF roqw el 242y (itt’)
K = sys [ @% [ e 15

2tt’

2tt’

1 ". -o_.,,) ﬂi
= oy [ e T T D ot ot

t¢ and t, are the lesser and the greater of ¢ and ¢’,

respectively (see Ref. 9, p. 439 for the W integral).

Thus we have determined the propagator for mas-
sive particles. For massless particles the propa-
gator can be obtained directly from Eq. (3.15) by
putting m =0. The result is

K(x, %) = sy [ ear«?—?')_l_(k) "
’ 2n)° 2itt’k \t,
-i 1 1
(27)% tt' [(Int — Int’)* + (X - X")? + €]’

(3.17)

(3.18)

The last expression shows that the massless prop-
agator is a conformal factor times the usual Feyn-
man propagator in the conformally related flat
spacetime.

IV. AMPLITUDE FOR THE PRODUCTION OF A PAIR

The amplitude A;; that a pair of particles is
created by the universe, through the process dis-
cussed in the Introduction, and detected at a late
time ¢t in states characterized by solutions of the

{3.15)
(3.16)
wave equation f; (x) and f, (x) is
A=A, fdo“(x)fdo"(x’)f—;(x)
x3,f,(x)84LK (x, x') . (4.1)

Here do" is an element of the constant-¢ hypersur-
face over which the integrations are being done and
ad,b has its usual meaning: adb-bda. The number
A, is the amplitude that no particles are created at
all. This factor occurs because K(x, x’) gives the
amplitude for pair production only relative to the
amplitude that no particles are created. Expres-
sion (4.1) can either be regarded as a fundamental
interpretative relation of the path-integral method
as in Feynman’s original papers, or it can be de-
rived by field-theory methods as we shall do in
Sec. V.

The amplitude that the universe produces more
than one pair of particles can also be calculated.
For example, the amplitude to produce two pairs
involves a sum over all paths connecting four
spacetime points on a late constant-{ hypersurface
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(see Fig. 2). Each of these sums can be broken up
into products of those which occur in deriving the
propagator. If we write Af,; for the amplitude A,/
A, of producing a pair relative to the amplitude for
producing none, then the amplitude for producing
2n particles in states ¢;,...,i,, is

igt m =4 ZA‘x‘z.

The sum is over all possible ways of producing n
pairs such as the three ways of producing two pairs
shown in Fig. 2.

The probability of creating any number of pairs
when added to the probability of creating none at
all must equal unity. Thus,

|42+ DA, 12+ ‘ZIA.,.,IZ+~-=1, (4.3)
if 1R1

where the sum in every case is a sum over a com-
plete set of particle states at late times. This re-
lation together with Eq. (4.2) determines |A4,|. Thus
the amplitude for creating any number of pairs can
be expressed in terms of the propagator. We shall
now concentrate on evaluating A{, for our model
universe.

To evaluate Aj;, we shall need a complete set of
solutions to the wave equation which correspond to
the observation of positive-energy particles when

A (4.2)

‘an_‘ ign *

tl
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FIG. 2. The three possible classes of paths which
contribute to the production of two pairs of particles.

measured by local detectors. It is natural to clas-
sify these solutions by a dimensionless wave num-
ber kK corresponding to a space variation exp (zk X).
For a Robertson-Walker universe with scale
factor R(t), the momentum P will be k/R(t).
Localized detectors will be sensitive chiefly to
momenta which satisfy p> [R(t)]™ or in our case
k> 1., For these values of & the dominant behavior
of positive-energy solutions at a late time ¢ should
be

Frlx) = @1t) 2 2(2w,) M 2ge ® ¥ (4.42)
Bfelx) = —i(2mt) 2 (w,/2)  eg e ® R (4.4b)

with w,=(p* +m?) /2 = (k?/t*+m?)*”, and ¢ is an
irrelevant phase. The constants in front of the ex-
ponential have been chosen so that f§ is normaliz-
ed to a 6 function in K. At the same time it seems
physically reasonable that the solutions of the wave
equation which correspond to particle states should
be such that there be no particle production in an
adiabatic region where the scale factor is varying
slowly.

Parker® has shown how to construct solutions to
the wave equation satisfying these criteria by solv-
ing the wave equation [essentially Eq. (3.8) with p*
replaced by m? and A = —it] in the late-time adiaba-
tic region using the WKB method. The WKB meth-
od gives an accurate solution because at late times
the ¢t 2 term in Eq. (3.8) is varying slowly on the
scale of m ™! uniformly in k. Our present consid-
erations are thus limited to massive particles.
Defining W,(t) = (k%/1%+m?)"? the WKB solutions,
valid at late times uniformly in k¥ and which match
Eq. (4.4) for large k, are

f‘l:(x) - (2111)-3/2(2“’.) -1/2

X exp [i(i -§_ftwk (t’)dt’)] . (4.5)

It is clear from the form of Eq. (4.5) that for large
k it has the form of Eq. (4.4) for all late times.
Thus with this definition of particle at late times
none will be produced in the adiabatic region. We
emphasize that we are not satisfying Eq. (4.4) ex-
actly. This would correspond to choosing particle
states which diagonalize the Hamiltonian at every
late time and this leads to an infinite number of
produced particles at late times, as discussed in
Ref. 3. Rather we choose the solutions of Eq. (4.5)
for which no particles are produced in the adiabatic
region, but which have the behavior of Eq. (4.4) at
large k and therefore give correct results for lo-
calized measurements.

Using Eq. (4.5) for the states, Eq. (3.16) for the
propagator, and standard asymptotic formulas for
the Bessel functions it contains, we can evaluate
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Eq. (4.1) for the amplitude to produce a pair of
particles. One obtains for the amplitude A, at
late times a constant term and an oscillating term.
For a detector with any localization at all one is
interested in the amplitude to produce pairs in
positive-energy states which are square integrable
superpositions of the states fiy. For such states
the oscillating term in Ag, will give a vanishing
contribution at late times. If we write f,(E) for the
component of state f; with wave number kK normal-
ized so that [d°k|f, (K)|*=1, then

Al’j:'AOJ.dskf((E)—l(—E)e—"“ ) (4.8)

This remarkable result shows two things. First,
particles are created in pairs with equal and oppo-
site momenta. This is a consequence of the trans-
lation invariance of our model geometry. Second,
the amplitude of creating a pair of particles, one
with wave number K and the other with —E, is

-A exp(-mk). The probability P,(k) that a pair is
created with wave number K is

P(&) = |Ag|%e 2" . (4.7)

From Eq. (4.2) one can then obtain the probability
that n(k) pairs are created in this mode

PH(E)= |Ao|ze'2'"(;)k- (4.8)

Finally from Eq. (4.3) the probability P,=|4,|?
that no particles are created can be evaluated

P,=1-¢7%™, (4.9)
Thus,

P"(E) - e-zm(i)k(l — e (4.10)

and the average number in the mode characterized
by K is then
& - 1
NE®) =D nP, ) =—7— . (4.11)
n =0 e -1
In terms of the momentum at time ¢, p=k/R(t), Eq.
(4.11) may be written

- 1
N(k)=;ém-_—l .

The total number of particle pairs produced will be
finite and the total energy produced will also be
fin'te. For values of p much larger than the rest
mass m, Eqs. (4.10) show that the particle pairs
are produced with a thermal probability distribu-
tion characterized (since 2p is then the energy of

a particle pair) by a temperature

ksT =1/1R(t), (4.12)

where kg is Boltzmann’s constant. Of course, the
final distribution of particles is not actually ther-
mal since only for large values is p the energy

and in any event there remain the correlations
between the momenta of the particles. Still, Eq.
(4.12) is a useful number to characterize the dis-
tribution. In more usual units, kgT =% c/7R(t).

If our universe had the dynamics of this model, the
temperature characterizing this produced distribu-
tion today would be 7.8 x107**(H,/50) °K, where H,
is present value of the Hubble constant in (km/
sec)/Mpc. Thus in this model a very tiny number
of particles would be produced.

All of the immediately preceding discussion holds
for the production of particles with masses such
that m >t~'. This restriction was necessary for
the validity of the WKB approximation in Eq. (4.5)
and for the validity of the asymptotic form for the
propagator. It is also of interest to examine the
case of massless scalar particles. Then since we
have adopted a conformally invariant wave and our
model geometry is conformally flat, we expect to
have no particle production, in accord with the
general result of Parker.?

In the case of m =0 the solutions of the conform-
ally invariant wave equation which correspond to
the definition of particle in Eq. (4.5) can be found
exactly. They are

fﬁ (x)zme—ulntelk'x . (4‘13)
These are positive-frequency solutions measured
in a time 7=1nt. The massless propagator, Eq.
(3.17), propagates such positive-frequency solu-
tions in this sense forward in time and negative-
frequency solutions backward in time. There will
therefore be no massless particle production. An
explicit calculation bears this argument out.

V. CONNECTION WITH QUANTUM FIELD THEORY
In the quantum field theory of a scalar particle
in a curved background spacetime the probability
amplitude to observe two particles at late times in
states characterized by solutions of the wave equa-
tion f,(x) and f,(x) would be written

Agy=- f do*(x) f da”(x")f (x)3,,f ("8,
x{0, |T@x)p (x)]0.). (5.1)

Here ¢(x) is the field operator, [0_) is the initial
vacuum state of the universe, |0,) is the vacuum
state at late times, and T signifies a time-ordered
product. In writing this expression we are explic-
itly assuming the existence of an adiabatic regime
at late times, so that there is one vacuum state
|0,) with respect to which particles can be defined
for all late times.

In order to compare the path-integral approach
to cosmological particle production with others
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which have been advanced, it will be convenient to
cast our results in these quantum-field-theory
terms. In particular, we will want to identify the
initial and final vacuum states which are implicit
in our construction of the propagator K(x,x’). To
do this for the state |0_) we first decompose the
field ¢(x) into annihilation and creation operators
for this state.

@)= Z[g‘(x)a, +gi(x)af ], (5.2)
where
a;,[0_)=0. (5.3)

Specifying the state |0_) is the same as specifying
those solutions of the wave equation g;(x) which
project out from ¢(x) the operators which annihi-
late |0_).

Comparing Eq. (4.1) with Eq. (5.1) the familiar
field-theory expression for the propagator can be
deduced

K(x,x")=i(0,|T¢ (x)@(x")[0.)/(0,[0_). (5.4)

The factor (0,/0_) is just the vacuum persistence
amplitude A,. Inserting Eq. (5.2) in Eq. (5.4) and
using Eq. (5.3) we have, taking t>t’,

K(x,x") - 2, [i(0,l0(x)af10.)/¢0,10_) 17,(x") .

7
(5.5)

If the spatial dependence of the g;(x) is specified,
then Eq. (5.5) together with a knowledge of K(x, x’)
gives the time dependence of g; (x) necessary so
that they project out of ¢(x) the annihilation opera-
tors of |0_).

To make this concrete let us consider our model
cosmology. The translation invariance of the spa-
tial sections makes it natural to consider modes of
the form

g(x) = (2m) /G, (He'* % . (5.6)

Comparison of Eq. (5.5) with Eq. (3.15) then shows
that

sinhmk \!/21
Gk(t)=< anz ) t‘J-,'k(mt), (57)

where the constant has been chosen so that the gi
are normalized to a 6 function in k. For small ¢
this becomes

G, (t)~const xt 1o tk1In¢, (5.8)

A similar argument in the case of massless parti-
cles leads to exactly the same behavior at small ¢
The content of this result can be simply stated as
follows: The spacetime of Eq. (3.1) is conformally
related to a flat spacetime in which 7=1Int is a

Minkowski time coordinate. As measured by the
time 7 the singularity is located at 7= -, The
boundary condition of Eq. (5.8) which defines the
propagator is just the statement that in terms of
the time 7 negative frequencies are propagated
into the past.

The functions &, (x) which project out the part of
the field which annihilated |0,) can be found in a
similar way. They are

1 Vr
ki (x) = —— T

r/2=i /a)py(2) iKex
(2m)372 2t Hi2 (mt)e'* ™, (5.9)

where the constant has been adjusted so that

the functions ky are normalized to a 6 function
in k. For large t these behave exactly as the
positive-frequency WKB solutions which were
argued on physical grounds in Sec. IV to re-
present particle states in the large-time adiabatic
region. The present discussion can be regarded as
a check on those physical arguments. The bound-
ary condition on the propagator is thus that for
large times it propagates forward positive frequen-
cies in the WKB sense. Exactly the same result is
obtained by a similar analysis of the massless
case.

Having obtained the states |0_)and |0, ) one could
now proceed to calculate the particle production
amplitude of finding the Bogoliubov transformation
which takes the initial annihilation and creation
operators into the final ones. The production am-
plitudes are related to the matrix elements of this
transformation. The results thus obtained are the
same as those we have already quoted.

These results show that our propagator cannot
be the same as those obtained by methods which
involve joining the universe into an adiabatic re-
gime prior to some early time {,. Neither our
results for the boundary conditions which determine
the propagator nor our calculated particle produc-
tion amplitudes depend on any such time. However,
those results which are obtained from prescription
which do involve a joining time {,, but which are
insensitive to the value of this time, may well be
similar to those calculated here since the condition
(5.8) is similar to the condition that negative fre-
quencies be propagated to the past in an initial
adiabatic region.

VI. CONCLUSIONS

Path-integral quantization as defined through
analytically continuing spacetime gives a powerful
method for calculating the production of particles
in curved background spacetimes. The great ad-
vantage of the method is that it gives a natural
definition of the initial vacuum state in a universe
with singularity without the necessity of altering
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the dynamics dictated by Einstein’s equations to

introduce an initial adiabatic region in an ad koc
way. Issues of interpretation of what are meant
by particles come in only at late times where the
physics is comparatively well understood.

We have demonstrated the method by calculating
the production of particles in a model universe,
which is homogeneous, isotropic spatially flat,
and has a scale factor R(f)=¢. For this model the
path-integral prescription led to an initial particle
vacuum which was annihilated at =0 by solutions
to the wave equation which had purely positive
frequencies in the time of the conformally related
flat spacetime 7=1logf. Our result for massive
particles was a spectrum of produced particle
pairs which at high energies becomes a thermal
spectrum with a temperature T =1/nkgR(t). The
total number of particles produced and the total

energy produced is finite.

The outstanding issue is the generality of these
results. What is the general nature of the boundary
condition on the propagator at the singularity which
is dictated by path-integral quantization and what
is its physical interpretation? How general is the
quasithermal spectrum of produced pairs obtained
in this model? How do the results generalize to
anisotropic cosmologies and whatis the back reac-
tion of the produced particles on the geometry ?

We hope that future work will help to resolve these
questions.
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