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%'e study a new semiclassical expansion of field theory. In this expansion, the natural variables are
geometrical (particle coordinates), and the expansion is about solutions to the classical mechanics of such

variables. It is a strong-coupling expansion, and it offers considerable hope for bridging the gap between

quantum field theories and theories of quantized geometrical objects.

I. INTRODUCTION

Effort in fundamental physics has turned increas-
ingly toward the problem of quark confinement.
'There is reason to believe that we know the begin-
nings of such a program (quantum chromodynam-
ics) and the end (stringlike and/or baglike theor-
ies). What is not clear is the path from such a
local quantum field theory to such theories of quan-
tized geometrical variables.

We note that both types of theories are based on
a classical formulation: the former in terms of
field variables, the latter in terms of particle/
string/bag variables. It is of course well known

how to regain the semiclassical limit of a quantum
field theory in such a manner as to preserve the
classical field equations. ' What is not well known'

is that there is another semiclassical 1imit of field
theory in which classical mechanics is (may be)
obtained. We shall refer to the former limit as
the field ff limit It-is as.sociated with a weak
coupling expansion, which we call the field h-ex-
pansion. We shall refer to our new 1.imit as the
particle 8-limit. It is associated with a strong-
coupling expansion, which we will call the par-
ticle h-expansion.

Just as in the field 5-expansion the natural vari-
ables are fields, and the expansion is around solu-
tions to classical field equations, so in the particle
5-expansion the natural variables are geometrical,
and the expansion is around solutions to classical-
mechanical equations. It is our feeling then that
the particle h-expansion provides the natural
language with which to excavate geometrical ob-
jects in field theory. Senjanovic and one of the
present authors" have been engaged for some
time in a program of rewriting field theories
in terms of geometrical variables. " Indeed, with
some approximation, and in two dimensions, a
direct bridge was found in this way from gauge
theories to strings. One of the purposes of this
paper is to put those approximations on firmer
footing by embedding them in an organized con-
text —the particle 8-expansion. By no means,

however, is the particle 5-expansion limited to
two dimensions. Indeed, in this paper we shall
work primarily in four dimensions. Results for
arbitrary dimensions will also be given.

Because they have no charged loops, nonrelativ-
istic field theories offer the simplest applications
of the particle 5-expansion. 'They also illustrate
almost all the general principles necessary to
study the relativistic case, and so will be dis-
cussed first, in Sec. II. The general program,
discussed in detail there, involves three steps:
(I) Reexpress the field theory in terms of particle
(geometrical) variables; (2) in this language, find
the "particle action"; (3) use the particle action
to define the particle S-limit, in which classical
mechanics is obtained. For the nonrelativistic
models, because they have no charged loops, we
will find ordinary nonrelativistic classical mech-
anics dominating this strong-coupling limit of the
field theory.

The particle 6-expansion for the relativistic
case, discussed in Sec. III, follows the same lines,
but is one level more complicated. It is not dif-
ficult to isolate a "naive" particle action, neglect-
ing charged loops, which has the form of classical
relativistic particle dynamics. We will define our
particle S-expansion in such a, way (in complete
analogy with the nonrelativistic ease) that this
classical mechanics dominates all structures with
no charged loops. (It dominates the strong-coup-
ling limit of processes with no charged loops, e.g. ,
the cracked-eggshell diagrams important in finite
QED, ' whose one loop can be obtained by sewing
together the ends of an electron propagator. )

In general, however, we must proceed to study
the behavior of the charged loops themselves under
this particle 5-expansion. 'The question is: Does
the classical relativistic dynamics dominate the
charged loops in the limit S-O, or do the charged
loops dominate, defining a more sophisticated par-
ticle dynamics? A general expansion of the loop
contribution in powers of I is developed in Sec. IV,
with calculations detailed in the Appendix. The
expansion is essentially an expansion in powers
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of momenta, and it is not difficult to compute ex-
actly the first few terms. The answer to our ques-
tion is model dependent: In the cases of scalar
and spinor quantum electrodynamics, the clas-
sical dynamics does in fact dominate the loops;
for theories of the type Rl = -gP*gQ, the loops
dominate. In the latter case, the particle I'-limit
is a much more complicated dynamics, much more
what is expected of strong coupling.

Section V generalizes the discussion of Sec. D7

to an arbitrary number of dimensions D. For D&5

scalar and spinor QED are still dominated by clas-
sical mechanics; for D~ 5, the loops dominate
or (for D=5) are of the same importance. For
Rl = -gg*gP, the loops dominate in any number of
dimensions. A few brief remarks about quantum
chromodynamics are also included. This section
also deals briefly with some possible directions
and somenew features of the expansion, including
the need for a "classical renormalization" in the
relativistic particle S-limit.

II. A NONRELATIVISTIC EXAMPLE

The simplest illustration of our new particle 5-expansion will be in terms of nonrelativistic field theory.
We will examine the nonrelativistic analog of scalar electrodynamics, described by the field action

$ = d'x g* ie, —eA, —
2

+i& p —~„'A"[ i& —-(e/c)A]'
(2.1)

The interaction due to the photon is instantaneous. It will be instructive to compare particle and field 5-
limits, so we will first review the usual field 5'-expansion for this model.

A. The field I-expansion

To discuss the usual field S-limit, it is useful to have the action in three forms:

$ d gw '8 g '
|t) g 2gP1, f „[. [-i& —(e~/c)X~]'

d'x~ gp (is —e+~ ) — +ie gp- ~Ay V'AyF o Fo

(2.2)

or, more concisely,

Sz(e, m; )1),A) =-S~(ez, m~; )))~,A~)/5

=S (Wke, m„;))) /v g, A„/WK).

(2.3)

Therefore, we have

e = v Ke~, m = m~, )I)= )I)„/v 5, A =A~/v S.
(2.4)

The first form is the 5-free form which we start-
ed with in (2.1). The second form defines the field
5-limit by the prescription of multiplying by an
overall factor of I/If. It shows that in this limit
(I-0, e~ and mz fixed) the theory is dominated

by solutions to the classical field equations. ' We

can also see from this form that the field I-expan-
sion is a loop expansion: The propagators and ver-
tices (as functions of ez and m~) have factors of
I and I/5, respectively. Finally, in the third
form, we see that the field I-limit is a weak-coup-
ling limit: It is equivalent to the replacements
e = v tfez and m = mr in the I-free Feynman dia-
grams.

After finding a "particle action" (Sec. II C), we
will treat it just as one treats SF: We will define
the particle 5-limit as that which is dominated by
classical mechanics. The particle h-limit will
turn out to be totally different, and is in fact a
type of strong-coupling limit. Toward finding the
particle action, we must first reexpress the field
theory in terms of particle mechanics.

B. From field variables to particle variables

We start with the Green's-function generating functional in terms of the h-free form of the field action

Z(q, q"J„)=JR(a()"aA" e~ '
, S ((, ()*, A")+ d' (q*( ()'q-J„A") (2 5)
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I

Z(q, q*,J„)= X)A" (detG) exp i

G -=(is, —eA, ) — + ie[-i~ —(e/C) X]'

d 'x ( q-*G q —g A „~'A "—d A ")

Our first step is to integrate out the charged field:

(2 0)

G is the propagator for g in an external A field. 'The determinant of G gives the charged -loop contribution
to Z. In the relativistic theory this determinant will give corrections to Z, but in nonrelativistic theory
det G = 1. 'This is because the nonrelativistic theory has no antiparticles, and therefore no charged loops.
More formally, although the i& prescription above is the usual Euclidean (and therefore time-ordered)
prescription, the fact that g contains only positive frequencies means that time -ordered products immedi-
ately degenerate to retarded products:

« IT(e(»e*(&))Io& = e(z' y ) (0
I
C(»&*(&)

I
0& . (2 7)

H aving dealt with det G, we then have the following expression for the Green' s functional with 2N external
lines and the A source:

N

k» k» 0 g~g~ ~II

A' p IIK(z„ t";y„ t') exp i d'x(--,'A„v'A' —J,A")
germ k= 1

(2 9)

N otice that if we had chosen P to be a spinle ss fermion, the only change in the above expre ssion would have
been the inclusion of minus signs for the odd per mutations, due to the anticommutativity of fer mion

sources.
'The next step is to introduce particle variables by reexp re ssing the propagator s 6 in terms of Feynman

path integral s'.

G(z, t", y, t') = ie(t" —t') S-x exp i dt ~ mx —eA, + —x A
t' C

The A integration in K„ is now Gaussian and can be done exactly:

z„= ) )e)) a&E 'Q 's&*,
)

(2.9)

x exp ]i dt's (,', ' —eA, ( „t) ~ e —' A) „)) J d'*)——,'A„V'A" —J„A")

/

xp ~ ~ ~—,
' A exp (iS~), (2.10)

t x
dt g —,mx))

' —eA, „(x~, t) + e —A„(x„,t)
C

~ ~

~~ 1—x~ 'x)/c
& 4m /x, . -Xk /

1

A~ „(x;j)=fd ~x S (x —x') J„(x',x,), n(x) = —=, ~'(x) =

In the above, we have used

A (x~, t) = dxA~(x, x, )5 '(x —x~ )5(x, —t) . (2.11)

The factor with exponent A „&'A„is the Green' s -function generating functional for a free A field: It gives
free A propagator s disconnected from the rest of the graph. The rest of K~ is the Gr een' s functional of
particles interacting through instantaneous Coulomb and Biot -Savart forces, in the presence of an external
fle ld A

y
A

g
is just the classical A field due to the source J. The divergent interaction ter ms in $~ for
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j = k correspond to renormalization of mass 5m = (e'/c')&(0) and ground-state energy 6E = —2e'b, (0).
We have now completed our transition to particle variables (S~ is our particle action), and are in a

position to define the particle S-expansion.

C. The particle 5-expansion

In analogy with our treatment of the

Sp= dt 2 mxk' —eA „+e—

dt 2 Alp xk —epAp()
k

field 5-expansion (in terms of Sz), we write out three forms for S~:
~ ~

/2~ 1 —X~ 'Xkj C
~ A„—— z

~g, k 47t lx~-xkl
4 ~

x~ ~
y 2~ 1 —XJ 'x), /c

vg c ~@
' 5» 4rlx, —x l

(2.12)

or, more concisely,

SJ(e, m; A„}=Sz(e~)m~;Ap „)/lf =Sp(e~/v I, m~/O;A~ „/~').
We therefore have

e= e~/v K, m = m~/5, A„=A~ „/vm .

(2.13)

(2.14)

We will define the particle 8'-limit as the limit 8'-0 at fixed e~ and mr. Thus, in this limit [as seen in the
second form of (2.12)], the theory is dominated by solutions to classical mechanics. If we allowed scaling
of x» we would have a more general (but equivalent) prescription for the particle limit. However, this
would be equivalent to scaling y~ and z~ in K„, while leaving x in J„(x) unscaled, causing unnecessary com-
plications in notation (similarly, complications arise from scaling f)

We can now rewrite the field action in terms of e~ and mp by substituting (2.14) into the 8'-free form of
Sz in (2.1):

(2.15)

Thus, we see that our particle h -limit is a kind of strong coupling; however, it is not the usual strong
coupling because it also has m = m~/8 —~. For comparison with the field 5/expansion, Sz may also be
written as

(2.16)

Notice that if the photon had a mass p [replacing &' with &' —tu' in (2.1}], then, by the arguments of this
section, we would find p, = pp= p, ~: The mass p, acts as a field mass, not a particle mass. Therefore, in
the particle 6-limit P becomes a classical particle, but A becomes a classical field.

III. EXPANSION FOR RELATIVISTIC FIELD THEORY

Following the nonrelativistic example as closely as possible, we examine scalar electrodynamics, with
the field action and Green s-function generating functional

S~= d'x()i)*[(is„—eA, )' —m'+is])))+ Q, A"]. ,

z(tl tl, J„) fu)'u0*ua ~z=v s, ))', )*,a') js )q ) ) n'*'+" (3.1)

We have chosen the Lorentz gauge. In fact, all of our results are gauge independent, and the reader is
invited to work things through in an arbitrary gauge.
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As in the nonrelativistic case, the field 5-expansion is described by

Sz —— d'x g* i& —eA ' —m'+i& g+ —,'A A

=1 d'«/(()z[(iB —erAz)' —mz'+i&]fr+ GA+OAz}

4 gz . Az ', . 4, Az As. ]« ~ 'LB —vhep~ —mr +if ~+z ~O~
e=)(h e~, m = mz, (() = g~/WK, A =Az/y(h,

or, more concisely,

Sz(ey m; gy A) = Sz(e~, mr; g» Az)/h = Sz(v Ie» m» gz/Mh, Ar Ah ) .

(3.2)

(3.3)

again the field h -limit (h -0 with er and mz fixed) is a weak-couPling limit, dominated by classical field
theory.

A. Particle representation of propagator G

To find the particle h -expansion, we again start by rewriting the Green s functions in terms of the
particle variables. The first step is the same, evaluating the g and (* integrals in Z:

Z(e, e, d, )=JtyA'(detG(A))ezp ' d'*(-e'Ge ~ -', A, G)A" J„A')

G = [(iB„—eA„)' —m'+i@] '. (3.4)

Now the determinant is not unity. (Its logarithm is the effective action for A due to all one-g-loop dia-
grams, as will be discussed in Sec. 1V.) We also have

K (z",y";J")=fztAQ H'G(*;y") ezzt['[d'*( —,'A A —JA)}}(detG). (3.5)

As above, we next need to express |" as a path integral over particle variables. The technique is well
known. We introduce a proper -time parameter, "' canonically conjugate to —,'m'.

f(m') = dT exp(-iT-,'m') f(T) . (3.6)

Then we write a path integral for G instead of G (see Refs. 5 and 6):

G = ,'[isr+ —,'(iB„—eA„)'+—ie]',

G(z', T;y', 0) = --,'i8(T) a)«exp i dv [ ,' («vz) —e«, (-7-)A'(«(~))] (3.7)

Finally we have the desired path-integral expression for G:

G(z, y)= dT exp(-iT-,'m')G(z, T; y, 0)

,'i dT --B«exp i d~(--,'m' — « —e«A)
0

(3.6)

B. Properties of G

It will be useful in what follows to know two properties of the propagator G. The first is the form of the
equations of motion at the saddle point:

«„(~)= e«'(~)F„„(«(~)), —,'«'(T} ——,'m' = 0, (3.9)

where F,„(«)=—B,A„(«) —B„A,(«). The former comes from varying the action with respect to «, the latter
from varying with respect to T. To do this latter variation, the T dependence of JG and of the implicit
6(z —«(T)) (from the end-point constraint} must be considered. The result in total is as expected: A

derivative with respect to T brings down the Hamiltonian at the end point, —,'«z(T) ——,'m', which must then



16 PARTICLE LIMIT OF FIELD THEORY: A NEW. . . 2491

vanish. Taken together, these equations of motion imply x'(7) =m' (for all r). Thus, at least near the
saddle point, 7 is the ordinary proper time. '""

The second useful property is that

s(z, s)= fz--. ds zvzezs
'

dv( —-', z ' —-', «'(v)/z —ed A)
0 0

for arbitrary X. The proof of this identity follows immediately from the change of variables T -XT,
r -Xr, x(Xr) -x(~) .

(3.10)

C. The naive particle action

Inserting (3.8) into (3.5), the expression for K„ is now

K„= SA ' 'Sx, exp~i — 'd~ —,'m'+-,'x,'+ ex, A x, + d'x —,'Al:IA -JA detG .
0 3Ip ) 0

(3.11}

Qwing to the determinant, the A integration cannot be done in closed form. Qur procedure is as follows:
We define the naive particle action as that which we will obtain (in the manner of Sec. IIB) by neglecting
detG. Similarly, we will define the particle h-limit as that for which K„, neglecting detG, is dominated

by solutions of the classical mechanics of that action. Whether the naive particle action in fact dominates
the exact K„(including detG) is a question of the behavior of detG in this K-limit. This is properly the sub-
ject of the next section, but it will buoy the reader to know that for certain theories (including scalar
electrodynamics), the determinant does not contribute to leading order in the particle I-expansion we are
defining.

Setting the determinant equal to one, the A integration gives'

K„=exp -j d'x-,'A„l:IA„2 @x exp jS

T' Tp
Se=—PJ 'd (-', ' «,*~ e«A„(*,)) —, -', e'g 'dv dv'*', .(v) *',(v')e (zv(v) —*,(v')),

a flak 0

A„„(*)=fd e(*-z )*d (z, )A(z„)='~, . 5'(z)= —
s

1 j 1

(3.12)

S~ is our naive particle action. It is similar to the Fokker action" for classical, relativistic, charged
particles, except that the ranges of integration in r are finite, and &s(x) is the Feynman propagator in-
stead of 5(x')/4v [so S~ is not even real; also, (xs)'/' is replaced by the classically equivalent —,'x'].

D. The particle K-expansion

Using (3.10), K can be put in the form

K„=exp -i d'x-,'A„QA„X" X)x exp iS

se(z)= —gf dv( z ~ —,'z'/z '-, ez ' A„) ——,'e'gfdv fde z ~ z'll (z —z')'.

Then, we find, " choosing A. =S,

S (S)= Efd ( S ~-Sv/S e-', A' „v) ——', -', e'Q+fd d ''e v(*v—*')

(3.13)

gf dv( ~ —,'—' e~ -',A „' ) — e Pfdv f d—',v'«'«'A (z —z')

m 2 e 8d)-', S ' ~ ',,*/«, —", '" -' —" gfd fd ««, (z--z).

This is the analog of Eq. (2.12}. Thus we identify

e= e~lWg s m =mills A„=AJ, „Ivk s

(3.14)

(3.15)
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S~(5; e, m; A„}=——S~(l; eJ„mJ„A~ „)= SI (h; e~/Wjg, m I li; A ~ „/v h ),1 (3.16)

which is the analog of {2.13). Finally, then

A„=exp -i d'x ,'A„C—lA„QQ —Sx exP[iSp(l; e, m, A„)]dT

= exp -i

= exp
h

S dTd»x»A, g Ap g Q II — Sx exp —Sp(l; ep, mJ„Ap, q)

In the last step we used Eq. (3.16), and

St(ls et' mpsAp cl} Sp

dv(-,'m~'+ —,'x'+ epx ~ A~ „)--,'e~'Q «d~'x x'&»(x-x') . (3.16)

Clearly then, we want to define our particle h-
limit as g-0 with eJ, and m~ fixed. If the naive
form dominates (i.e., if detG can be neglected as
K-O), then the theory will be dominated by the
classical mechanics of S~.

In fact, the classical mechanics is what was
presaged in (3.9). As 1-0 with e~ and m~ fixed,
we find the equations of motion (varying with re-
spect'to x» and T»)

'x»„(r) = ex»(v')E, „(x»(v)), ,'x»'(T»} ——,' m—' = 0,

A, (x) =A„„(x)—eQ 'd~x„{r)&„(x-x»(~)).

+2A A (3.20)

(3.19)

Therefore, v is again the proper time.
The prescription e = e~/Wg again identifies the

particle 6 -expansion as a strong-coupling expan-
sion, with the modification m =m~/k We can re-
write the field action as

m 2

S~= d'x~ P* i& —~~A — " +i&
Wh

We see that, in the relativistic theory, the par-
ticle 8-expansion for the case m =0 is formally a
pure strong-coupling expansion. This distinction
may disappear after renormalization. (If we re-
normalize about p2=M2 to avoid infrared diver-
gences, should we choose M =M„/h'?) We can also
rewrite the field action as

e~ A», m. J,S~= d g — l~ —————+ $6
Wh

(3.21)

Again, we see that, if the photon had a mass p. ,
we would have p, = p, ~= p,z. In the particle 8-limit
g becomes a classical particle but A becomes a
classical field.

We will show in the next section that, to leading
order in our particle h-expansion for scalar @ED,
the determinant is negligible. However, note that
the naive action has some applications in its own

right (regardless of the behavior of the determin-
ant}: It is not hard to see that the cracked-egg-
shell graphs, popular in finite @ED,' are summed
as

5
i 5Z„(u) i i 6Z„(u)

d'y K, (y, y; Z)

~dT
d g — x)x

2
d7x d~(x —u) dr x"&~(x —v)

dr'x x'&~(x -x'), . (3.22)
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GG -1
0

n +
Go V
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Go V GoV
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seen by comparing its perturbation expansion with
that of G itself. We can look in general at the
Green's function G = (G„' —V) ' of a particle in an
external field, with free Green's function G, and
interaction V (in the case of scalar electrody-
namics, V represents both one-photon and two-
photon vertices). The expansions are

FIG. l. Expansion of determinant.

Our method then points the way to a strong-cou-
pling approximation for these graphs. (One needs
to search for periodic classical solutions, quite
possibly in Euclidean space. Could these be the
old runaways '?)

G = (G, ' —V) ' = G, + G,VG, + G,VG, VG, +

(4.1)
lndetG —lndetG, = -lndet(1 —G, V)

= -tr ln(1 —G, V)

=tr(G, V+ 2G, VG, V

+ gG, VG, VGOV+ ).

IV. PARTICLE h-EXPANSION OF DETERMINANT

In defining our (strong-coupling) particle 5-ex-
pansion in the relativistic case, we temporarily
suspended charged loops. In this way, we defined
a "naive" particle action: Essentially-ordinary
(or "naive") relativistic classical mechanics
dominates the no-loop dynamics as h-0 at fixed
ep and m„. An attractive feature of our naive con-
tribution to the action was that the photon field
was quadratic and could be integrated out.

Qur task now is to compute and compare the
strength of the loop contribution in various theo-
ries. For some theories, such as scalar electrody-
namics, we will find that our naive action dominates
the determinant. Thus, in the particle I-limit
scalar electrodynamics is dominated by ordinary
relativistic classical mechanics. In other theo-
ries, things are not as simple. For example, in
the case of Zr = -gg~PP the determinant itself pro-
vides the leading order in our expansion, undercut-
ting the "naive" contribution. We still have a parti-
cle-variable description, but things are much more
complicated: The appearance of the leading terms
is much more what is usually expected in a strong-
coupling expansion, and we cannot explicitly inte-
grate out the Q field (even for the leading term).

We begin by reviewing the fact that lndetG is
(up to a constant) just the sum of one-g-loop dia-
grams in an external A" field. This can easily be

x exp igh S„(y,e; T;A„)
(4.2)

S,=-g rfr(gamp + kx + e~x ' Ar)

+ d'x(-,'ArClAr -ZAr)+

The limits of summation for 2 5"S„will be deter-
mined by analyzing the k dependence of lndetG.
We have chosen to use A~=~QA. Since A is only
an integration variable, this choice is arbitrary,
but it is the choice which makes exphicit, , even
before gluon integration, that the naive contribu-
tion is order I/O':

From this we see that lndetG —lndetG, is just
GG, '-1 with its ends sown together, along with a
combinatoric factor I/n for n interactions (due
to the symmetry of the one-loop diagram under
rotation). These expansions are shown diagram
matically in Fig. 1.

In order to define the particle S-expansion, we
made the replacement Sr-SJ,/I, and reexpressed
this as the identifications e= e~A@, m = mJ, /I.
This in turn determines the 5-dependence of detG,
through its dependence on e and m. We therefore
expect an expression for K„of the form

(4 3)

Here we have included only the first two terms of S, from (4.2) (i.e. , the naive contribution). Any other
choice of 8' dependence for A would hide this fact.

We therefore want to evaluate

detG = det{[(ia —eA)' —m'+ ia] ' = det{[(ia —er Ar/5)' —mJ, '/6'+ is] '}-det{[(isa —e~Ar)' —mr'+ ia] '] .

(4.4)
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(The proportionality constant is unimportant, since we are only concerned with detG/detG, .) If we define
Ar(x) =As(x/g), then since x is only a dummy variable (the determinant is over x), we can replace x with

x = x/h. We then have

det([(i@a —e~As(x))' —m'+is] ')= detl[(i& —e+r(x))' —m'+i&] ').
All explicit h dependence has been eliminated (it is hidden in A).

The next step is to expand lndetG —lndetG, in momenta about p = 0:

lndetG —lndetG, = d'xp, [A(x)]+ —,[sA(x)]'f, [A(x)]+ ~ ~ ~ ) (4.6)

(Lorentz indices are suppressed; f, are ordinary functions, not functionals). According to the Landau-
Cutkosky rules, such an expansion exists when the charged particle is massive (i.e. , there are no singul-
arities at p =0). Finally, we restore the h dependence by returning from A and X to A and x:

lndetG —lndetG, =Iz ' d'x, A x +h' —,
' ~A x 'f, A x + ~ ~ ~ (4.7)

It is now clear that the particle k-expansion for
the determinant isjust the expansion in deriva-
tives: There is an Iz for each derivative and an
overall 5 ' (in 4 dimensions) for lndetG. Compare
this with the field 6-expansion of the proper-ver-
tex functional, used in studying spontaneous break-
down. 'There the expansion is in two variables:
field-h (the number of loops) and the number of
derivatives. The no-derivative term (effective
potential) contains all orders of field-h (all num-
bers of loops). The particle h-expansion of the de-
terminant is much simpler: lndetG can be com-
puted entirely from one-loop diagrams, and there
is only one variable, particle-Iz, whose power is
the power of momentum.

We now see that, in four dimensions, the ex-
ponent of K„ in (4.2) is iZ„,h "S„. In general
(but see helot), the lowest-order term is S „
which dominates the naive contribution to S, in the
limit Iz-0. As an explicit example, we consider
the theory where the photon interaction is replaced
by the scalar interaction Zl= -gg*gP. In that case
we find (see the Appendix)

1S,(g)= —,d'x[(m'+gP)' In(1 +gglm')
—(finite counterterms)] . (4.8)

detG' = det([(is —eA')' —m'+ ic] ')

= det([(e" (i& —eA) e '" )' —m'+ ie] ')

= det(e" [(ia —eA)' —m'+ i&] 'e ")

= detG . (4 9)

'Therefore, detG depends on A only through F„„
= ~„A„—~„A„. The expansion for lndetG thus be-
comes

Therefore, the particle h-limit of this theory is
not classical mechanics. This theory illustrates
a typical strong-coupling form: Kinetic-energy
terms are not regained until a higher order (1/h).
Qne could say that this theory has no classical-
mechanical limit, though it does have a quantum
particle mechanics.

Qn the other hand, in scalar electrodynamics
gauge invariance restricts the form of the expan-
sion. The determinant is itself gauge invariant:

4 1
lndetG —lndetG, =ih ' d'x f, +g' ,'F'f, +I'

4,
aF'+—-',bFC1F f, + ~ ~ ~ (4.10)

where the f, are constants [Lo.rentz indices are
again suppressed; the f, term actually consists
of many terms, one for (F„„F"")',one for
(e„„„F~"F")',etc. ]. In fact, f, =0, sincelndetG(A
=0) —lndetG, =O. Also, the f, term is only a re-
normalization of the free A action, and so can be
absorbed into the similar term of S,. Explicitly,
it is (see the Appendix), in 4 —2z dimensions,

1 1 2 lP
192m' q

—y e F„„F (4. 11)

Hereafter, we shall ignore such renormalizations.
'Therefore, the lowest-order remaining contribu-
tion of lndetG is Sp S

y
consists only of the naive

contribution S~, which dominates lndetG in the
particle I-limit: The (strong coupling) p-article tf-
limit of scalar electrodynamics is the (naive, rela
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tivistic) classical mechanics of charged particles
In the following section we will extend our re-

sults to arbitrary dimension, and to other theo-
ries.

V. GENERALIZATIONS AND DIRECTIONS

The results of Sec. IV can easily be generalized
to arbitrary dimension D: The only change in the
derivation of the form of the particle 5-expansion
of the determinant is the generalization of the
overall factor I ' to I o [in (4.V)]. This means
that the dominant term in the exponent of K~ is
now S ~ for the g*gQ theory, and S~~ for scalar
@ED. Therefore, the naive action never dominates
for ())*)))(t) theory. However, for scalar QED the
situation is dimension dependent: For D& 5, the
naive action dominates. For D= 5, the naive action
and lowest-order contribution of the determinant
are of the same order, and a non-naive classical
mechanics results in the particle 5-limit. For
D &5, the determinant dominates.

The generalization to include fermions is also
simple. The path integral for the fermion propa-
gator in an external field can be written with the
aid of anticommuting particle variables, in ad-
dition to the commuting particle coordinates. ' 'The

5 counting is the same: In particular, for spinor
QED we have the same expansion (4.10) as for
scalar QED, with different values for the constants
f, (see the Appendix).

As a special case, we see that in the massive
Sehwinger model the naive action 8, dominates the
lowest-order determinant contribution 8,. This
justifies the neglect of the determinant in a paper
by Senjanovid and one of the authors. ' It was shown
in that reference that the resulting (dominant)
"naive relativistic classical mechanics" is the
classical mechanics of the two-dimensional string
of Bardeen, Bars, Hanson, and Peccei (BBHP)."

In the massless Schwinger model, the massless-
ness of the fermion causes a singularity at p =0,
and the expansion itself needs modification. For
that model we have

lndetG —lndetGO= 2 d x —A" g„„- " " A"

d'x
2

I' „'E"". 5.1

The 8-counting and gauge-invarianee arguments
are still correct, but the expansion begins (and
ends) with a negative power.

The particle I-expansion can also be extended
to two-dimensional quantum chromodynamics with
massive fermions, since, in linear gauges, the
field Lagrangian simplifies to a form similar to
that of the massive Schwinger model. Again the

naive action dominates the determinant, justifying
the neglect of quark loops in Ref. 4. The naive
elassi. cal mechanics is again essentially the clas-
sical BBHP string.

If we extend the particle 5-expansion without
modification to QCD (with D& 2), we find the ex-
pansion has characteristics similar to the g*gQ
theory. Gauge invariance again restricts the par-
ticle 5-expansion of the determinant to the form
(4.10), where now

Thus, we have all powers of A contributing to order
However, a modification of the particle 5-

expansion which brings it into accord with non-
Abelian gauge invarianee may improve this situa-
tion. It is of interest to note that a phenomeno-
logicaL model of Cornwall and Tiktopoulos" uses
a first-quantized path-integral formalism for QCD
which neglects the determinant and still describes
the leading-logarithm infrared behavior of the the-
ory. This lends support to the possibility of a
modified particle 5-expansion in which the naive
action dominates. Furthermore, the particle 5-
expansion may have particular relevance to QCD,
since the particle 5-limit probes the infrared be-
havior: It is not only a strong-coupling limit g
=g~QX-~, but also a large-distance limit, since
the length scale 1/m = K/m~-0 (i.e. , dimensionless
lengths mx —~).

The particle h-expansion may also be the natural
expansion for the Abelian field theory of charges
and monopoles. " The relevance of the particle
0-expansion to magnetic flux quantization already
shows at the classical-field level: In the Nielsen-
Olesen model of vortices, "magnetic charge is
quantized even in the classical field solutions —no
h's appear. However, when the theoxy is written
in terms of e~ instead of ez, the magnetic flux
quantization takes the form of a Bohr-Sommerfeld
quantization, familiar from the first-quantized
(i.e. , particle) monopole theory of Dirac. Explicit-
ly (since e=We~=e~/W, A=A+/~,

d() ~ (0)))=gas (8 i )=2m,~ ~

dS ~ (eJ,Bz) = 2vnK.

Thus, what may be viewed on the one hand as a
"purely classical quantization" may also be seen
as a (particle-5) semiclassical (luantization.

Another indication of the relevance of the par-
ticle 5-expansion to monopoles is the fact that
there is no classical, relativistically invariant
field theory of electrically and magnetically
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charged fields. This can easily be seen by com-
paring the form of the charge-quantization con-
dition for charge-monopole field theories in terms
of particle and field couplings. By the symmetxy
of the I.agrangian with respect to charges and
monopoles, we see that besides e = We~= e~/W
we also have@= IKgr= g~/~. The charge-quan-
tization condition is thus

(5.3)

Therefore, the field 5-limit is n-0, which does
not satisfy the charge-quantization condition (and
therefore violates relativistic invariance), since
n is not an integer (0&n«1). On the other hand,
the particle 5-limit is n-~, familiar from quan-
tum mechanics, where the classical limit is al-
ways the limit of quantum numbers becoming large.

We can also see the advantages of the particle
8-expansion for Abelian charge-monopole field
theory by applying the methods of Sec. IV. In
monopole theory, there are two determinants, one
for charged loops and one for monopole loops.
The charged-loop determinant is the same as for
QED; the monopole-loop determinant is of the
same form, but with E„„=& A„—&„A„replaced
with 8„8„-' Sg„where H„ is the monopole vector
potential. Therefore, the naive action again dorn-
inates. Also, the determinants are manifestly
covariant: All string dependence is isolated in
the naive action; higher-order corrections are
independent of the string direction, Explicitly,
the particle A-expansion for that theory is

e=e~/off, g=g~/vh, m, =m, ~/h, m, =m, ~/g.
The utility of the particle 5-expansion may be

enhanced for theories of the g*gQ type (where the
determinant dominates) by the simultaneous use
of another expansion, the 1/N expansion. " By
giving the Lagrangian a (global) U(N) symmetry,
and by choosing N to tend to infinity as an appro-
priate inverse power of h, the naive action can be
made to dominate the one-charged-loop graphs of
the determinant.

'We conclude with a discussion of the need for a
"classical renormalization" in the particle k-limit.
When calculating classical solutions in order to
find the leading behavior of a theory in its particle
S-limit, divergences are found in the classical
action. The source of trouble is the 4z(x, (r)
—x,.(r'}). The divergences are of the form of self-
interaction divergences found in, e.g. , classical
r elativistic electrodynamics. Such troubles could
have been anticipated from the point of view that
our expansion is a strong-coupling expansion, and,
as such, includes much loop structure in the lead-
ing approximation. By using a regularization (such
as a cutoff for small proper times), we have shown
that the divergences can be absorbed by renormal-
izations of the mass and action (addition of a con-
stant term to the action is equivalent to wave-
function renormalization, since K„-e+). The re-
sulting renorma, lized (naive} a.ction involves a.

principal-value prescription for the singularity.
This will be reported more fully elsewhere.

Note added in P~oof. After acceptance of this
paper for publication, we received a report by

R. Brandt, F. Neri, and D. Zwanziger. These
authors have independently recognized the advan-
tages of particle variables in the monopole prob-
lem (our Sec. V).

APPENDIX: CALCULATION OF DETERMINANT

1. General method

We will now describe the general method for calculating the determinant to finite order in the particle
h-expansion, with explicit examples. 'The first step, as in Sec. III, is to reexpress the determinant in
terms of the proper-time Green's function G. We use the identity'

1 1
lndetG —lndetG, = lndet . — —lndet

H —i& HO —i&

d x —[{x]exp(-iHT/h) fx) —( /e xp(-xiH, T/h)
f
}].x

T

We therefore need to evaluate

(x
~

exp(-iH T/5)
~
x}=- G (x, x; T, 0) . (A2)

Qf course, we cannot evaluate G exactly, since II
involves an arbitrary external field [P(x) or A" (x)].
However, we can evaluate an arbitrary, finite
number of terms in the semiclassical expansion
of G; as shown in Sec. III, this is the particle 6-
expansion. Since we also know (from Sec. PT) that
this expansion is an expansion in the number of

I

derivatives of the external field, it will clearly be
helpful to employ the expansion"

@(X)=y{x)+[(X-x) S]y(x)+ ~ ~ ~ . (As)

Here X is the position operator in the Hamiltonian
H(P, X), and x is the c number in

(x
~
exp[-iH(P, X)T/n]

~
x) .

Inserting this expansion into 0, we have H as an
explicit function only of P, X -x, and p(x) (and
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der ivatives). Exhibiting this dependence explicitly
as H(P, X —x, Q(x)), we have the further simplifi-
cation

(x~ exp[-iH(P, X-x, P{x))T/ff] ~x}

= (O
~

exp[-iH(P, X, y(x))T/I] (O) . (A4)

This result follows immediately from translation
xnvar lance.

From either the path-integral formalism" or
the usual operator formalism" we know that C
can be evaluated exactly when 0 is quadratic in
P and X. In that case, the result is

X/2

(x
~

exp[-iH(P, X)T/I] ~y&
= det e"/",

ex&y 27t'h

(A5}

where 8 is the classical action. Therefore, we
can easily evaluate the determinant for the fix'st
few orders in 5 by keeping only as many terms in
the expansion (A3) as will keep H quadratic. For
the cases of Rz= -gg*PP and scalar electrodynam-
ics, respectively, we then have

H(P, X,P(x)) —= ——,
' [P' —m' -gP(x) -X ~ SP(x)

--,'X"X"S„S„y(x)], (A6)

H(P, X,A.„(x))= --.'[(P„—e—-,'X"F„„(x})' —m2] .

Here we have used gauge invariance to drop some
tex"ms in the expansion

A„(X)=A„(x)+ (X —x)"s„A„(x)

= —,'(X —x)"(S„A„-S„a„)(x)

+s „[(X-x)A„(x)+-,'(X-x)"(X-x)'

x(s„A,+ s,A„)(x)]. (AV)

By the arguments of Sec. IV, we see that this
approximation will give us al. l of S, and S, (in
arbitrary D, S D, and S, D), plus parts of higher
orders [the rougher approximation P(x) =—Q{x)
would give us all of S, plus parts of higher orders].
Therefore (for 6 =4}, along with the naive action
8, with which we started, we can easily calculate
all contributions to the particle action of order I"
with n~ -1. 'To calculate higher orders, we can
consider the nonquadratic part of H as a perturba-
tion to the quadratic part, and use either old-
fashioned perturbation theox'y in the operator for-
malism or Feynman-diagramlike perturbation
theory in the path-integral formalism. In the

cases of scalar and spinor @ED, owing to gauge
invariance, there is a simpler method: Since the
determinant depends on A„only through I'„„
(which is itself a first derivative of A„}, to finite
order in 5 it consists of only a finite number of
Feynman diagrams. Specifically, S,„D depends
only on one-loop diagrams with at most 2n external
1.ines.

8y „Bg„27t@

Here S(y, z, T; Q(x)) is determined from
H(P, X, Q(x)) by using

L(p, q) = pq H(p, q), -q = sH/ap (A9)

solving for q(T) in terms of q(0) and q(0), inte-
grating

S(q(0), q(0), T) = d~ L(q(0), q(0), v), (Aio)

and relnsertlng q(T} to find S(q(0) q(T) T)
=S(y, x, T). Here we u&e p and q as the e numbers
corresponding to P and X; P(x) and its derivatives
are considered as constants until the final fdDx.

As explicit examples of these methods, we con-
sider the calculation of the lowest-order contribu-
tion for |I/*gp theory (S D), and the lowest nonzero
contributions for scalar and spinor @ED (S, D,
which is merely a wave-function renormalization,
but illustrates the method). For the former case
we need only the approximation gx) =—P(x) (lowest
order means no derivatives), so we have simply
the free Hamiltonian H = =,'(P' —m' -gp(x}) [ re-
member that gx) is a constant as far as P and X
are concerned; m'+gQ(x) is a fixed-{mass)' term].
After a trivial calculation (since the classical
equation of motion is q = 0), we find

S(y, z, T; @(x)}=--,' [(I'+g@)T+ (z -y)'/T],
so (A8) becomes

2. Explicit calculatiogs

In this section we will use the method described
above —the quadratic approximation to the Hamil-
tonian —to calculate the lowest orders in S. Com-
bining Eqs. (Al), (A4), and (A5}, we have

ln detG —ln detG,

in detG —ln detG, = i dDx —(2w&iT) D/'exp(- im'T/a)[exp(-2igpT/&) —l]
0

(4 )
D/ I DZ -dD [( 2 g/ff ))D/2 D]

D
2
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%'e have analytically continued in D in ox der to apply dimensional regularization. As usual, ere take
D ~D —26' g ~oq aQd use

(-1) i'
/2 1

(I/e+)i)(D/2+1)) for D even,
I'(e -D/2) =

which follows from 1 (z)I'(1 —z) = v/sinvz ([}(x)= (d/dz)lnI'(z)). Note that the result (All) is already finite
for D odd. The result is therefore

ln detG —ln detG, = i(4v}-D"h -'

(-t)"' g' —+g(&/g ~ t)) [( * gg(*))"'— '[

+ (m'+g(t)(x)) i'ln, —mD ln(m'/4vh') for D even,

(-1)' ""'v d x[(m'+g(t(x)) "—m j for D odd

Assuming the I/e term can be canceled by a renormalization counterterm (true for D«6; for D&6, 21
= -g[})*[()(f)is nonrenormalizable), the final result becomes

lndetG —lndetG, = j(4v) ai'h D

(-t) fgt «[('' ggt) t't (t+ggi ') —(ttn'taoonntertartna)] to () evan,

{-1)(a")i'v dax [(m'+g(f)) i' —{finite counterterms)] for D odd.

For the case of scalar QED, we use gt„(X)= ,'X"E„„(x)[—se—e (A6)],

I.= --,'(X'+ m') —eX'gt, (X)= --,' [X'+ m'+ eX'X'E, „(x)j .

After a simple calculation, @re find

S(y, z, T; E(x)}=--.' [m'T —(z -y)eE(1- e"')-'(z -y)],
using matrix notation for I orentz indices. The solution for all orders in E (which includes parts of aH
orders in 5, since E is a first derivative of A) is then

ln detG —ln detc, = i do@
t ~eET y

-12—(2wihT) a "exp(--,'im'T/h'} det —1
T eET

Since we are only interested in the lowest order in h (i.e., the lowest order in E), we expand in E and get
[using det M = exp(tr ln M)]

lndetc —lndetG, = i d x —(2vihT)"Di'exp{--,'im'T/h) [(1—,e'T'trE') —1]

'i(4n} ai'—e'h' DI'(2 —~D}ma ' d xE E"".
J, 2 pv

As stated above, the vrhole term is a wave-function renormalization, and can be absorbed into the similar
term in 8,.

The generallzatlon to splnor @ED ls simple because

and

trln . = ~tr$ —8A —JFl +'l 6
—exp[-,'i((P —e4)' m')T/h]—

(P —eA)' = (P„—eA „)'—,'icy"y"E„„. — (A18)
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Since in the leading approximation [Eq. (A6)] F is a constant, the matrix y"y"F„„commutes with everything,
and so can be treated as a nonmatrix (for higher orders, we can use path-integral methods for first quan-
tization with spin'). Effectively we just change the (mass)', m'-m' —,'ie—y"y"F„„Wethen have, instead of
(A15),

ln detG —ln detG, = i2D ' ' d x —(2whiT) 'exp(-~im'T/I) .
~ dT

eel T
y

-1/2 ]e det —~t eee( ,'ee"e"F=„„.t'/lt)) -t
eFT (A19)

where the remaining trace is a matrix trace. The factor of 2 for D=4 is from the ~ in (A17) and the 4 from
tr1= 2 '=4; physically, it arises because spin —, has twice as many spin components as spin 0. Again ex-
panding in F, we have

lndetG —lndetG, =i2 z —(2w@iT ) ~'exp(--,'im'T/K)[(1 ——' e'T'trF'+ —'e'T'trF') —1]

t i(2v} ~~e2$2 Z'(2 —D)m
12 ff V (A20)

Also, owing to Fermi statistics, it is actually -(lndetG —lndetG, }which contributes to the exponent in the
functional integral over A.
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