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Based on the geometry of local (super-) gauge invariance, a theoretical framework for constructing

superunified theories is given. The main ingredients of this approach are (a) a method of constructing

invariants associated with unconstrained gauge theories and (b) the concept of "constrained" geometries for

the description of gravity and supergravity as well as the choice of their gauge groups. It is argued that any

unified theory must contain gravity, and then, to retain the invariances of pure gravity theory, such a theory

must be a superunified one. The formalism is then applied, respectively, to pure gravity, gravity coupled to

Yang-Mills fields, simple supergravity, and SO(2)-extended supergravity. Important properties of these

theories are discussed in detail.

I. INTRODUCTION

Supersymmetries as invariance groups of par-
ticle physics may be considered both from the
global and local points of view. Since their in-
troduction in four-dimensional space-time, ' '
a number of attempts, suggestions, or conjec-
tures about the relevance of these symmetries
as global or local invariance groups have been
made. ' " More recently, locally supersymmetric
(supergravity) actions have been constructed by
several authors. ""

In this paper we propose to make a detailed study
of superunified theories from the point of view of
the geometry of local (super-) gauge invariance. "
The merits of this approach have been argued and

stressed several times before" ' "' ': Super-
symmetry groups are direct generalizations of
Lie groups and contain Fermi-Bose symmetry.
Given that ordinary local symmetries are gauge
symmetries associated with Lie groups, it is
natural to expect that local supersymmetries are
(super-) gauge symmetries associated with super-
groups. Superunified theories are thus the next
step in the generalization of non-Abelian gauge
theories.

To motivate their relevance, it will be re-
called"" that exact local (Lie) gauge invariance
is defined over Minkowski space and endows
space-time with a richer structure than that im-
plied by special relativity alone. The combined
geometrical structure known as a fiber bundle
provides a unified picture of theories based on
local internal guage symmetries. To proceed
further, it is desirable to include gravity in such
a scheme (see below for the underlying reasons}.
Despite the fact that a gauge theory of gravitation
presents a number of novel features not found in

gauge theories of internal symmetry, the local
gauge principle is especially suited for the cou-

plings of matter (gauge fields at least) to gravity
which is already a local theory. Such a unification
has been carried out elsewhere. " Here we want
to refine the idea of (super-) unification still fur-
ther by pointing out the intimate relation between
the space-time of general relativity and exact
super (-Lie) gauge invariance. As mentioned
above, exact local (Lie) gauge invariance is ideally
suited to the space-time of special relativity. This
is because the only gauge invariance involved here
is that associated with internal symmetries, and
there can be no conflict between this and the global
Lorentz transformations of special relativity.
However, once one proceeds to the space-time
of general relativity and views gravitation as a
gauge theory, a conflict between the gauge invari-
ance of the gravity gauge group and that of internal
symmetries can in fact arise. It will be explained
in Sec. IV that a geometric description of gravi-
tation involves not an ordinary fiber bundle but a
"constrained" one. As a result some gauge fields
transform according to a nonlinear realization of
the (super-} gauge group. In arbitrary couplings
of matter fields to gravity, aside from the fact
that such couplings are not purely geometrical,
the invariance under nonlinear transformations
of the gravity gauge group is almost always de-
stroyed. It is only when the matter and gravity
fields together form a representation of a super-
symmetry group that the invariance under the
nonlinear transformations can be regained. One
is therefore led to conclude that just as local (Lie)
gauge invariance is naturally suited to the space-
time of special relativity, local super (-Lie) gauge
invariance is naturally linked with the space-time
of general relativity. Conversely, gauge theories
based on supergroups which have homogeneous
Lorentz group as a subgroup necessarily involve
gravitation.

Our geometrical point of view provides other
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reasons in support of a superunified scheme. An

important criterion for a unified theory is that.
all fundamental fields in the theory appear on the
same footing. Such is not the case in arbitrary
couplings of matter fields to gravity. On the other
hand, in superunified theories it is possible to
interpret all fields as gauge fields transforming
according to the adjoint representation of the
supergauge group. This removes the ambiguity
of assigning fundamental fields to various rep-
resentations of the unbroken symmetry group.
As a by-product of this, one finds that, e.g. , in
supergravity theory the mysterious transformation
properties assigned" "to various fields under
local supersymmetry transformations are just
local (super-) gauge transformations for the in-
dependent fields of the supergroup. The origin of
the nonlinear transformations is also understood
to be due to the geometrical constraints of the the-
ory.

From a more practical point of view, one can
offer at least two reasons in favor of a geometric-
ally superunified theory. Firstly, it is found that
arbitrary couplings of matter fields to gravity
destroy the renormalizability of the theory. Since
in such theories some of the gauge symmetry of
the pure gravity theory is also destroyed, one may
argue that the nonrenormalizability may be related
to the loss of the symmetry of the original theory.
The symmetry which could (hopefully) render the
theory renormalizable can be regained only within
the context of a superunified theory. Moreover,
in many unified theories of weak, electromagnetic,
and strong interactions, to maintain baryon-num-
ber conservation, one encounters mass scales of
the order of Planck mass m„-1.0" GeV. Since at
such scales, gravitational effects can no longer
be ignored, a unified theory of this kind must of
necessity include gravitation. Then for reasons
enumerated above, it must be a geometrically
superunified theory.

This paper is organized as follows: In Sec. II
a number of useful mathematical concepts are re-
viewed for the reader's convenience. A more de-
tailed modern presentation has been given else-
where. " Section III is devoted to methods of con-
structing invariants associated with the geometry
of an unconstrained fiber bundle. Starting from
the action integrals of Bef. 20, in which the depen-
dence on gauge fields comes only through the com-
ponents of curvature tensor, we proceed to a more
general method of constructing invariants in a fiber
bundle. For pure gravity and simple supergravity
they reduce, as they must, to those given in Bef.
20. Such invariants appear to be indispensable
when extended supergravity theories are consid-
ered. "

In Sec. IV we introduce the concept of a "con™
strained" geometry for the purpose of matching
the number of degrees of freedom allowed in a
geometrical theory to those required by physics.
The specific theories dealt with in this paper are
those which involve gravity. But the concept is
potentially useful in other contexts as well. " The
constrained-geometry point of view provides a
more direct justification for the geometric de-
scription of gravity and supergravity presented in
Bef. 20. It shows, in particular, how the invari-
ants constructed in Sec. III can be constrained to
describe these theories.

In Sec. V, the developments of Secs. II-IV are
applied successively to pure gravity, gravity
coupled to Yang-Mills fields, simple supergravity,
and SO(2)-extended supergravity. For gravity and
simple supergravity lt js shown 'that in this ap-
proach both the actions and the equations of motion
depend funda, mentally on the concept of connection
(gauge potential). As a result, one gets a more
general theory of gravity than that of Einstein. It
reduces to Einstein's theory when one assumes
the existence of an inverse vierbein field or, equiv-
alently, of a metric. Section VI is devoted to a dis-
cussion of results and conclusions.

II. MATHEMATICAL PRELIMINARIES

In this section we discuss a number of mathemat-
ical topics which are necessary to describe our
general formalism. Since the extension of
various notions of differential geometry to su-
perspaces with Bose and Fermi coordinates has
been treated elsewhere, "we will not distinguish
between Lie groups and supergroups or Lie alge-
bras and superalgebras and describe them all in
the unified notation of Bef. j.6.

Consider a continuous group or supergroup G.
Let L be the Lie (super-) algebra of G and (X„3a
basis in I. satisfying the generalized commutation
relations

[X~,Xe) X~Xs —=—(-l) & ~& XsX~

(2. l)

where g„ is the "grade" of the generator X„. In
this paper we will be mainly concerned with cases
in which g~ =1 if A. refers to a fermion and g„=0
if A. refers to a boson.

Let~ be a Lie subgroup of G. Then one can
write

where L,, is the Lie algebra of II and 1., is the gen-
erator of elements homeomorphic to the quotient
space G/H. This decomposition has the well-known
property that
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[L,L ]CL

[Lu, L, ]CL, ,

[L,a L~}CL,.

(2.2)

a local (super-) group transformation which relates
gauge fields defined on one cross section to those
on any other. Thus, acting on the basis D„ it gives

D, -DI =e, +hr XA

For semisimple algebras, the most natural metric
of L is the Killing metric"

gAB =(-1)uA uBg, A
= Q —(-1)ucfD,fCD . (2.3)

C, D

b) xA D e+6 (y)x8
I

For inf initesimal transformations

6, DI = ( Dl e )X„,

(2.10)

(2.11)

It satisfies the identity

fB gcD +fc QB —0 (2.4)

so that

QA D gA s gA+fA Ec/l (2.12)

For algebras such as the Poincard algebra, which
contain Abelian invariant subalgebras, the metric
(2.3) becomes degenerate, and one will have to
make recourse to special methods such as Inonii-

Wigner contraction'~ to implement the physical ap-
plications we have in mind.

Our geometrical approach is most conveniently
realized in terms of a fiber bundle. Consider a
fiber bundle P(G, M) with structure group G and a
base manifold M. Let the set (yl }= (x", 8

, ~; a = &, . . . , n be a coordinate system
in M, where the x"'s are Bose type and the 0 are
Fermi type. To describe the geometry of P it is
in most cases sufficient to consider the tangent
space to a point of &. Such a tangent space natur-
ally breaks up into horizontal and vertical sectors.
A connection in the bundle is introduced by speci-
fying a gauge-covariant basis

Dr =er +hr XA
A (2.5)

in the horizontal sector of the tangent space. The
m +n + 1 quantities Dz ———(D„,D „}are generalizations
of the conventional covariant derivatives D„, the

er are directional drivatives, and

hr =hr XA (2.6)

is the connection in P with values in the (super-)
Lie algebra of the group G. The quantities hr are
the connection coefficients or (when restricted to a
cross section of bundle) gauge fields which belong
to the adjoint representation of G:

X„hr = fAch (2.7)

To complete a basis in the tangent space, we add
to Dz the set(XA} of G. By construction

[D„X„}=0. (2.8)

When the base manifold is a real (m +1)-dimension-
al space spanned by fx"}, the expression (2.5) takes
the more familiar form

The curvature two-form g of the fiber bundle is
a horizontal two-form with values in the Lie
(super-) algebra, of G. It can therefore be expand-
ed in terms of the basis (XA}:

g =6' XA. (2.13)

Given a complete set of basis one-forms (lDl }
={lD",&D "},then in the notation of Ref. 16 the wedge
products (&D'0 lD~} form a complete set of basis
two forms. Expanding gA in such a basis, we get

gA RA Ig J' (2.14)

gA =RA d&~P, dX'. (2.15)

Explicit expressions for the components R~~ in
terms of the connection coefficients can be cal-
culated from the generalized bracket"

[D(, D~} = R~~XA . -
Thus

(2.16)

RA hA ( I)al uJJA dfA hB)lC . (2.17)

the quantities R~~ transform covariantly under the
gauge transformations (2.12):

A A 8 C5,RIz f8ce RIJ . (2.18)

In the following we will also make use of the
"dual" of the two-form Q. In general, given an
n-dimensional manifold and its associated p-
forms, the "duality" or "*"operation is one
which maps a p-form onto an (n -p)-forln. For
example, in four-dimensional space-time the dual
of a one-form is a three-form, that of a two-form
is another two-form, etc. In general, under dual-
ity mapping one gets from a p-form

where RI~ are the components of Riemann curvature
tensor. Choosing the &" to be the coordinate dif-
ferentials dx" and specializing to a real base mani-
fold, the expression (2.14) takes the more familiar
form

D~ =9~+h~XA,A (2.9) dual
( I) P &a- (2.19)

where a&'s are ordinary partial derivatives.
A linear gauge (or supergauge) transformation is

In practice, one makes use of the Levi-Civita
operator e, which is an nth-rank tensor, to relate
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the components of a form and its dual. Given a,

basis gl with a fixed orientation, define the num-
erical tensor 6 as

) (()) = f))*~ )) ()„,d x (3.1)

e" ""=e(gi (2.20) R"„,R~p~ q» q "'~~d'x, (3.2)

where g is antisymmetric under exchange of two

indices except when they are both Fermi type, in
which case q is symmetric. Then the components
e'" " of g are related to those of q by an appropri-
ate density. In four-space-time

eP~PX.
P

- j ~P&PA. (2.21}

so that the components of two-forms g and ~ are
related by

[x„,[x„x,})+(-I)'~ '3[x„[x„,x,)j
+(-1) ~ c[X„[X„X„))=0. (2.23}

The insertion of the bracket (2.16) into this super-
Jacobi identity results in the super-Bianchi iden-
tities for the superspace. When restricted to a
real base manifold, they become ordinary Bianehi
identities

Finally, we recall the Jacobi identity for a super-
algebra":

where q""~" is the numerical Levi-Civita tensor
(2.20), and the q» are constants, antisymmetric
if Q is a supergroup and the pair (A, 8}belongs to
I.„but symmetric otherwise. This action does
not transform irreducibly under G but can be de-
composed into irreducible pieces; the correspond-
ing Q» would then be the relevant Clebsh-Qordan
coefficients. The variation of (3.2) under an arbi-
trary variation of the gauge fields 5"„ is given by

5I( )(=)f4d x%~ 'h, ))t, (f )„(f„))(e"-" ' .

(3 3)
The Bianchi identities (2.24) have been used in the
derivation. Whenever the expression in the paren-
theses in the integrand vanishes so does 5I, and I
becomes a topological invariant. This happens in
particular when q» g» given by (2.3).

When the variation of the gauge fields pg"„ is re-
stricted to the infinitesimal gauge transformations
(2.12), then the variation of the action (3.2) is
given by

(2.24)

where (Xg v) stands for the cyclic permutation of
indices.

5,I = -2 c~RD„„R~„~~Dq„3c"'"'d'x.

B. Action depending on curvature and its dual

(3 4)

III. CONSTRUCTION OF UNCONSTRAINED INVARIANT

ACTION INTEGRALS

In this section we start with a review of the ac-
tions proposed in Ref. 20 and then consider a suc-
cession of generalizations which seem to be in-
dispensable when matter couplings to gravity and

supergravity are considered. Except in Sec. III C,
we shall confine ourselves to a, real base manifold.
As mentioned in the Introduction, these actions
are associated with the geometry of an uncon-
strained fiber bundle. In the next section physical
arguments will be given to show that description
of gravity as a gauge theory involves constraints.
These constraints will further restrict the actions
written down in this section whenever the gauge
group involves gravity.

A. Actions depending only on curvature

Consider the most genera, l integral over a cross
section of the bundle, whose dependence on the
gauge fields Pg"„comes only through the components
of the curvature tensor, and which is invariant un-
der general coordinate transformations:

The action (3.1) has the correct form for de-
scribing pure gravity and simple supergravity.
When couplings to matter are considered, the
structure of (3.1) does not lead to correct equa-
tions of motion for extended gravity or super-
gravity. In particular, starting from (3.1) or (3.2)
it appears impossible to obtain the correct Ein-
stein- Yang- Mills Lagrangian. Qne possibility is
to consider actions of the form

Z(q) = d'x 'R" ~It'q„, (3 5)

(3.6)

where e""~~ is the eovariant Levi-Civita tensor
(2.21). As far as pure gravity or gravity coupled
to Yang-Mills fields is concerned, the actions(q)
has all the required properties of the Einstein-
Yang-Mills theory. In fact, it reproduces all the
results of Ref. 14.26 Its extension to supergravity,
however, presents a number of problems. For
example, the spin-~ equation obtained in this way
does not have all the required constraints. It ap-
pears that at least one of the constraints mould
have to be imposed from outside. What one needs
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then is an action which in the absence of matter
takes the form (3.2), but for matter couplings gives
the correct Yang-Mills action, which is of the form
(3.6). We will therefore consider generalizations
of I (Q) and J(Q).

((dr 0 (u~, e, O e,&
= 6~r 6,'. (3.9)

Since 6t is a two-form, we can construct a, (super}
Lie algebraic-valued object g«by the mapping
(contraction)

(R„=(6t, e, && e,&

=Rr~X„((dry (u~, e,Oe, &

AIZX (3.10)

NI~ is a tensor-valued object with values in the
(super) Lie algebra of the group G. To obtain a
scalar, we contract it with the most general ten-
sor-valued one-form QI~ associated with the alge-
bra JX„}. Let f(d ) be a set of basis one-forms
dual to (X„):

C. A more general class of invariants

The arguments in this section are equally ap-
plicable to cases in which the base manifold is
real space-time or the superspace. Given the
curvature two-form g (2.13) of a bundle, we want
to construct the most general scalar or scalar
density of that bundle. Let e~ be a set of vector
fields dual to the one-forms &',

(3.7)

then one can construct a set of basis tensor-valued
zero-forms

ezra ez = —,
' t(eze~ —(-1)n&'~ ez Sei] .

These are dual to the basis two-forms ~~&& ~~ ~

tion constructed from (3.13}has the form

e(n)= fe-- ~ vn(*, ) ee(., )e, (3.14)

where 4 + "+'V is the invariant volume element in
a space with m +1 Bose and n Fermi dimensions.
The general method of handling such integrals, in
particular in regard to the integration over the
Fermi coordinates will be discussed elsewhere. "
Here we shall confine ourselves to a real four-
dimensional manifold in which case (3.14} reduces
to

r(n) fe =vn (e))e. (e)",. (3.15)

Consider now special cases of (3.15). Let
jlv j11)PUB
A pi~AB

=h '&"'"R' qpX AB ~ (3.16)

where 5 at this point is the determinant of a suit-
able 4@4 matrix h&. Then it is trivial to see that
with this ansatz for fl„"', (3.15) becomes identical
with (3.2). It is also easy to see that with

gV ~ jl IfPX o ORB
A e ePX, g&~AB &

(3.17)

e (n) fe *n.,"(*)n;,n-"„„. (3.19)

Clearly, this contains (3.2) and (3.6) as special
cases.

(3.15) reduces to (3.6). Encouraged by recovering
some known results, we consider next a case ap-
plicable to Einstein-Yang-Mills theory and SO(2)-
extended supergravity:

(3.18)

For this choice we get from (3.15)

(&us, X„&=5s„.

Then we ean expand Q ln this basis:

gIJ gIJ' A
A

(3.11)

(3.12)

IV. PHYSICAL DEGREES OF FREEDOM,
CHOICE OF GAUGE GROUPS,

AND "CONSTRAINED" GEOMETRIES

Thus the scalar R that we seek is given by

It =(n", e.„&
=n"R"

A IJ' (3.13)

The quantities RA«are the eovariant field strength
tensors and are given by geometry in terms of the
gauge fields as in (2.17). The object of the game
is to obtain suitable QA s. These quantities are in
general quite complex, and it is usually necessary
to impose additional requirements to obtain an ex-
plicit form relevant to a particular application.
%e consider here a few of the special cases which
are of interest in simple or extended supergravity.
Before specializing, we note that the invariant ac-

The prominent feature of a geometrical approach
is that the physically interesting quantities are al-
most automatically supplied by geometry. How-

ever, of the infinite class of possible geometries,
the choice of the physically relevant ones requires
additional input. In this section we show how the
necessity to maintain the correct number of de-
grees of freedom to describe gravitation imposes
restrictions on the geometry of an unconstrained
fiber bundle thus distinguishing some components
of the curvature tensor from the rest." The read-
er not familiar with the content of Ref. 20 may wish
to proceed to the next section and then return to
this section for an understanding of the underlying
logic.



16 SUPERUNIFIED THEORIES BASED ON THE GEOMETRY OF. . . 2461

PV PVP y (4.1)

In a torsion-free theory of gravity T„', = o, and one
has

R&„=0 (torsion-free). (4.2)

We refer to the enlarged geometries satisfying
constraints of the form (4.1) as "constrained"
geometries. The constraint equations (4.1) are
equal in number to the dependent fields A, '„' which
we want to eliminate.

It is to be emphasized that the arguments pre-
sented above are quite general and do not depend
on a particular Lagrangian or action. They de-
scribe how one may geometrically realize the in-
dependent degrees of freedom of a physical the-

Consider first pure gravity. From the point of
view of a gauge theory, one would like to describe
it by an appropriate number of gauge fields. As
pointed out elsewhere, '4 for gravity the gauge group
is, at least in part, tied down to the structure of
space-time, so that it must contain the homogene-
ous Lorentz group as a subgroup. For this group
the gauge fields g'„' have 24 independent compo-
nents. On the other hand, it is well known that in
Einstein's theory a symmetric metric tensor with
10 independent components is sufficient to describe
gravity, so that a theory based on indePendent
fields P„'~ could not be Einstein's theory. A way
out of this dilemma is to introduce additional gauge
fields P„' with the required number of degrees of
freedom by enlarging the gauge group and then im-
pose a constraint by means of which'„" could be
solved for in terms of h'„. For pure gravity the
relevant group is the Poincare or the de Sitter
group. Since the Lorentz subgroup of these groups
is the only part which is directly tied down to the
structure of space-time, the remaining part of the
enlarged gauge group must be realized nonlinearly.
This is, of course, consistent with the existence
among the gauge fields.

Next consider the form of a constraint equa-
tion from the point of view of geometry. For ob-
vious reasons it must (a) be a covariant tensor
equation with respect to the homogeneous Lorentz
group and (b) involve the geometrical quantities
of the enlarged fiber bundle. For the Poincard
as well as the de Sitter group the components of
the curvature tensor are R"„„=(R &', ,R'„,), i,
j = 0, . . . , 3. Of these R'„', include R „',", which is
the curvature tensor of a bundle with SL(2, C) a.s
gauge group and which enters Einstein's equa-
tions. Therefore, other than the Bianchi iden-
tities (2,24), one would not want to impose any
conditions on them. This means that the con-
straint equation must involve R'„,. The general
form of the constraint equations must then be

ory. Of course, the action that one writes down
must be compatible with (4.1) or (4.2) and must
reproduce them under variation. We note, how-
ever, that constraints following from a variational
principle hold only on extremal paths and surfaces,
whereas (4.1) holds everywhere. Even from a
practical point of view the distinction may become
important in a quantum theory where one sums
over not just the extremal paths but all paths.

The conditions (4.1) define a six-dimensional
hypersurface in the ten-dimensional fiber space
of the bundle based on O(3, 2) or Poincare groups
and naturally divide the components (R"„,) = (R'„', ,
R'„,) of the curvature tensor into two parts: "can-
onical" or "torsion" components R„', whose van-
ishing supply the necessary constraint equations
and the components R'„'„which we refer to as "pure"
curvature components. This distinction can be
made sharper, especially for Poincare or other
affine groups, by going to a horizontal basis D,.
=5", D„ in which the R'„, appear as coefficients of

For affine groups the vanishing of R'„„ is a
mathematical theorem. The components of the
pure curvature are the same in number as those
of a bundle based on the group O(3, 1) and can be
related to them. In fact, from (2.17)

(4.3)

where R„'„ is the curvature tensor of the O(3, 1)
bundle and transforms according to its adjoint
representation. Therefore, equations of motion
and dynamics are determined by the components
of pure curvature and not all of (R"„,]. This means
that the sums in the expressions of the form
R"& R Q» are restricted to R" & R"Q; ~), where
the Q&y» s are the Clebsh-Gordan coefficients for
an invariant product of two adjoint representations
of SL(2, C) ~

The above arguments can be repeated for the
case of supergravity. To be able to define super-
symmetry transformations, one must have a gauge
group with an adjoint representation which can
accommodate not only h. „' but also spin--', fields
hf The sm. allest such supergroup is OSp(1; 2C).24

But, again, such a gauge theory must describe
gravity with a correct number of degrees of free-
dom, and as in the case of pure gravity, this can-
not be done with h. „". So again we enlarge the
supergroup to OSp(1; 4) 24 or its contracted Salam-
Strathdee'~ form, with gauge fields (h'„', h„",h'„}.
Then a suitable constraint would effectively ex-
press&&' in terms ofh„" andh'„. Again, only the
Lorentz subgroup of these groups which is direct-
ly tied down to the structure of space-time will be
realized linearly.

The form of the constraint equations is, as be-
fore, dictated by considering the components
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(R+~ ) = (R ~,R ~„,R ~„) of the curvature tensor of
the OSp(1, 4) bundle. Writing (4.1) in the form

~ pv —~pv Tpv (4.4)

and following the same arguments as in the case
of pure gravity, it is clear that A'„, =0 are the cor-
rect constraint equations, with T'„, determined by
spin- —,

' fields. Again, the constraint equations de-
fine a 10-dimensional hypersurface in the 14-di-
mentional fiber space of the OSp(1; 4} bundle and
divide the components of (A~» j into canonical com-
ponents R'„„=0and pure curvature components
(R'„', ,R„",}. It is the latter components which ap-
pear in expressions such as

R"&R Q„s-R"&R 'Q +R "VR8@„~. (4.5)

The generalization of these concepts to include
other matter fields is straightforward. Given
supergroups such as OSp(N; 4) '4 or SU(N; 4) as
gauge groups, the requirement that the gauge
fields spanning their adjoint representations give
a correct description of gravity naturally splits
the components of their respective curvature ten-
sors into two parts: canonical components R„', =0
which provide the necessary constraint equations,
and the pure curvature components (R"„„,A 4: i I
which enter in the construction of invariants. We
will make frequent use of this splitting in the next
section. Note that these concepts can be extended
to superspace in a straightforward manner. '

From the arguments presented above and else-
where" it is quite clear that although gravitation
can be formulated in terms of gauge fields as a
local gauge theory, its geometry is different from
that associated with the conventional treatment of
non-Abelian gauge theories. The former is con-
strained, the latter is not. It would be interesting
to see the consequences of constraining the geom-
etry of non-Abelian gauge theories in a manner
similar to gravity. For one thing, the constraints
among the gauge fields would result in a smaller
number of dynamically independent fields in the
theory. " We hope to return to this topic in a sep-
arate publication.

To complete the formalism presented in this and
the previous sections one must also give the gen-
eral form of the local group transformations for
an arbitrary (super-) gauge group. For the part
of the group which is realized linearly, e.g. , the
Lorentz and the internal-symmetry groups, these
are just the linear gauge transformations given by
(2.12). For the remaining part of the group which
is realized nonlinearly, the linear gauge trans-
formations are, in general, modified by terms
arising from general coordinate transformations
and parametrization invariance. In the absence of
constraints of the form R'„, =0, it is known from

the theory of nonlinear realizations that local in-
variMce with respect to the linear subgroup to-
gether with invariance under general coordinate
transformations automatically guarantees invari-
ance under local transformations of the entitle
gxouP. When there are constraints of the type
discussed in this section, then the same statements
apply to the restricted actions in which the terms
involving R'„, are deleted. It is thus not surprising
that in the applications of the next section, the re-
quirements of invariance under SO(3, 1) +parity or
SO(3, 1) +parity +internal symmetry, completely
determine the actions. To explicitly demonstrate
such invariances, one needs a geometrical model-
independent derivation of the nonlinear transforma-
tion laws. In the absence of such general argu-
ments, one must rely in each case on special
methods, such as the variation of the action, to
obtain the transformation laws and to demonstrate
the invariance of action under local supersymme-
try. We hope to give a geometrical method of de-
riving these transformation laws in a forthcoming
paper.

V. APPLICATIONS

The general developments of Secs. II-IV are now
illustrated by applying them to special cases.

The requirements of invariance under Lorentz
transformations and reflections completely de-
termine Q», so that one gets

I 0 g4 P~pk g0$ jgokl~ij kl P Ij PX, (5.1)

From (3.3) it follows that the total variation 5I of
I vanishes identically, so that I' is a topological
invariant or a total divergence. Therefore, it does
not contribute to any equations of motion. With
this in mind, let us now consider a fiber bundle
with structural group Sp(4) which is the covering
group of the de Sitter group O(3, 2}. The adjoint
representation of this group is 10 dimensional with
gauge potentials(h&) =(h'„~ =-h'„', h'„f. From (3.1)
the action must have the general form

A. Pure gravity

As discussed in Sec. IV, to have the correct
number of degrees of freedom to describe Ein-
stein's theory, the gauge group cannot be SL(2,C).
Nevertheless, let us consider a fiber bundle which
has SL(2, C) as its structural group. Take the ac-
tion to be of the form (3.1) in which the dependence
on gauge fields h„" comes through the components
of the curvature tensor R„',":
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((q) —fdxa"""q R" R'

From the discussion of previous sections only the
pure components R'uj„of the curvature tensor ap-
pear in this integral, so that one has

r (q) =f a xa''"((„"„(('„'(((. (5 2)

s= d'x~u""&. R" R"
&jki uI px ~ (5 3)

Then invariance undex Lorentz transformations as
well as reflections uniquely determines Q„.» ..

comes effectively a metric theory, because then
one can define a nonsingular metric

j
gup gfjkukp a (5.9)

R„'„=0,

~'=a'~'~" =0.i j uv

(5.10)

(5.11)

Thus it is strictly speaking not correct to call the
gauge potentials gg „vierbein fields except in the
context of a metric theory. '~ With the assumption
(5.8), Eqs. (5.6) and (5.7) reduce to the usual equa-
tions of general relativity'~ ":

where, from (2.19) or (4.3),
Rkj R 0(j +fljhkhl

u& u&» & u'

Substituting this into (5.3), one gets

(5.4)

Equations (5.10) are consistent, as they must be,
with the constrained geometry discussed in the pre-
vious section, and provide the constraints which
cut down the number of independent gauge fields to
those necessary for describing gravity. In fact,
it can be solved for huj in terms ofh, 'u29:

+h(,h', h'ph gf (~f,'(e, (,), (5.5)

h„, =-,' [h,"(h,.„, h, „„-) h,"(h-,„, h„„-)

+h;h(h„(h((( ), -h((), (()], (5.12}
where I ' is the total divergence given by (5.1). The
first term in the integral is a gauge theory version
of Einstein s Lagrangian, and the last part is the
cosmological term. Dropping J' and making an
Inonu-signer contraction, one obtains the pure
gravity action. We note that because in the pro-
cess of contraction Sp{4)-ISL(2,C), the metric
(2.3) becomes degenerate, one must retain the con-
strained Sp(4} until (5.5) is obtained and then let
the contraction parameter (radius of de Sitter
space) go to infinity.

Variation of the action (5.5) with respect to the
gauge potentials pg'„and jg'„j gives, respectively,

e""~~e f' h'R' =0
ab ij ~ Pk

~((&PL~ f(( h(RJ

(5.6)

(5.7)

Notice that these equations as weQ as the actions
(5.3) and (5.5) are based fundamentally on the con-
cept of connection (gauge potentials) and are in-
dependent of whethex the space-time manifold is
metrizable or not. In this respect they are more
general than Einstein's equations, and a quantum
theory based on (5.6) and (5.V) may turn out to be
different than the quantized vex sion of Einstein's
theory.

To obtain Einstein's equations from (5.6) and
(5.7), one must further assume that the gauge
potentials Jgu are invextible, i.e., that there exist
objects A, j such that

(5 8)

Once this assumption is made, then it is possible'
to identify the gauge potentials hu' with the conven-
tional "vierbein" fields. In this case the theory be-

h&u g& h~v,' hu'j qtkq»hu (5.13)

Insertion of h'„' from (5.12) into (5.5) leads to the
second order f-orm of general relativity in which
the dynamically independent variables are the
gauge fields hu'. The variations of these fields
under local gauge transfoxmations of the de Sitter
group are given by (3.4).

Next consider the infinitesimal transformations
of the fields h'„~ in first-order formalism. The
existence of the constraint Ru', =0 indicates that
Q'„j must transform according to a nonlinear rep-
resentation of Sp(4) or ISL(2,e). To obtain the
form of this transformation we note that the vari-
ations of (5.3) under the local infinitesimal trans-
formation 5,g h j is given by

d"I=2 d'x~"'"s f' R' Rb e'
&b fj uij PX. (5.14}

The variation 6,~ I of (5.3} with respect to 5,(h'„'
must be such that

0,, I =g,, I+& &I =0.(~) (2)

Looking at the variation of (5.3) with respect to a
general variation of huj, one finds a term similar
in structure to (5.14):

Solving for 6h& from (5.14)- (5.16), we get

5h'„= ,'e'0 e„,h;'h'„(h",-R'„, h'„R'„~ -h'„R'„, )-e' (x) .
(5.1V)
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This result could also have been obtained by com-

puting 5h' directly from (5.12). Thus (5.17}is a.

model-independent consequence of a "constrained"

geometry with R,„'=O. It would be interesting to

explore the consequences of this invariance in re-
gard to the renormalizability of pure gravity. " It
would also be interesting to study the structure of

a quantized theory based on (5.6) and (5.7). Since

these equations do not require the existence of in-

verse vierbein fields h,". , it is not clear whether

quantized theories of this type are equivalent to
the usual ones.

B. Gravity coupled to Yang-Mills

Without supersymmetry, the internal and space-
time symmetries are quite distinct. Therefore,
the gauge group for gravity coupled to Yang-Mills
theory is of direct-product form. From our point
of view it is Sp(4) xSU(2) or its contracted form.
Direct extension of the gravity action in terms of

the curvature components to this case leads to a
total-divergence pseudoscalar piece for the Yang-
Mills part, as can easily be verified. So we pro-
ceed with the general action (3.15) or its more
restricted form (3.19}:

(5.22) is not invariant under the nonlinear trans-
formation (5.17}, and any attempt to make it so
involves the introduction of additional fields such
that the fields in the action form a supermultiplet
(see, e.g. , Sec. VD below). This may be cited as
a reason for the nonrenormalizability of arbitrary
couplings of matter fields to gravity. Only (super-
symmetric) matter couplings which retain or en-
large invariances of pure gravity seem to be equal-
ly renormalizable.

C. Simple supergravity'

This theory can be developed in complete analogy
with that of pure gravity. A different formulation
will be given elsewhere. " The smallest super-
group which admits supersymmetry transforma-
tions and contains SL(2, C) as its Lie subgroup is
OSp(1;2C). As discussed in Sec. IV, this group
does not give a correct description of gravity as a
gauge theory, so that it will have to be enlarged.
But since its topological invariants turn out to be
relevant, consider a fiber bundle over real space-
time with OSp(1;2C} a,s its structural group. The
action (3.1) depending on the components of the
curvature alone will then give

I (a) = d'x n„"","(x)R"„„R~p,. (5.18)
I o(q) — d 4 )) ))P k q R QA R OB (5.23)

We require that (i) in the absence of Yang-Mills
fields, I (0) reduce to the gravity action (5.3), and

(ii) it satisfy the same Lorentz, reflection, and

general coordinate invariance properties as the

gravity action (5.3). Thus

where now

(5.24)

I())) Ja x)a' "R=" a"'~ ))""""'). )' ).ijkt plI pg gy pv py

Requirement (i) implies that

gP fIPk P fIPX.
i jkl ~ijkl

(5.19)

(5.20)

Requirement (ii), in particular reflection invari-
ance, implies that

gPVPA. 1 ~ PVbO P}).
ab 2C Jag gg

(5.25)

The requirements of Lorentz and reflection in-
variance determine (Q„sj up to multiplicative con-
stants. They will be completely fixed by the addi-
tional requirement that I o be an OSp(1; 2C) scalar.
Thus one gets

I 0 — d4 J Pk)[))R 0(j It Ok)
ijkl Pv PA.

&Z" g' C =const (5.21) (5.26)

We therefore have for Einstein- Yang-Mills the-
ories

I = Q X E Cijki H pljR pg+ CAT)~&P HplI Fpp

(5.22)

Note that in this case the introduction of the metric
tensor gp, or the inverse vierbein fields h,. is in-
dispensable, so that the formulation of the theory
in terms of connections alone appears to be not
possible. As a special case of (5.22) ope obtains
the Einstein-Maxwell theory when the internal-
symmetry group is U(1). Also note that the action

where C is the charge conjugation matrix, and y
is a normalizing parameter defined by

&a~f'a8 =xfJn(cy')~8

From (3.3) it is easy to verify that the general
variation OI of I vanishes identically, so that
it is a total divergence (topologically invariant).

For pure gravity the gauge group had to be en-
larged from SL(2, C) to Sp(4), and the correspond-
ing geometry constrained. Here by enlarging the

SL(2, C) subgroup of OSp(1; 2C) to Sp(4) one arrives
at OSp(1; 4) for the supergravity gauge group. Con-
sider then a fiber bundle with space-time manifold
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as base space and OSp(1; 4) as structural group.
The adjoint representation is 14-dimensional with

gauge potentials (h„"}=(h'pj =-hjpj, h„, Iljp} .The
general form of the action is again given by (3.1):

((q) —JR * 'q R R"„

Proceeding to the constrained bundle of Sec. IV, we
note that of the components IR"„„}= (R'„', ,RP", ,R'„,}
of the OSp(l;4) curvature tensor, the pure com-
ponents (R'„j„;R„„}contribute to this action. Thus
one gets

(5.36)&PvPk& fk I jRj —0

Pvpgf a I (RB 0$8 v Pg

[2, f,, ll'R' +y(Cr ) f; Il„"R j =0.
(5.37)

(5.38)

As in the case of pure gravity, the action (5.32) and

Eqs. (5.36)-(5.38) are based entirely on the con-
cept of connection (gauge fields) and are indepen-
dent of the notion of a metric. To obtain the more
familiar supergravity equations, one must make
use of (5.8) or (5.9). Then writing

((q) —f R xe"""'(q, „R'„'.R",, +.q ,R; R„,',), .
(5.28)

R" =i'" +,&""h'h'
PIj Pu J kl Ij P

(rp)B =&pf,"B

(r" )"=n" &,"f,".

we obtain

&PRPX(r )a. RB 0

(5.39)

(5.40)

(5.41)
—Rlj +f(jj)Inly

pl)j ea v (5.29)
(5.42)

RP, =0„„+f," (Bh,'hB -kPAB). (5.30)

Ql jkl ~i jkl j QnB X(cr )aB (5.31)

I d X 6 Cf pf RQIPR.pg+X Cp OIBRpljR pp

(5.32)

Substituting (5.29) and (5.30) into (5.31) and using
(5.27), one gets

I=I +I +Ic, , (5.33)

where

Is=

+4'�„„h)h I„f, (CBr ')„B], (5.34)

Ig = d x&"' &~ ';, -4 gh~h'hph'),

(5.35)+fkl IlP'Il„l(PA'k) ~

In (5.33), Iq is a total divergence and can be
dropped; I~ is an alternative form of supergravity
action; and I~ contains cosmological terms which
can be eliminated by an Inonu-signer contraction.

The variation of action (5.32) with respect to
arbitrary variations of gauge fields gives the
Euler- Lagrange equations

Since these curvature components involve those of
OSp(1; 2g) or of SL(2, Q), and since the only quad-
ratic terms in eurvatuxe components R„'„'~ which we
allow are those which are total divergences, then

Qjj» and q„B in (5.28) must have the same values
as those in (5.26):

Equation (5.40) plays the same role in simple
supergravity as (5.10) does in pure gravity. It is
consistent with the constrained geometry of Sec.
IV and gives a constraint among the gauge fields
of OSp(1;4). It can be solved for h'„' in terms of

h~q andh

Ilv;; =Ilvlj +—,'(ll,"f;aBh pflvB -h (Pf, aBh„hvB

+I ", a,'a'„f...a„"I B), (5.43

where ll„lj is given by (5.12) and

fl B =jul;fnjB ~ (5.44)

Insertion of h„jj from (5.43) into the action (5.33)
will result in the second-order form of the super-
gravity theory in which the independent fields are
h„"s and h„'s. Under local gauge transformations
these field transform according to (3.4).

Next consider the infinitesimal supersymmetry
transformations in first-order formalism. The
algebra of these transformations has been studied
in detail by MacDowell. " Here we confine our-
selves to local supersymmetry transformation.
Following the analogy with the case of puxe gravity,
it is clear from the constraints R&, =0 that the
gauge potentials h~&~, must txansform according to
a nonlinear realization of OSp(1; 4) or its contract-
ed version. Then the arguments which led to the
transformation (5.17) for pure gravity give in this
ease

%"=-e"faj hpBP ns P

1 ~-1~(jklp vhk~af B (Cr5)

X(21lakRPjv + /lP Rtv ) .
After group contraction this expression becomes
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equivalent to the usual local supersymmetry trans-
formation of Il'„j." Thus the combined transforma-
tions (5h'p, %p", 5hp' ) leave the action (5.32) invari-
ant, and we have an example of a supersymmetric
coupling of matter to gravity which has retained
its invariance under nonlinear transformations of
the type (5.17).

D. SO|2)-extended supergravity

The relation of this theory to simple supergravity
is the same as Einstein-Maxwell or Einstein Yang-
Mills theory is to pure gravity. The main differ-
ence is that here the gauge group is not of the
direct-product type. On replacing SO(1) in the
OSp(1; 4) of supergravity gauge group by SO(2) one
arrives a.t OSp(2; 4) for the gauge group of SO(2)-
extended supergravity theory. As in Sec. VB an
action based on components of curvature alone will
not result in the usual action of a spin-1 field, so
that we must proceed with the general action (3.15).
It is sufficient to start with the more restricted
form (3.19):

Recalling the conditions of constrained geometry
and imposing the same requirements (i) and (ii)
as in Sec. V B, we have

f (Q)
— d4&(QJ &PL ftiz ftki yQpvpk ft nzR Bz

2 ijkl Plj PX. QB P& PX,

VI. CONCLUDING REMARKS

We have presented a theoretical framework for
constructing superunified theories based on the
geometry of (super-) gauge invariance: Just as
local non-Abelian gauge theories find a natural
setting in Minkowski space-time, we have argued
that any unification involving gravity must of nec-
essity be a superunified theory. Otherwise, some
of the invariances of pure gravity action are likely
to be destroyed. We have also pointed out that this
may be the reason for the nonrenormalizability of
theories involving the arbitrary couplings of mat-
ter fields to gravity.

A method of constructing invariants for super-
unified theories is given. Since they are based on
the geometrical characteristics of a fiber bundle,
it would be surprising if the actions for superuni-
fied theories turn out to be something other than
special cases of those discussed in Sec. III. To be
objective, however, one should leave the door open
for the possibility of different action forms com-
patible with the geometry of local (super-) gauge
invariance. The concept of "constrained" geomet-
ries is introduced to match the degrees of free-
dom required in superunified theories to those of
constrained fiber bundles. In this way one is led
in an unambiguous way to the constx'uction of the
actions discussed in Sec. V. It is hoped that the
theoretical basis provided in this work will also
solve the physically more interesting theories
based on supergroups OSp(N; 4) and SU(N; 4).

+Q""'F„,Fp, ); (5.46)
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gp &pX. p &pX
ijkl ijkl &

QPVPk PUPA(c 5)

gPVPQ l~jf~a~e Pk

1
p gPPg&A.
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Therefore, "
I, = d Xe"' CijklR&', Rpp +X Cy' &8RppRpg

1+ zen. FP„F~i] . (5.48)

Further developments in extended supergravity
will be given elsewhere. ' Here again we have an
extended theory of gravity in which the invari-
ances of the type (5.17) are maintained.

where z =1,2 to account for the fact that in the ad-
joint representation of OSp(2; 4) there are two
spin- —', gauge fields. From requirements (i) and (ii)
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