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A Yang-Mills formulation of the dynamics of the gravitational field is given based on gauged spin

transformations acting on a Dirac spin space. The gravitational field is carried by the spin connection

following the point of view of Schrodinger, Laurent, and Loos. Differing fro'm them, the dynamical

statement is in a strictly Yang-Mills form. The Lagrangian for the model theory has a single massive Dirac

field as source and is one investigated by Leutwyler but with a different end in mind. I compare it with

Einstein's theory and show acceptable observational behavior for the theory in the usual circumstances. The

theory is found to make contact with theories with torsion. A comparison between .this work and previous

work by Loos and Treat, Yang, Camenzind, and Carmeli is made.

I. INTRODUCTION

With the many theoretical successes of Yang-
Mills-type gauge theories, the hope for a true uni-
fied field theory of fundamental interactions has
been rekindled. The spark of this rekindling is
noting that electromagnetism, gravity, and the
new theories of weak interactions are all of the
local. gauge type. ' " In this paper, I will formulate
the theory of gravity in the Yang-Mills form. '

I would like to take a moment to say what I mean

by a Yang-Mills theory of gravity. There exists
quite a bit of confusion in the literature in applying
the term gauge to theories. I do not mant to add to
this confusion. I mean by a gauge Neory any the-
ory which has kinematics based on a local gauge
group, gauge potential or linear connection, and

gauge field or curvature. It is in this sense that
both Maxwell's and Einstein's theories are gauge
theories, for the gauge groups U(1) and SO,(3, 1),
respectively. I call a Fang-Mlle theory one which

is modeled on gauge kinematics but with dynamics
structured after electromagnetism as Yang and
Mills did for the gauge group SU(2). Thus, Ein-
stein's theory, while a gauge theory is not a Yang-
Mills theory; also, every Yang-Mills theory is a
gauge theory but thus every gauge theory is not in
Yang-Mills form. The point of this paper is to
bring gravity into the Yang-Mills form.

This is not the first attempt at such a reformu-
lation. Yang himself proposed a set of free gravi-
tational equations based on this idea. ' Also, Loos
and Treat, ' Camenzind, ' and Carmeli' have pro-
posed Yang-Mills formulations of gravity. The
form I propose differs essentially from those of
Camenzind and Carmeli, but can be thought of as
a development of the ideas of Loos and Treat.

The important gauge group of any gauge theory
is its gauge holonomy group. ' For electromag-
netism, it is U(1); for the original Yang-MIIIs

theory, it is SU(2); for the Weinberg-Salam style
theory of meak and electromagnetic interactions, '
it is SU(2) Cgt U(1); for Einstein's theory of gravity,
it is SO,(3, 1). All essential kinematical dissim-
ilarities between different gauge theories are known
when one knows their different gauge holonomy
groups and on which spaces the groups act. The
central idea of any Yang-Mills reformulation is to
keep the SO,(3, 1) gauge kinematics of gravity while
simultaneously discarding Einstein's equations as
the primary dynamical statement. One then re-
places them with some Yang-Mills style field
equations. For the formulation discussed herein,
though, I will make one change in kinematics. I
will go over from the Lorents group SO,(3, 1) to its
spin covering group SL(2, C). In the Yang-Mills
SU(2) theory, the gauge field is modeled (i.e. , the
gauge group acts) on isospinor fields; in Einstein's
theory, the gauge field is modeled on tensor fields
of the tangent space to space-time. My change
SO,(3, 1)-SL(2, C) is the equivalent of going from
a modeling on tensor fields to a modeling on spinor
fields. Gravitation will be carried in the SL(2, C)
gauge field.

The history of gauged SL(2, C) spin tra, nsforma-
tions predates by quite a bit the introduction of
gauge fields into particle physics by Yang and
Mills. Schrodinger made the first definite con-
tribution noting the possibility of carrying the
gravitational and electromagnetic kinematics in
the gauge geometry of the Dirac spin space. "
Laurent transferred the usual Einstein dynamics
into this framework. " Loos showed to what extent
the spin space connection determines the usual
Riemannian geometry of gravity uniquely. " Treat
first noted a generality in the spin geometry over-
looked by previous authors, a generality which
plays an important part of this paper. " Leutmyler
took a different point of view from all of these. "
He attempted to identify the various parts of a gen-
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eral spin connection with meson fields for use in

particle physics. " My point of view will be to keep
the Schrodinger-I aurent-Loos idea of gravity in
the spin geometry while looking at the dynamics
from a Yang-Mills approach closely following
I eutwyler.

I begin in the next section with a review both of
Dirac fields on a curved space-time and of the

gauged spin connection geometry. I will use this
structure in a simple model of gravitation with a
single massive Dirae source field in Sec. III. Sec-
tion IV is concerned with reduction of the field
equations to a form which looks more like those of
Einstein's theory so that we can make a compari-
son. Observational viability of these equations is
briefly examined. When we look at the nongravita-
tional part of the spin geometry, we will find that
we can make contact with theories with torsion.
Finally, in the last section, I will summarize and

relate this approach to other work on Yang-Mills
gravity which I previously mentioned.

pa gab q, (2.2)

%'hat makes spinors what they are is their 2-1
relationship with vectors, and consequently the
2-1 relationship between the groups SO,(3, 1)
-SL(2, C). These two mappings are carried by
the Dirac matrices which are quantities with both
spinor and vector indices: y„, . I will use lower-

u. THE KINEMATKS OF rAUGEO SPIN FIZLOS

I intend to model this theory of gravity using the
linear connection (i.e., gauge potential) associated
with gauged spin transformations S, (x) on a Dirac
spinor field g, :

q. =S, '(x)tj, .
The lower-case Latin indices (a, 5, c, . . . ,g, h} from
the early part of the alphabet denote quantities
which lie inthe Dirac spin space over space-time.
These indices take on the values 1-4. The bar
under an index tells us it is in a different frame.
I reserve the usual prime fox' other purposes.
The Dirae spinors are identified with quantities
having the index in the lower covariant position

(g,). The quantities with the index in the upper
contravariant position ($') are identified as the
Dirae adjoint spinors since they transform with
the inverse transformation S ',—(x).

The process of taking the Dirac adjoint g, -$'
defines a Hermitian metric tensor g'u (with in-
verse g,u). The dot denotes transformation under
the complex-conjugate spin transformation. " To
form the Dirac adjoint of a spinor g„one com-
plex-conjugates it to g; and x'aises the index using

gab
.

case Greek indices from the middle of the alphabet
(specifically fx, X, p, , v, w, p, o, v}) to denote event
(i.e., tangent. space) indices. They will take on the
values 0-3. Given a spinox', one can now form a
vector (its "current") via

(2.3)

Please note that in all of the following, I will be
using a coordinate frame in the tangent space. "
Also, I will often suppress spinor indices in a
matrix convention. In this case, Eq. (2.3) would

I'ead

(2 4)

The important, defining property of the Dirae
matrices is that they satisfy the Dirac relation

y(jfyX) -Zjf ) ~ ~ (2.5)

The gu ~ is the event metric (i.e. , metric of the
tangent space of space-time) with time favoring
signature -2. The J is the identity spin matrix
with components 6, ', the spin Kronecker 5. Since

g„z is a function of position in a general spaee-
time, so also is the y„.

Next we need 1inear connections on both the tan-
gent space and the Dirac spin space. In the tan-
gent space, we introduce the usual Christoffel eon-
neetion I'„„given in the usual way in terms of the
metric. ' In the spin space, we introduce a con-
nection 4„,'. lt defines a gauged spin-covariant
derivative

+Aa jffa @jj g 4b (2.6)

which transforms homogeneously under gauged
spin transformations. This implies the usual in-
homogeneous transformation law of the connection

4~ S4~S ' —SBqS ' .
The action on adjoint spinors is

+uP= au 7+ @uu

(2 'I)

This covariant derivative V„extends to mixed quan-
tities in the obvious way using I"„„onevent in-
dices. For example,

&uy~=auy. Iu~'~u -fCu, y. ) -. (2.3)

It is common with internal gauge symmetries
to expand the connection onto a complete basis of
generators of the gauge group. The expansion
coefficients are identified as the gauge fields. As
with Einstein's theory, it is not convenient or il-
luminating to do that here

The noncommutativity of the covariant derivative
leads, as usual, to curvatures or gauge fields for
both 4 „, and I'„„.The corresponding Hicci
ldentltles ax'e

1
V)jf VK)fc



EDWARD E. FAIRCHILD, JR.

and

1 p
V[pVK]V)i =

p R)f K g Vp

For contravariant quantities P' and w

V(y V,g ——
2P& „n

(2.9b)

(2.9c)

The y„, y„„, y„y, and y are the complete set of
15 Dirac matrices defined in the Appendix.

III. THE DYNAMICS OF A MODEL GAUGED SPIN THEORY

and

p
Vt & VK]u = ~ R& K p gg (2.9d)

Here I would like to pose a model theory using
the gauged spin connection as the primary dynami-
cal quantity. Let

The curvatures are given in terms of the connec-
tions via

and

p„, —= 28(q4, )
—[Cq, 4„] (2.10a)

and

pfK x] 0 (2.11a)

(2.11b)

Just as the Dirac matrices, satisfying (2.5),
link spinors to vectors and SO,(3, 1) to SL(2, C),
the Dirac relation (2.5) links the two gauge con-
nections. The form of the Riemann-Christoffel
connection I'„, (Ref. 18}implies and is implied
by the metric condition

R„„p=2e,„r„„p-r„,'r, .p+ r„, r„.' .

(2.10b)

They satisfy the Bianchi identities

2@-=-4u 'tr(P„„P"')+2p'&o 'tr(P&, y~') (3.1)

be the free Lagrangian for the gauged spin connec-
tion 4„. The Lagrangian is chosen to be as close
to the Yang-Mills form as possible. It differs in
the second term, which is lower order in the curv-
ature tin„, . One cannot construct such a first-or-
der term for the general gauge case. This is one
of a class of Lagrangians considered by Leutwyler
for the spin connection. " The first term is just the
usual Yang-Mills Lagrangian with dimensionless
coupling constant ~. The second term is needed
to give an acceptable Newtonian limit for the re-
sulting gravity theory. The coupling constant p.

has the dimension of mass. " The term truly acts
much like a mass term since part of it is bilinear
in C„as one can see using (2.10} and (A6).

As a source for the ga,uge field, I have chosen
a single massive Dirac field minimally coupled to
the 4„ field through the covariant derivative. Its
Lagrangian is

V&gKX —0 . (2.12)

This constrains, via the Dirac relation (2.5), what

the covariant derivative of y„can be. One can
show that (2.12) is satisfied if and only if

Z, =- g(i V —mi) q .
I have used the notation

AVB= 2(Ay" VqB —(VqA—)y" B) .

(3.2)

V„y, = [M~, y, ] (2.13)

for arbitrary M„, '. This was first noted by
Treat. " The proof of this as well as all further
results of this section has been deferred to the
Appendix.

If we consider the integrability condition of
(2.13), we get a, relation between the curvatures

a,nd R„,~

pa4' K ypa

where

mq, -= 2V(~M„) —[Mq, M„] .

(2.14)

(2.15)

The yp are the double Dirac y matrices defined by
(Al) and are the complete set of anti-self-adjoint
generators of SL(2, C).

Finally, one may solve (2.13) directly to give 4„
in terms of g„~, M„, and y, .

(y'su r, )r'p

Put these fields on some space-time manifold with

metric g„„and associated Riemann- Christoffel
connection I'„, ." The action is given by

dp. g'i'C (3.3)

6g: 2 i(y" V& + V„y")g —mg = 0, (3 5)

and its complex conjugate. The first is the Yang-
Mills-type field equation; the second is the Dirac
equation coupled to 4„. Expanding the current on

the generators of the SL(2, C) gauge group

with Z-=2~+2&, g-=-detg„z, and integration over
space-time.

Varying 4„, g, and g independently gives the
field equations

6@~: v.g"'(0" ('r'") = -i~'z "(Pr"+-r" 00)

(3.4)

——,—'6tr(y~ 's„y )yz+ —,
' tr(ys„y, )y "y

——,', tr(y y&qyp)y-Mq . (2.16) shows us that

(3.6)
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gP»x lfg-1/2eP»LPGA (3.7)

the spin density of the Dirac field. Other terms in
the Clifford expansion of j~ are taken to be zero
since they are not coupled to any field.

Stopping at this point, me mould have a theory
for the spin connection in a fixed nondynamieal
metric background. To include dynamical gravity
into a theory on a nondynamical background, one
usually adds the Hilbert Lagrangian

()g": g'"(%~+ Tp~) =o

where

i(/p» = -& 'tr ((f (p 4) .) ), —» gp«(t' po(t)")

+I & tr(4'(p )'»)). ~zgp»4pp'

(3.9)

2~p» =@&(p&.) 0 &(~(p (—t)) )'») ({' A»(I)(-&'(/-~1)({

(3.11)
are the usual symmetric stress-energy tensors
derived from Z~ and C&, respectively:

(3.12a)

to the Lagrangian g and varies the metric as a
dynamical quantity. However, I do not mant to do
this. The dynamics of gravity is already in the
gauged spin Lagrangian Z. We have no need of
adding any term such as (3.8), which is in fact
what Leutwyler did in considering the spin connec-
tion. " Let us vary the metric in the action (3.3)
as it stands. The field equation is

kftP»Pa[M y ] ~2g 1/2jP (4 1)

From (3.10), we can also rewrite W„„as

'~ ')) '(ft. ~- kz. .&)

~) upa 4+» XRpu p a~
—(») (pal „ ill ),p —gg» ),pnp ~')B )

tr(w(» ) y) p pg» yp))p a)' )

—,'(d 'R(, p "tr(m), ) pyp, )

-,'g„gRp'p'tr(pp) p„yp, )

~co 'P, 'G, q+ ~e '8', z+ V„~ .

The first term is just the Einstein tensor G„z
=— R)f )

—2' yR. The second term g ) arises ln the
Yang gravitational theory. '" The last three I
have put into a stress-energy tensor V, z for the
M„ field. Now we can rewrite (3.9) as

Gp g+ SvG(o Hp) = B((G(Tp-g+ Vp g), (4.3)

where one identifies —,'v 'p'=(B)(G) '.
There are two differences with Einstein's equa-

tions in (4.3). One is in the additional curvature
term H„z, which is a modification to the free
gravitational equations. The second is the source
field M„which has not yet been identified. The
field equation (4.1) is the field equation of this M„
field. V„), is its stress-energy tensor.

The vacuum gravltatlonal equations are obtained
by setting the fields P, $, and Mp io zero giving

(4 4)

-j./2 ~~4
2 -x/~ ~~4

The relations

and

(3.13)

for (4.3) and (4.1). One may verify from its defi-
nition that Fp z is trace-free. This and (4.4) imply
that R= 0: Vacuum solutions are scalar-flat as
with Einstein's theory. Expand the curvature in
terms of the Weyl, Rieci, and scalar curvature '.

are needed to carry out these variations. The
feaslblllty of taking p)f as a function of gp), as in-
dicated in (3.14), is discussed in the Appendix.

I claim that the gravitational dynamics is con-
tained in the tensor 8&),. In the next section, I
shall examine this claim.

IV. COMPARISON TO EINSTEIN'S THEORY

To compare the theory to Einstein's, one must
transform (3.4) and (3.9) into a, more familiar
form. Substitute for Pp„ from (2.14) and use (2.13)
to evaluate the action of V„on the y matrices.
Field equation (3.4) becomes

1
+1/ KX)1 Cf/ KX.P 2gIf/ [X+K])f]+ 3gI f/ I &gK]P]

(4.B)

Vt Jf RK] g 0 (4.S)

From these two equations, one ean see that the
Ricci-flat geometries R„)„=0 are vacuum solutions

Using the 8= 0 condition, one finds that substituting
into the definition of Hp), from (4.6) gives Eq.
(4.3) as

(4. ()

Contracting the Bianchi identity (2.11b) once and
using (4.5) gives the equation
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Pom„x =D„, yt (4 9)

for some D~„~~. The definition (2.15) then implies
that

(4.10)

for some K„' . If we define a new nonsymmetric
connection in the tangent space

(4.11)

one may easily verify that (2.13) becomes

Vqy„= 0, (4.12)

where V„ is the covariant derivative formed from
4 „,~ and T'„„". This implies

(4.13)

The quantity M„ in the spin connection can now be
given in terms of torsion in the event connection.
K„„ is called the contorsion tensor. S„, =-K&„,

&

is called the torsion. The contorsion can be ex-
pressed in terms of the torsion by'

K

pX pX X p pX ~ (4.14)

This nonsymmetric metric connection I'„, and
its relation to Dirac spinors has been examined by
Hehl and Datta. " They apply the formalism to the
Einstein action, and find that the torsion gives rise
to contact spin-spin interactions and an effective
nonlinear spinor equation of the Heisenberg type. "
Leutwyler did a similar analysis totally in the con-
text of the spin connection. " The results of
Leutwyler" and Hehl and Datta" can be applied
here. In the low-momentum limit of the M„ field,

of these equations, just as in Einstein's theory.
But are they the only solutions? The answer is
yes. Equations (4.7) and (4.8) are equivalent to
B„~=0. The proof of this, although direct, is a
bit long and tedious and will be published else-
where. "

To examine the Newtonian limit, expand the
metric infinitesimally off of the flat Minkowski
metric background q„~ to first order

gj1 X lP X+~~)1 X ~

Since H„~ is quadratic in the curvature, it is only
of second order in h„~ and can be ignored. Iden-
tifying the total mass density p

=- 7'»+ &» in (4.3}
gives the Newtonian limit following the usual
proof used in Einstein's theory. "

The only loose end remaining is to give M„an
interpretation. It has a simple one in terms of
the tangent-space kinematics. The spin gauge
holonomy group is SL(2, C). Since the spin curva. —

ture P„, can always be expanded in the generators
of the gauge group (as with any gauge theory),
(2.14) implies that m„z has an expansion

the kinetic term of the field tthe first of (4.1)] is
ignored. Taking also the flat space-time limit, a
form of the Heisenberg nonlinear spinor equation
is obtained by solving (4.1) in this approximation
for M„and substituting into (3.5). For higher-mo-
mentum transfer, the interaction propagates
through the M„ field removing the conta. ct nature
of the spin-spin interaction.

This gives interpretation to all parts of the the-
ory. Half of the spin connection is gravity; the
other half is torsion which is associated with spin
interactions. The presence of the torsion is a bit
unexpected. I began by putting a connection on the
tangent space which was explicitly chosen to be
symmetric, the torsion chosen to be zero. Even
so, the torsion reappeared in the end.

V. CONCLUSION

In this paper, I have attempted to merge two
traditional points of view on the spin connection
into a Yang-Mills formulation of gravitation. The
first point of view is that of Schrodinger, Laurent,
and Loos, all of whom studied the gauged spin
geometry as the carrier of gravitation. ' " The
second point of view is that of Leutwyler, who

used the spin connection in a true Yang-Mills
sense but gave it an interpretation in terms of
meson fields. I have amalgamated these two ap-
proaches. The resulting theory, as shown in the
previous sections, varies slightly from Einstein's
in its field equations. A brief analysis of these
equations showed them to be reasonable when ap-
plied to the simplest observational tests. A com-
plete analysis in the parametrized post-Newtonian
formalism, though, is needed. "

There are other theories in the literature going
under the title of Yang-Mills theories of gravita-
tion. The first work in this direction was done by
Loos and Treat. ' They considered the free Yang-
Mills equation for the spin connection. In my no-
tation, they chose (2.13}and (3.4) with p, M„, and
j„zero. They showed that almost all (in the mea-
sure theory sense) of the solutions of these equa-
tions led to space-time geometries which were
Einstein spaces satisfying

R„~=Ag„~ and A constant.

These are vacuum solutions for Einstein's theory
with cosmological constant.

Carmeli's theory is also based on spinors,
though he uses two spinors, not Dirac spinors;
the gauge group is still SL(2, C) of course. He

makes contact with the Newman-Penrose formal-
ism. ' His kinematics is essentially the same as
mine. The difference is in the dynamical state-
ment. His construction is as follows: Form the
three mixed quantities
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and

w & Pa
vp 4Cvg ~p a

p
v g ~2+[v[X ( ~]P] 3 ~&]P] P )

F ~
=F p+8gGJ u

(5.1}

(5.2)

(5.3)

F'„,: F'„„=2 s„[4„—] [C'„C',] (5.5)

54q. Vt„F „),) =0 . (5.6)

The first tells us that F~„z equals the spin curva-
ture P„,. The second is just the Bianchi identity
(2.10a). The conjecture is that Einstein's equa-
tions

Gq ~ = -8n GTp ),

satisfy (5.5). Rewrite (5.7} as

Rq ~
—— 8n G(Tq q

-—2Gq), T—~ p) .

(5.7)

(5.8)

Use M&
——0, Q„„=F „„and (5.3) in (2.14) along

with the expansion of R„,„~ by (4.6). Substituting
the definitions of F~„„(5.1) and Z„, (5.2) gives

X. KC„u x, —-g~„t,Rul, )+ —'.g[.[xgu],] P'/y'

pa
4 vP ~pa

[,„, ( „,„,
--' „, , ', ) "" . (5.9)

Showing that (5.8) satisfies (5.9) is straightfor-
ward. Contracting (5.9), one can show it to be the
only solution. Carmeli's theory reduces to Ein-
stein's theory exactly.

It is stretching the term quite a bit to call
Carmeli's theory a Yang-Mills theory. The Lag-
rangian (5.4) is not the Yang-Mills Lagrangian
and the field equations are not in Yang-Mills form.
Because of this, one would have difficulty mesh-
ing this theory with Yang-Mills-type theories
(e.g. , Weinberg-Salam style theories of weak and
electromagnetic interactions'). The source fields
are included in this theory in an entirely passive
way through T„z. When we want to write down a
complete set of field equations for the other fields
in the theory there are difficulties. Add the Dirac
Lagrangian (3.2) to (5.4). The field equation (5.6)
becomes

ee ~P""V F ' (5.10)

where j is the spin current from(4. 1}. Eq. (5.5) is
unchanged. The Dirac equation (3.5) picks up a

from the stress-energy tensor T„z and the Weyl
curvature C„„zP. Carmeli's Lagrangian is

trF, (F „p —2&[„@p]

[4., C,]) . (5.4)

He varies F,~ and 4 „ independently to give field
equations

complicated source from the P dependence of F,~
through T„~ in (5.2) and (5.3). Equations (5.10)
and (5.5) imply that j~ = 0. This implies that g = 0,
which is physically unacceptable. This indicates
serious problems in using Carmeli's theory in a
full scale unification with other gauge theories.

Yang's theory' when completed with matter
sources leads to serious difficulties if done in a
straightforward manner. A discussion of these
difficulties can be found in a previous article. "'"
Yang's theory, though fraught with these difficult-
ies, was very much along the line of the philosophy
of this paper, to apply strictly the usual Yang-
Mills dynamics to the gravitational field.

Camenzind has taken a different point of view
from mine in completing Yang's free gravitational
equations. ' My idea was to complete the Yang-
Mills variational principle by adding matter
sources. " Camenzind has made a completion of
the field equations themselves directly without a
variational principle. Unlike Carmeli and I, who
work in the spin spaces of space-time, Camenzind
works back in the tangent space with the SO,(3, 1)
group. " He writes down a Yang-Mills field equa-
tion for SO,(3, 1) in the tranditional form using the
event connection and curvature

RPKPa 8 G JKP a (5.11)

J"P' is some matter current source to gravity,
not to be confused with the J"' of (3.7). Ca.men-
zind chooses

JKP a 2V(P~a) K(aVP) ~~ (5.12)

where T„, is the matter stress-energy tensor.
As with Carmeli's theory (5.11) has Einstein's
equations with sources as a solution. To see this,
use the once-contracted Bianchi identity [from
Eq. (2.11b)] to rewrite (5.11}as we did for (4.5).
The equation becomes

2V R )' =16pGVLPT "—8pGg V T ), .
(5.13)

Equation (5.8) satisfies (5.13) by straightforward
calculation. Unlike Carmeli's theory, there are
other solutions to (5.11) besides (5.8). Camenzind
places great importance in these additional solu-
tions to avoid physical singularities which are a
hallmark of Einstein's theory.

The main objection to Camenzind's theory is
one's inability to put it into a variational form.
The usual Yang-Mills current comes from the
functional dependence of the interaction Lagran-
gian on the gauge potential. Currents found by
variation will not have the form of (5.12). Sources
with nonderivative metric coupling" are examples:
the variational current is zero even when the
stress-energy T„~ (and thereby Zp~ ") is nonzero.
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Can one unify this approach with other gauge the-
ories and still preserve quantum properties?
With no variational principle available, this is
highly doubtful. This completes the review of pre-
vious Yang-Mills approaches.

The theory given in this paper does not suffer
from any of the above difficulties. Also, it is the
theory most like that of Yang and Mills which is
at the same time observationally viable. It has
the following properties:

(a) It is physically acceptable.
(b) It has Yang-Mills-type field equations.
(c) It follows from a variational principle.
(d) The variational principle is of a Yang-Mills

type.
(e) It unifies in a straightforward way with other

gauge theories.
Yang's theory with variational completion does

not have property (a). Carmeli's does not have
properties (b) and (d). Camenzind's does not have

properties (c) and (d). It is also questionable that
either will have property (e). Having property
(c) and(or (d) should not be underestimated when

one plans to quantize. Even a quantum field ap-
proach not directly using a Lagrangian will often
rely upon it for the definition of such quantities as
conjugate momentum and for structural informa-
tion. Also, property (d) gives us the hope that
some of the quantum properties of the usual Yang-
Mills theories might influence this theory of
gravity. Because the gauged spin theory of gravity
has all of properties (a) through (d) do we get
property (e). I shall demonstrate.

Consider a trivial unification. Take any of the
unified theories of weak and electromagnetic inter-
actions with gauge group g. The trivial unification,
in both the group sense and in difficulty, is to a
theory with gauge group Bcg|SL(2, C). Add Z&(3.1)
to the Lagrangian of this chosen theory and make
all gauge-covariant derivatives gauged spin co-
variant also. Vary C„and g„„along with the other
variables of the theory to get a complete set of
equations. This is the trivial unification. A non-
trivial unification of 6 and SL(2, C), though, would
be much more tantalizing.

ytpyK] (A1)

APPENDIX

Here I will prove the kinematical relations
(2.13), (2.14), and (2.16) of Sec. II. To prove
them, I need to develop a bit more on the structure
of the Dirac spin space. As usual, one generates
the span of the valence [,'] spinors using a com-
plete set of Dirac matrices. First one introduces
the 16 matrices {I,y„,yp, , y„y, y), where we de-
fine y„„and y by

1./2
j K&p

4. (A2)

The e" ' is the alternating Levi-Civita symbol. '
Note that y is often called y, in the literature. The
set {I,rp, y]. is self-adjoint with respect to the spin
metric g, » while {y„,, ypyJ is anti-self-adjoint.

The Dirac matrices satisfy the following com-
mutation relations:

(r. , r&, ] =2r.. .
[r. , y. p]= 2r..r p 2g.-prx,

[r„r&r]=2 g„xr,

[r.~, r pp]=2 gp A„p 2'gp,—yap

—2 gp y y K jI + 2 gpK y ) jI

[r, ~, rpr]=2 gpgr. r 2Zp. ru-',

b.„y]=o,

[r,r, r~r]=2r. ~,
lr.r, r]=- 2. ,

jy, r]=o.

(AS)

{rpr, rf =o,

{r,y]' = -2 .
These are, of course, just the usual flat Mink-
owski space-time results taken over into curved
space-time. All the usual algebraic properties
of the Dirac matrices carry over. For example,
all of the 16 matrices are trace-free except for I.

Since these 16 matrices span the space of val-
ence [,'] spinors, we can expand a spinor such as
A, ' in terms of them:

A=aI+6 y„+c y„),+d y„y+~y (A6)

This is called the Clifford expansion. Using (A4),
one can invert (A5) to give

They also satisfy the following anticommutation
relations:

{rp y.] = 2 gp, I

{r»r,@=2'"' '&p, &pr'r,

{y»y,yj=2g' '~p, ~py",
{rp,y)=o,

{yp,yzpf 2p EpK&py —2gp~g&pI+ 2 gyKgppI
X/2

p (A4)
rpr] =2g ep. ~pr

{rp r)=2& ep ~py
'
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a = —,'trA,
h" = ,'t-r(AyP),

1 tr(AyP k)

d" = 4tr(Ay" y},
f= =,'tr(Ay) .

(A6)

p2R„p r-p 2[fkp+mxp y. ]=0 ~

By examining the commutation relations (A3)
one can see that the Clifford expansion of

p zu +rnzu can only have yu „and I terms:

(A8)

With this bit of algebra behind us, we are in a
position to prove the needed results.

Take the covariant derivative Vz of (2.13) and
antisymmetrize in A. and p. . Using the Liebnitz
rule of derivatives and the Ricci identities (2.9)
gives

-zR&p yp z[Pkp X ]:[V&xMp&,y ]

+ [M&p, V), )y, ] . (A7)

Using (2.13) in the last term, the Jacobi identity
of the commutator, and the definition (2.15) gives

space.
We could have kept this electromagnetic part

f fp ~, ap) of the gauged spin connection as did
Schrodinger. " The spin gauge holonomy group is
then SL(2, C) S U(1). Since I have had no need of
it, I have suppressed it.

Finally we are in a position to prove (2.12} if
and only if we have (2.13). Differentiating the
Dirac relation (2.5) gives

(V„y&,)y» + y~ „~ V„~y» = V„g„~I . (A15)

It is a simple matter to substitute (2.13) into
(A15) to show the left-hand side to be zero. The
"only if" part is a bit more tedious.

It is a well-known result that in Minkowski
space-time, the metric gu, determines the Dirac
matrices up to a similarity transformation. This
is also true in curved space-time as can be seen
from (2.5). Choose normal coordinates at some
point x so that gu z is in Minkowski form at x.
Choose y„.in the standard flat space-time form at x:

4~p+~~p =exp yp +f)pi ~
po (A9)

Substituting (A9) into (A8) and using the com-
mutators gives

(A16)
po 1 pa|xu (Al 0)

Choice of the holonomy group to be SL(2, C) re-
stricts f~p to be zero. This gives us (2.14).

The proof of (2.16) also uses (2.13) and the
Clifford expansion. Writing out the covariant de-
rivative in (2.13) gives )

y V3

8py„—I'p „yg- [C p +Mp, y, ] = 0 .
Expand C»+Mu in a Clifford expansion:

@u+Mu- &u~+ &u'r, + cu "r,),

+du P P+QuP ~

(All)

(A12)

Use (A3} to evaluate the commutators term by
term. Expand Buy, also in a Clifford expansion
using (A6) a.nd (A7):

s„p=y-,'tr( sypy, )yp ——,', (y 'a„y, )yp,

+-,'tr(r'ra, r„)r,r ,'tr(ra„r, )r . -(-A13)

Equating the coefficients of the 16 matrices gives
a set of tensor equations which can be solved for
{b ' pc„"",d ph ).pThis gives us the result
(2.16) except for the extra apI term. Using this in
(2.10) and comparing to (A9) gives

f xu
= ~t&~u] ~ (A14)

Our choosing f),u
= 0 implies that au can be easily

transformed away by a change of frame in the spin

Do this at each point x of space-time. The con-
tinuity of g», (x) ensures that y„(x) can be chosen
this way and be continuous also.

We are given some metric in the tangent space
which satisfies the metric constraint (2.12). Con-
struct a set of yu in the way indicated above. Con-
struct the Cristoffel connection. Choose any

M„, '. From these define a 4p, using Eq. (2.16).
Substitute this form into (2.13) [or (All)). One
finds that after a bit of tedious algebra using the
commutation relations (A3) that the equation re-
duces to

Fp(K k)g=p4tr(r~~~ ap
~

rK&) (A17)

Permuting under the trace, the equation can be re-
written as

F„„Pg»p ----',tr(a„g„,l) = --,'a„g„. (A18)

But this follows from the Christoffel form of the
connection, "thus completing the proof.

The last technical detail that must be considered
is Eq. (3.14). I have taken the Dirac y matrices
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as dynamical functionals of the metric. The
Dirac relation (2.5) tells us that we could have
done the reverse easily enough, but is (3.14)
feasible? Let us consider arbitrary variations in

y&. Take the Clifford expansion of 5y„,

5y„= a& I+ b„'y,. + c&
' y,.z + d& y, y+ h& y,

ly depends on the representation of the Dirac ma-
trices. This is totally unacceptable. Thus to pre-
serve the proper flat space-time limit, we must
restrict the variations of y„ to be of the form of
(3.14).

Another way to see this is to note that the free-
dom

(A19) 5y, =c,xyx+I, y (A24)
for infinitesimal coefficients. Substitute this into
the variation of the Dirac relation (2.5) which is

5y(,,y~) +y(, 5y, ) = 5g, ) I .
One finds that

(A20)

(A21)
[P K]

The first term is just (3.24). Thus the variations
of y„can be classified into independent cate-
gories: (1) those of type (3.14) and (2) those of
the type given by the last two terms of (A21).

When we let the spin connection be zero and the
metric be flat and of Minkowski form, the theory
must physically reduce to the usual Dirac theory
of a single electron. This requirement prohibits
us from making variations of the second type. To
see this, do these variations in the action (3.3).
A complete set of variations would be

(54q, 5(, 5$, 5g„, , 5y„= e ~,y' + hq yj .
The first four give Eqs. (3.4), (3.5) and its com-
plex conjugate, and (3.9). The last in the flat
space-time limit gives

and

s0 —(s, $)y„,t( = 0 (A22)

gya. ( —(s.g) y0 = o . (A23)

These equations severely limit the solution set of
the Dirac equation and do so in a way which strong-

for fixed metric g„z corresponds to a freedom of
choosing the representation of y„. 1 chose (A16),
but any other fixed choice is acceptable. This
freedom arises from the lack of a natural map
from the spin space to the tangent space. This is
a kinematical freedom, not a dynamical one; it
should not be varied in the action. Rather, this
aspect of the y„should be fixed in the beginning
and carried through the problem unchanged.
Equation (3.14) identifies the only dynamic free-
dom ln y~ .

Role added in proof. By using the usual covari-
ant quantization and background field methods, I
have been able to show that this theory is n-loop
renormalizable. This result has been checked to
one loop using the 't Hooft and Veltman algorithm
in curved space-time. It does this by avoiding
the dipole ghost and nonunitarity problems of the
renormalizable (R'+A)-type quantum gravity the-
ories to which this one is closely related.
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