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We derive an exact expression for the fictitious-particle contribution to the pure graviton triangle diagram
which is needed to verify, through the appropriate Slavnov-Taylor identities, the gauge invariance of the
scattering matrix to third order in the gravitational coupling constant K. The calculation is performed by
working in the framework of covariant quantization and exploiting the technique of dimensional
regularization which is known to preserve the local gauge symmetry of the underlying Einstein-Hilbert
Lagrangian. The derivation is simplified by setting the energy-momentum of one of the external graviton
lines equal to zero. It is shown that the final expression for the fictitious vertex is characterized by 14
invariant amplitudes and that the original divergences of the triangle graph reassert themselves as poles of
Weierstrass's gamma function.

I. INTRODUCTION

In a previous paper, ' henceforth referred to as I,
we calculated in the context of covariant quantiza-
tion' ' the one-loop contributions to the graviton
self-energy by employing a modified technique of
dimensional regularization" and by extending
Goldberg's version' of the Einstein Lagrangian to
2~ dimensions. 'The regulating parameter ~ is
in general complex, with co= 2 corresponding to
four-dimensional space-time. It was shown in I
that the sum of the graviton and fictitious-particle
contributions to the graviton propagator satisfies
the Slavnov-Taylor identities"'" and that pure
quantum gravity is renormalizable at least at the
one-loop level. '

Next in line of complexity, after the self-energy
loop, is the pure graviton triangle diagram (Fig.
1) with its associated contributions from fictitious
particles (Fig. 2} also known as Feynman-DeWitt-

PI

Faddeev-Popov ghosts. ""In pure quantum
gravity these ghosts are unphysical massless vec-
tor particles which appear only in oriented, albeit
closed, loops called fictitious "fermion" loops.
The fictitious particles are needed to restore
both the unitarity of the S matrix and the trans-
versality of the scattering amplitudes. "

The purpose of this paper is to derive an ex-
pression for the fictitious-particle diagram, Fig.
3, by working again in the framework of covariant
quantization and by employing the technique of di-
mensional regularization. '" A knowledge of the
detailed structure of the fictitious amplitude is
essential in order to verify explicitly the gauge
invariance of the scattering matrix to third order
in the gravitational coupling constant v. We re-
call that the technique of dimensional regulariza-
tion preserves the local gauge symmetry of the
underlying Lagrangian and thus allows for a con-
sistent gauge-invariant treatment of divergent
Feynman integral s. The continuous-dimension
method may be applied not only to Abelian models,
but also to non-Abelian massless spin-2 gauge
theories such as quantum gravity.

The computation of the fictitious-particle am-
plitude is somewhat less complicated than that of
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FIG. 1. The pure gravitation triangle diagram. All
lines are graviton lines.

FIG. 2. The graviton —fictitious -particle vertex. The
fictitious particles $ and rI have momentum labels k3
and k2 and polarization labels p and A, , respectively.
The graviton line is denoted by p &.
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GeV ', where 6 is Newton's constant and m, is
the mass of the electron. In 2(d-dimensional space,
however,

«'~G/( p, ')" '.
p, is an arbitrary constant with the dimension of
mass. "

II. FEYNMAN RULES

The pure Einstein-Hilbert Lagrangian density
for the gravitational field reads

p

2
Z = —,v-gg""A„„, (2.1)

where g"v is the metric tensor, g =—detg„„, and

A„„ is the Ricci tensor given by

FIG. 3. Fictitious-particle triangle diagram. The
fictitious particles $ and q occur only in closed oriented
"fermion" loops.

the corresponding amplitude for the pure graviton
triangle diagram (Fig. 1) which contains, even in
symmetrized form, over 150000 terms. "

This article is organized as follows: In Sec. II
we summarize the relevant Feynman rules. 'The

general structure of the fictitious amplitude is
stated in Sec. III, followed, in Sec. IV by the com-
putation of the corresponding integrals over 2&d-

dimensional Euclidean space. In Sec. V we give
the final expression for the fictitious-particle
contribution to the pure graviton triangle diagram.
The article concludes in Sec. QI with a brief sum-
mary and discussion.

%e work exclusively in Euclidean space and

employ natural units A =c=1; %e note that in
four-space the gravitational coupling constant K'

o- G, i.e., «' = 32wG = 4 x 10 '4 (m, )
' = 4 x 10 "

p 1
F~v = 2g (gus', v+ ggv, u -ggv, g). (2 3)

g «(Iffy»» «fy» «2 e1
Edh 2( g)Z l464 0 ~ E )

+gal
Xv (2.5)

If we define the graviton field &t)"" by

gP v —pe v + ~P+v (2.6)

where 5"" is the 2&d-dimensional Kronecker 5, then

gf v
= ~f v

—&~f v+ & ~f o4av —~ ~f a4og4gv

+0(«') . (2.7)

The inverse of the fictitious-particle factor 4(g"")
turns out to be [see Eq. (2.12) of 1]

It is convenient to rewrite the Lagrangian density
(2.1) in terms of the tensor density g

~ of weight
+1,'

(2.4)

[&(g"")]'= d(&„)d(7)„)
exp]i

dxq„[5„„a—«(y, „„,—y„,o„„s,s, —y„„a„,s, + y, „„s„)]], (2.8)

with

(2 9)

where (~ and g„are the fictitious particles dis-
cussed in the Introduction. Their Feynman prop-
agator has, in momentum space k, the simple form

mentum space,

lC

V~s ~ „(k„k„k,) =
2
[- (5„~kis + basks~)k~~

+ 5g„(k,~k,g+ k2gk, m) j . (2.11)

& T($, t.)& = o =
& T(n.n. )&, (2.10)

while the graviton-q-& vertex reads, again in mo-

'These Feynman rules are sufficient to derive, to
order v, the contributions to the fictitious-par-
ticle amplitude.
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III. GENERAL STRUCTURE OF FICTITIOUS-PARTICLE AMPLITUDE

Consider the triangle diagram with vertices A, f3, and C depicted in Fig. 3. According to Eqs. (2.9) and

(2.11), the momentum-space propagators are

{T(~,n, )&..= 5„/k,
(T((.n.)} .= 5„./(k+ q)',

&&((.n, ))..= 5„/(k P)'—,

vrhile the graviton-fictitious-particle vertices C, B, A are of the form

V.s,x,.(p„k+P -k+q) =2((5.Pe+5M Pl )(k-P}s+5k.[(p k}.(-k+q}s+ (P -k}s(k+q).B,

(3 1)

(3.4)

V„,„„(P,-k, k —P) =-'((8„P,+ 5„P„)k.+ 5,.[k„(P-k), + k, (P -k)„]), (3.5)

V.,s „„(q,-k —q, k) =-((5„..q, .+ 8„,,q. , )(k+ q), —5„,[(k+ q)..k, , + (k+ q),.k., ]),

respectively. Consequently the amplitude for the fictitious loop drawn in I ig. 3 reads

F!!!B,!s, e's'(Pz~p~ q}
d 2'@ 5~„

( ),„V,s. „,(q, -k —q, k)
(

""),V s „(p„—k+p, k+q)

or

Y,
'

s V„s, ,(P, —k, k-P) —,,
p 2

Rsg 7s!!I!s (P 1& Pi% 'q ) (2v)2&!!k2(k q)s(k p)2 I!'s!~!II 'Ys! Te~ 0! s ~ I!!Tv v v" (3.8)

Expression (3.8) is general. Unfortunately, it is also unwieldy since only some of the integrations in (3.8}
can be performed in closed form. In order to display the explicit structure of the fictitious amplitude and

to be able to analyze later the crucial Slavnov-Taylor identities, it is desirable to simplify the integrand
of (3.8) without destroying any of its essential characteristics. This may be accomplished" by setting the
energy-momentum of one of the external graviton lines, say of !P,s, equal to zero: P, =0 (see Fig. 4), in
which case the fictitious amplitude (3.8) assumes the following structure [we replace the indices (y6) in

(3.8) by (vo)]:

d "k
E „, , (O, P, -P)=2

2 (2 ),„„,(„),5„(k —P) (k —P) (k„{,„P,+&„,P„)+5,„[k„(P—k},+k, (P —k)„]]

x ((5„..p, . + 5., p..)(k -p), + 5„,[(k -p)..k,, + (k -p),.k..]J ,

3 d 2fs)y

s (o, P -P) =2
2 (.„„., V s...s (~,p, k), (3.10)

V„,„..., (~,p, k) -=p V".,'„...,, (~, p, k) (3.11)

(3.12)V(esp!!0! s (~lpga k) 2(klPPCIpspijpd! Ps PI!!PVMBPxPpls I PoP P Ps+P!ss P!!PsP! P

V~sI!!!&!!'s'(dePy k) 2(k!!!k!!' Pvpspaps' + k!Iks'Pspvpopa'+ ksko!' P!!!P!!PoPs' s s' P0!P!!P&PI' !! +P!!!PsP!IPs

+ k k„ps p, p, ps. + k k, ps p„p„.ps + ksk„P P,P ~ Ps + ksk, P Pup~ Ps }

+(1 —2~)(k.k. P PsP.Ps +k.ks P.Psp.P. +k.k P PsP.Ps +k.ks P Psp. P

consists of 56 terms. Whereas in four-space (v =2) the vertex integral appears, from power counting, to
diverge quartically, in the spirit of dimensional regularization the integrals in (3.10) are now well. de-
fined. '*' Regrouping the various Q terms in V &„, ,&, and remembering that 5„„=2w, ere obtain for the in-
dividual V s
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V( )„,, (((),p, k)= 2(k k()k, p„p,p(). +k k()k() ~ p„p p ~ +2k())k„k p()p ~ p~. +2k()k„k p p ~ p() ~ +k ksk p„p„pB
+ k k~k„p, p .p(), ) + 2(1+ 2(d )(k„k,k(), p, p()p, + k, k, k(), p p() p„}

—(1 —2(o)(2k„k, ke. P~ P()P().+ 2k„k, k()~ P~ P()P ~ + k~k„k(),.Pg P Pg.

+k kP() P,P()P,+k k,k,P()P„P(),+k k,k()~ P()P„P~,+kqk„k .P P,P().+k()k„k().P~P, P ~

+k()krak OP PpP() I+

k()k()k()IPSE(

P)P ~t} y

V(J4„. . .((()P, k) = 4(k krak„k, P,P(), —2(()kP k .k~.P P())

—2(l+ 2(d)(k k„k,k8,p()p, +k))k„k, k~,p p, + k k,k, kI).p„p~+ k()k,k„,k(). p„p )

+ (1 —2(d)(2k k„,k„k,PqP(). + 2k k„k,k().PqP~. + 2k()k„k,k,P P(). + 2k()k„k,k().P P,
+ k k()k„k~,P,P(), + k~k()k„k(),P,P,+ k k()k()ke.P„P().+ k k()k,k()~ P„P .),

V( ())„„(),(((.), p, k}= 8(d(k, k„k,k, ka.p()+ k()k„k,k, ,k().p, )+ 2(1+ 2(d)(k k()kp, k(),p, + k, k()k,k, ,k().p„)

-2(l —2()())(k~k()k„k,k~,P().+ k k()k„k,kq.P .),

(3.14)

(3.15)

(3.16)

(3.17)

Exl)ressions (3.12) to (3.17) comprise in fuH. the
numerator in (3.10). The integration is summar-
ized in the subsequent section.

18 readily COIQputed by employing three tiIQes the
par ametr ization for mass Less momentum -space
p ropagator s ~

IV. INTEGRATION OVER 2w-DIMENSIONAL EUCLIDEAN

SPACE

In this section we evaluate the various integrals
occurring in the amplitude E () „...~, in Eq. (3.10).
Since we operate in complex-dimensional Euclid-
ean spac e, w ith e acting as a regulating p ar am-
eter, 3ll integrals as sociated with the triangle
graph, Fig. 4, are convergent. The has je integral

(4.I)

eO

dn) exp(-ak'), k' &0
0

together with the formula

(4 2)

exp(-ak'+ 2b k}

)
{w )" {5')

Consequently I,(((),p') becomes

2
m" 40 lO 40

I,(((),p') = dadpdy(a+ p+y)"2s)'"

(4.4)

It is convenient" to introduce in (4.4) the new
variables $, v', X defined by e = (X, P = v'X, and y
= X(l —$ —7'), with Jacobian

~
Z

~

= X', so that

(k- p)

9g/

A

da dp dy d$ dT X dX .

Subsequent integr ati on over X yields

2)
(p')" 'I'(3 —+)

(4w)"

(4.5)

FIG. 4. Fictitious- particle diagram with the energy-
momentum p &

of the external graviton line p ~ set equal
to zero.

I,((d, p') = (4v) "(p')" 'I'(3 —(0)

x I'(()) —2)I'((() —I)/I'(2(o —3), (4.6}
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( 1)»)v(*)=g, + r»» e"' (4.7}
by repeatedly differentiating EIl. (4.3) partially
arith respect to b„ to yield the following formulas
(Ref. 16):

denotes the %eierstrass representation of the I"

function. "
The other integrals in (3.10), as seen from E(ls.

(3.12) to (3.1V), are of the form {I»f8 ), (I,k k ),
. . . , and {I,k, k, ), where I, acts as an integral
operator. 'These six integrals may be computed

r
d "Jmt'k„

(2 )Zaf z(y p)» p(& 8( & p ) & (4 3)

r
d'"kk„k„

{2II)Zap'(Q )4 P(&PA8 ( & P )+ 5&&lg( & P ) &

(4.9)

{2-„~ &."„"
p
. =p. p—.pA(~ p')+ (p.5..+p.5..+p.5„.}I.(~,p'),

=».(' &l, (v ('*)+ E »-.&. ).(v &*)+ g ~..»,.)).( &*)v,

(4.10}

(4 11)

(4.12)

g o„„»„&.&, ) (v& ) „P, '&+„.».,»,.))„(,&*),
45 yeX"al l5 ye1m

(4.13)

where Z„, denotes the sum over N distinct permutations. The integrals I,{&o,p'), , I»8(ar, p') are sum-
marized in Appendix A and are seen to be expressible in terms of the basic integral I)((d, p ) in EIl. (4.6).

V. TOTAL CONTRIBUTION FROM FICTITIOUS-PARTICLE LOOP

The machinery developed in the preceding section is sufficient 'to integrate tile right-hand side of E(l.(3.10)

v.. ..,, (()&. -&)-=&(—;),
'[) v....., (,&. &)l.

ove1' 2(»)-dlmens1onal Eucl1deRn spRce wltll the llIIInel'Rtol' Va8vva»8» gtven explicitly by Egs. (3.12) to (3.1V)»
while the relevant momentum-space integrals are summarized between Eqs. (4.8) and (4.13). The final
expression for the fictitious-particle contribution to the pure graviton triangle diagram then reads

3

» (() & -&)=&(& 9~ l'sl" & » v ('" &*)+»»"&.& l' v. (t» &')+» ( & &»&, v. (v, &'). .

+ 5a 8 PvPvPaP8I'. (»d&P')

avp8pv pa p8' avp8 p8»papa' + 5v8 pa pa»pap8» + 5 8p pva ~ pav p8» )+8()&p )

+{5.8 p p p.p8+5. p p8p. p8+5. p p8p. p8 +5.8 p p p.p8}I8(~ p'}

+ (5a8'pv p(&pa'p8+ 5aa'p8 p8'pv pa+ 588'pa pa'pvp(»+ 58a'pa p8»pv pa)+»(+& p )

+P P8(5„.8.5„+58.„5, + 58. 5 .„)E8((O,P')

+p pv(5a85a 8 + '5a8 '58a + 5aa '588 )E()((()&p )+pa p8 {5(&(» 8v+ a8 (&v av v8} I( & p )

+[P8P {5 8, 5„~+ 5 „5„,8. + 5 ~ 58.„)+P P, (588, 5„,+ 58„5 .8, + 58, 58,„)

+P„P8(5a8.5a.,+ 6„,5a.8. + 5aa. 5 8.)+P P„(588,5,a. + 58,5 .8, + 58a. 58.,)]E„(I(I&P )

+[p8p8, (5 5 .„+5 ~ 5v„+ 5 „5, , )+p8p ~ (5 „5~.+ 5„,5„8.+5 8, 5„)
+P P8. (58 ~ 5„+68„5 .,+ 58,5 .„)+P P, (588. 5„,+ 58„58. + 58 58.„)]E„((d,P )

+ [P,P8. (5aa. 58„+5a85a.„+5a 85a„)+PvPa. (5a85 8. + 5a„688. + 5a8. 58„)

+p„p8. (5 .58,+ 5 85 .,+ 5,5 .8)+p„p ~ (5 8, 58,+ 5 858 8+ 5,58.8)]I'')8(&d, p )

+ Q 5 85„,5a.8, I'"„(a),p')
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where the invariant coefficients E, (ur, P'), j = 1,
2, . . . , 14, possess the following structure (note their
dependence on the regulating parameter &o):

F, (&o, P') = -8[I,+ (&o —3)I,+ (3 4~-}i,

+ (6~ —1)I, 4&el-„+ &uI»], (5.2)

F,(~,P'}= -8[I,+ (&u —l)I, —2u&I»+ &oI„], (5.3)

F,((o, P') = 4[I,+ (2u) —3)I,+ (3 —6(u)I,

+ (6&d —l)I~~ —2(dIq4],

F, (&o, P') = 4[(1+2~}1,—(2+ 6&v}1,

+ (1+6m)I„—2uri„],

E,(v, P') = 2[I,+ (2~ -4)I, + (4 —8&v)I,

+ (10&v —1)I» 4+I„],-

(5.4)

(5.5)

(5.6)

E,((u, P') = (1 —2(o}1,+ (12(o —2)I, + (1 —26(o)I,

+ 24&I„-8(uI,~, (5.7)

E, (&o, p') = 2[I,+ {2&v —2)I, —8&vI,

+ (10(u+ 1)I„—4(uI„], (5.8)

E,( &u, P') = -8(o(l, —21„+I„), (5.9)

F, (&u, P ) = 4[(1+2u)I» —2&vI»), (5.10)

E(»(o, P ) =4[I9 —(1 —2(c))1» —2(uI„], (5.11)

E»(&u, P') = -2[(1+2&v}1,—(6~+ l)I»+ 4&vI»],

(5.12)

E»(~, P') = 2[(l —2&@)I,+ (6&v —1)I» -4~I»],
(5.13)

E»(&u, P') = (1 —2~)I, + 8&vI» —8&~I»,

E»((dq P ) = 8QPI» ~- (5.14}

The integrals I,(v, p'), . . . , 1„(v,p') are summar-
ized, respectively, in Egs. (A3) «(A1'I) of Ap-
pendix A. To study the analytic structure of the
invariant coefficients E&, j = 1, . . . , 14, it is con-
venient to rewrite them as functions of the basic
integral I, (u&, p'). It is evident from the "reduced"
E s in Appendix B that the original ultraviolet di-
vergences of the vertex graph manifest themselves,
in the framework of the continuous dimension
method, as poles of Weierstrass's partial frac-
tion expansion of the 1' function (4.7). Thus

( 1)n
1'((o —2) = +

ar —2 „, n)(n &o —+2)

VI. SUMMARY AND DISCUSSION

Working to third order in the gravitational coupling
constant I{,, we have derived in the context of di-
mensional regularization an explicit formula for
the fictitious-particle contribution to the pure gra-
viton triangle diagram. Our final expression
E ~ „, ,a, in Eq. (5.1) is characterized by 14 in-
variant amplitudes E, (&u, p. ') Th. e latter are sum
marized in Eqs. (5.2) to (5.15) and again, in re-
duced form, in Appendix 8, where they are seen
to exhibit [through the basic integral I,(u, p')]
various poles, for example at ~= 2 and co= 1. The
pole at co = 1 is connected with the fact that the
Einstein-Hilbert Lagrangian L = f Zd'"x collapses
in two dimensions to a surface integral. " We also
observe that the fictitious-particle loop associated
with the graviton self energy-" yields, by compari-
son, only ten terms with five invariant coefficients.

The calculation presented here is the first step
in a program designed to verify the gauge invaxi-
ance of the scattering matrix to order ~'. The
second step consists of tackling the pure graviton
vertex in Fig. 1, a somewhat tedious exercise
since the corresponding amplitude contains, even
in symmetrized form, over 150000 terms.

The gauge invariance of the 8 matrix to order
may then be verified first, by adding the ficti-

tious-particle amplitude E ~ „, ,~, to the contri-
bution from the pure graviton triangle diagram
and second, by ascertaining that the sum of the
"real" graviton and the fictitious-particle contri-
butions to the graviton vertex does indeed satisfy
the appropriate Slavnov-Taylor identities. The lat-
ter can be derived from the general Slavnov-Tay-
lor identity"' "

which is valid to all orders in I{. and which holds
for any gauge specified by the parameter n. It
is clear that the successful completion of the above
two steps hinges decisively on a knowledge of the
fictitious-particle contribution. The detailed
structure of this contribution is given in Eg. (5.1).

It has been known for some time that calculations
in gravity can be fun and the above computation
is no exception. Yet our enthusiasm to attack Fig.
1 has diminished uniformly during the course of
the present investigation and is now roughly pro-
portional to 1/n', where n, the total number of
terms in the corresponding vertex amplitude, ex-
ceeds 150000.

+ dt t '8
1

(5.16)
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APPENDIX A

In this appendix ere express the integrals
I (2d(, p'), . . . , I&8((d, p'), appearing between E(ls.
(4.8) and (4.13), in terms of the basic integral
I, ((d, p'), E(l. (4.6). The reduction is achieved with
the help of the beta function

1

&&(e, &)=I 4((*'(1—()' ', Re(e)&0, &ee(&)»

(Al)

APPENDIX 8

By substituting the appropriate integrals from
Appendix A into the right-hand sides of expressions
(5.2) to (5.15), we may rewrite the invariant am-
plitudes E,((d, p.'), j= 1, . . . , 14, explicitly as func-
tions of (d& p', and the basic integral I (1(d, p')

Consequently,

-{(d-2)((d —l)((d'+ 4(d+ 2)I(4(d2 —1)(2(d —3)

1( I'(y)
&( +y) '

and eventually yields

{A2}
((d —1)((d'+ 4(d+ 2)

E2((d&p )= 2{4, 1)(2 3) p I1(~ip )

(Bl)

I2(~ P') = 2„3I-, ((d, p'), (A3) -((d —l)((d + (d+ 1)— 2(4, 1)(2 3) p I, ((d& p ), (B3)

18(o)&p )-
2(2 3)I,((dip ) i

I(~, p') = 4(2„3)p'I(~, P'),

(d((d + 1)
5I(+ P&) 2(2 1)(2 3)I1( &P ) i

{2~ 1}(

((d+ 1){(d+2)
4(2(d l)(2(d 3) '

-((d+ 1)
8{ &P } 8(2 1)(2 3}P I1( &P ) &

1
16(2(d —1)(2(d —3)

((d+ 1)((d+ 2)((d+ 3)
l&o(+&P } 4{4 2 1){2 3} 11((d&p ),

(A4)

(AV)

(A8)

(A10)

-(d((d' —1)
E4((d&p ) —

2(4 2 ])(2 3) pl, ((d&p ),

(d((d —1)
E(5~ p&) —

4{4 2 1){2 3) p I,((d&p')
&

-((d —1)
8(4(d' —1)(2(d —3) P

-(d((d —1)
4 {4(d' —1)(2(d —3)

8{ &P } 4(4~2 1)(2~ 3) (P ) (I1(dp&)

((d + (d+ 1)
Eo(~&p }—

4(4 2 1)(2 3) (P ) I,((d&p ),

(d((d+ 1)
10{ &P ) 4(4 2 1)(2 3) (p ) I ((d 1p)&

(B4)

(B5)

-((d+ 1)((d+ 2)
I&1((d&p ) =

8(4 2 1)(2 3)
p'I ( 1p(d),2(A12)

( 1)
I12(+ P) &16(4 2 1)(2 3) (p ) I1((d&p ) &

(A13)

11{ &P } 8(4 2 ])(2 3) (p ) Ii((d p)&

(B1O)

(&d+ 2){(d+3)((d4. 4)
I18( & p ) 8(4 2 1)(2 3) I1((d& p ) & (A14)

12{ &P ) 8(4 4 1)(2 3)(p )I,((d, p )

-((d+ 2)((d+ 3)
14( P }=

16(4
'

1){2 3}PI&((d P ) (A15)

(~+ 2) 2 2 2
15{ &P } 32(4 2 1 )(2 3) (p ) I&((d p)&

and finally,

6{4 ' 1)(2

(B12)

M{ &P } 64(4+2 1){2 3} (p ) I1((d& p ) .

(A17)

E14((d&p }=
8(4 2 1)(2 3)(p')'I, ((d, p') .

(B14)
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