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The Reissner-Nordstrom (RN) solution is obtained from the Schwarzschild solution by a method due to
Teixeira, Wolk, and Som (TWS). It then follows that the mass parameter, m, of the RN solution is
inseparably connected with the charge parameter, g, and m = 0 only when g = 0. It is thus suggested that
the TWS method picks out, from among all possible RN solutions, just those of physical interest.

I. INTRODUCTION

The only spherically symmetric asymptotically
flat solution of the Einstein-Maxwell equations is
that of Reissner and Nordstrom (RN). It repre-
sents the space-time outside a spherically sym-
metric charged body. There exist coordinates in
which the metric has the form
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where my represents the geometrical mass and g
the electric charge of the body. However, these
two parameters are found to be unrelated. Indeed
one can put either my or ¢ equal to zero. The in-
variant Kretschmann scalar @ has the form
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From this scalar it is evident that the geometry is
not flat when any one of the two parameters is dif-
ferent from zero. It is natural then to conclude
that the Einstein-Maxwell equations admit solu-
tions corresponding to a spherically symmetric
massless charged body. The massless charge,
however, is not a peculiarity of the RN solution.
In a paper, Som and Raychaudhuri' demonstrated
that the massless charged dust under rigid rota-
tion can exist in equilibrium in its own magnetic
field.

In nature the existence of massless charge is
yet unknown. If one takes this fact as an undeni-
able physical situation, one should expect that
the mass parameter in the RN solution should take
account of the contribution from the electrostatic
energy. However, when g =0 one has mg =my,
where mg is the Schwarzschild mass of the neutral
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system. If one adds to it a further restriction (on
physical grounds) that the charge does not exist
without its geometrical mass, then my assumes an
invariant significance. If one works entirely clas-
sically, one finds that, for a charged sphere, the
effective mass is given by Gm, + Aq®/a, where m,
is the bare mass of the charged body and a is the
radius of the sphere. The effective mass is never
zero, unless the bare mass is negative.

One way to find the explicit expression of the
mass parameter is to obtain the interior solution.
Bonnor? studied the interior solutions correspond-
ing to a spherically symmetric charge distribu-
tion. For g <mjy he found that the electrical energy
contributes to gravitational mass. The mass para-
meter my cannot be put equal to zero unless the
matter density is negative. This solution is un-
satisfactory for a point charge, since my—~ > as
70— 0, where 7, is the radius of the charged sphere.
For g = mg, the only interior solution known by the
present authors has been given recently by Tei-
xeira, Wolk, and Som.? However, their solution
corresponds to an unphysical source of a long-
range scalar field. For an attractive scalar field
these solutions admit the case where my can be
put equal to zero. In this case one finds that the
classical condition of balance holds for |q| = ||,
where |b| is the scalar charge strength.

In the present work we are tempted to investi-
gate the same problem from a different point of
view. In a recent work, Teixeira, Wolk, and Som*
showed how a static solution of the Einstein-
Maxwell equations may be derived from any static
vacuum solution. Henceforth we call it the TWS
method. In the literature there are other methods
(Bonnor®, Janis, Robinson, and Winicour®); how-
ever, the interesting feature of the TWS method
lies in the fact it is a generalization of the methods
previously given by Bonnor and by Janis, Robinson,
and Winicour. All the known solutions of the
Einstein-Maxwell equations for source-free fields
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can be obtained quite easily by this method, and
further one can recover the original exterior solu-
tion in a straightforward way. If the RN solution
is obtained from the Schwarzschild solution by the
TWS method, it then follows that the mass para-
meter cannot be zero unless the charge parameter
is zero. Though it is a particular way of obtaining
the RN solution from the Schwarzschild solution,
the method picks out, from among all possible RN
solutions, just those of physical interest.

In Sec. II we shall present a brief review of the
TWS method for developing coupled field solutions
for the electromagnetic field from known vacuum
solutions. In Sec. III we have used this technique
to obtain the Reissner-Nordstrom solution from
the Schwarzschild solution.

II. TWS METHOD

In the present section we review the TWS method
for developing coupled-field solutions for the
Einstein-Maxwell equations.

If the metric of the line element

ds® =" ([dx°)® — e %, dxtdx? (2.1)

where v and #'/ are functions of x* (latin indices
vary from 1 to 3), represents the vacuum solutions
of the Einstein equations, then a static solution of
the Einstein-Maxwell equations is given by

ds® = e*¥ (dx°)? - e ' dx'dx? (2.2)
where
W¥=—In(A coshv + Bsinhv) - (2.3)

The electrostatic potential ¢ (x?) and the electro-
static field F,;(x ‘) are

¢ =—ae"sinhv, (2.4)
Fo=ae**v,;. (2.5)

A, B, and a are real constants of integrations, re-
lated by

B2_A*=4". (2.6)

One can easily generalize (2.3), by including a
magnetostatic field

b
Fl= "V—geitg,,, (2.7

where b is a constant related with the angle of the
duality rotation 6 by tan6=—-54/a. The relation
(2.6) then takes the form

B?_A*=a*+b%. (2.8)

We shall consider here only the electrostatic
field so that the constants A, B, and a always
satisfy the relation (2.6). The different methods

in the literature can be obtained by suitably
choosing the constants.

Case 1. When A =asinhc, one has B=acoshc;
then Eq. (2.3) reduces to

¥ = ~In|asinh(v+¢)| . (2.9)

Bonnor?® obtained the result in this form, which
expresses the solution of the Einstein-Maxwell
equations in terms of the known vacuum solution.
In this form, the field refers to a set of particles
for each of which the specific charge is the same,
and such that the gravitational and electric forces
on each particle balance. However, there is no
straightforward way to switch back to the original
vacuum solution.

Case 2. When A=0, we have B%®=a?, Ifa=1,
then Eq. (2.3) takes the form

¥ = —In sinhv . (2.10)

Equation (2.10) is equivalent to the result obtained
by Janis, Robinson, and Winicour.® One can re-
mark that such a field is due to the existence of a
source-free electrostatic field, and vanishes as
soon as the electric field vanishes.

Case 3. When A=1, we have B=+(1+a%"% then
Eq. (2.3) is given by

¥ = _In [coshv - (1 +d?)2 sinho]. (2.11)

We have chosen the negative value of B, because
when a=0, then Eq. (2.11) corresponds to the
original vacuum solution. In this form Teixeira,
Wolk, and Som® presented the result which gives
the solutions of the Einstein-Maxwell equations in
terms of the known vacuum solutions.

III. REISSNER-NORDSTROM SOLUTION

To obtain the RN metric by the above TWS pre-
scription we start from the Schwarzschild line
element

-1
dsz=( 1- 2’”5) (dx°)? - (1 - 2:”5 ) dr® — r2d9? .

r
(3.1)

Next we perform the coordinate transformation
exp(=2ms/p)=1 - 2mg /7 . (3.2)
The line element (3.1) takes the form
ds® = e 2"s /P(g x°)?
- """ [(ms /p)* sinh™*(ms /p)dp?
+ms® sinh (mg /p)df2?] . (3.3)

From this static, spherically symmetric vacuum
solution the prescription given by the TWS method
leads immediately to
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ds? =[cosh(mg /p) + (1 +a)*/? sinh(ms/p) ] 2(dx°)?
— [cosh(mg/p) + (1 +a?)*/? sinh(mg/p)
x[(ms/p)* sinh™*(mg /p)dp®
+mg” sinh 7 (m ¢/p)d$2*]. (3.4)

The line element (3.4) can be written in the famil-
iar form

ds® = < - —2—;11—& + g:—) (dx°)?
- (1 _ 2mg "—Z)" ar’ - v?dQ?, (3.5)
r v
by making the coordinate transformation
7 = mscoth(ms o) +(1+a*)'"*] (3.6)
where

mg=(ms®+@*)*?, q=mga. (3.7)

The equations (2.4) and (2.5) then reduce to

--Z, (3.8)
Fro= ;(,1‘2— . (3.9)

The transformation (3.6) is a simple change of
radial coordinate whose meaning is clear in the
asymptotic region, where

r=p+ (msz+q2)1/2 .

IV. CONCLUSION

Starting from the Schwarzschild solution we ob-
tained the solution (3.4) of the Einstein-Maxwell
equations for the field of a spherically symmetric
charged mass point. In regions far from the
source, the geometry of the space-time is flat.
By a real coordinate transformation (3.6) the
solution (3.4) can be reduced to (3.5), which is
similar in form to that of the RN solution. How-
ever, in this case the geometrical mass is given

by mg = (ms>+q%)**. If one puts g=0, one imme-

diately gets back the Schwarzschild solution. The
vanishing of m, now implies that both mg and g
must vanish identically, provided one accepts
both of them real which is the case for the TWS
method. In this case the geometrical mass of the
charged mass point is no more found to be in-
dependent of the electric charge q. When mg -0,
the effective mass myz—|q|. The coordinate trans-
formation (3.6) reduces to »=p +|q|, and a—~ =

as mg— 0 in such a way that g=mga is finite. The
line element (3.5) tends to the well-known form

ds®*=(1 - |ql/7y(dx°y? = (1 - |g|/7)2dr® - *d¥,

(4.1)
and the Kretschmann scalar
8 g’ q“>
- 6g% - 12 - 1— 2 4.2
“ ?( g r 1), “.2)

which never goes to zero for any real value of

g >0 in finite regions. One recovers the flat
space-time geometry only when mz=0. However,
if one does not want to give any invariant sig-
nificance to the parameters mg and g, one might
put mz=0 and ¢# 0. In this case we have from
(3.6)

mg=iq, a=+i, r=qcotgp, (4.3)

which asymptotically reduces to » =p. This gives
rise to a peculiar situation. In the near regions
we find that » might take up positive as well as
negative values as p monotonically increases,
which implies an unusual behavior of the radial
coordinate.
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