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A static spherical distribution of incoherent matter which is a source of the Klein-Gordon field is

considered in equilibrium under its gravitational attraction and short-range repulsion. Numerical solutions of
the full Einstein-scalar equations are obtained. The solutions are regular everywhere, and have simple

physical interpretation. The stability of the system under various degrees of concentration is discussed. The
impossibility of a bounded, static configuration of massless Klein-Gordon charges under its self-gravitation is

deduced; furthermore, it is shown that unbounded configurations are exact solutions of the vacuum equations
with cosmological constant.

I. INTRODUCTION

It is a general belief that gravity is the only in-
teraction present in every physical system; how-

ever, its attractive effect has to be balanced by
some kind of repulsive interaction in order to pre-
vent collapse. In the case of a conventional
Schwarzschild internal solution, collapse is pre-
vented by pressure; however, in order to describe
the structuxe of microscopic systems one should
avoid the concept of pressure, which is essentially
a macroscopic quantity. I ong-range fields have
been tried, "such as the Coulomb and repulsive
scalar fields, but the resulting systems proved
either unstable or insensitive to each other. Quan-
tum effects are of course essential for microscopic
objects, or even for macroscopic objects such as
neutron stars, where the kinetic energy of the con-
stituents due to the Pauli exclusion principle plays
an important role, even though it seems worthwhile
to investigate from the purely classical viewpoint
the role of the interaction between gravitation and
short-range fields in the formation and stability of
elementary systems. '

The simplest short-range substitute for the scal-
ar pressure of the Schwarzschild solution is a re-
pulsive short-range scalar field. In this connec-
tion a simple nonsingular physical system was re-
cently discussed. ~ It is a static sphex'e of inco-
herent dust, which is assumed to be, at the same
time, a source of gravitation and of a short-range
scalar field. A static equilibrium situation is ob-
tained under the combined effects of the long-
xange, attractive gravitation and the short-range
repulsion of the scalar field. It is shown that the
linearized solutions of the Einstein-scalar equa-
tions are free from the gravitational instability.
Since an important feature of general xelativity is
exactly its nonlinear chax'aeter, more interesting
results can be expected in the limit of strong non-
linear fields. It is the puxpose of this paper to

II. FIELD EQUATIONS

%'e start from the Einstein-scalar equations'

8„' ——,'R5„' = 2ec 'T;, -e =4mG/ 'c
s:"+s/E' =co

T~ = e~pu~u„

(&)

(2)

—c'e '[s' s.„+,'a„'{s'-/P s' s.-)], -(3)
where p is the matter density with velocity field
u~ and S is a repulsive scalar field with range E

and source density 0', as usual, the semicolon
means the covariant derivative. We assume a
homogeneity in the material, which we express by
o/p=f =const, with f'&1. This latter requirement
implies the predominance of the repulsive forces
at short distances: This is a necessary require-
ment for avoiding the collapse.

As we consider a static, spherically symmetric
distribution of matter, we may write the line ele-
ment as

ds' = 8'"(dx')' e dH r do —Belli'Help (4)

the functions p, S, g, a depend only on r.

study that system in its nonlinear limits.
Analytic solutions of Einstein equations involving

short- range scalar fields have not been obtained.
We then look for numerical solutions, taking ad-
vantage of the fact that only two dimensionless pa-
rameters are sufficient for characterizing our
system; the parameters are related to the central
density of matter and the ratio of the scalar charge
density to the matter density. It is shown that the
radius of the distribution should be determined by
the boundary condition to the scalar field which
consists of the eigenvalue problem for the radius
for a given set of the parameters. Some results
are demonstrated and discussed. It is also shown
that the pure Klein-Gordon field cannot have a
stable static configuration under the gravitation.

2412



RELATIVISTIC KLEIN-GORDON SYSTEMS

In the internal region (r~ R) the above equations
reduce to

q1 SE

&Pp=S(S+f)(f' —1}',
xS'=f [f' 1+(1+x'S'}e"]'"
n' =S'(f xS')-+xS(f+S)(f' —1) 'e'

(5)

(8)

(7)

(8)

where x =r/I and a prime means d/dx. For defin-
iteness we consider f&1; a change of sign in S and
S' is required for f(-1, in these equations.

For the external region(x&R), where p=0, the
equations are

g' = -xS'~ —0,',
S"=Se' —x 'S'[1+(1+x'S')e' ],
2xn' = 1 —x'S"—(1+x'S'}e'

III. SOLUTION OF EQUATIONS

(9)

(10)

(11) FIG. 1. Case f=1.1, 80=10 5. The scalar field 8,
dimensionless matter density p = &t p, and gravitational
potentials o. and the negative of g as functions of radial
variable x = &/E .

2xti'=(1+x'S')e2~ (1+xaSi2) (12)

IV. RESULT AND DISCUSSION

%'e numerically integrated the equations, with
values for the parameter f ranging from 1.1 to 5,
and with So ranging from 10 ' to 10'. The main in-
teresting features found in all solutions obtained
are present in the three cases described next.

The coupled ordinary differential equations ('I)
and (8) for S(x) and n(x) can be numerically inte-
grated when the initial conditions are given. A

simple analysis shows that n =a'=S'=0 at x=0;
we then fix a value for the parameter f and also an
initial value S, for S(0) and start the integration
from the origin outward.

For a given initial condition, the radius 8 should
be determined uniquely. To find the value of R we
first proceed with the numerical integration of the
interior equations (I) and (8) up to a certain test
radius x=r, ; for r&x, we switch to the exterior
equations (10) and (11). We impose the continuity
of 0, , S, and S' through r =~„and we also impose
the requirement that S vanish at infinity. %e look
for the correct value x, =g by iteration, which
satisfies the above condition.

Having S(x) and n(x) we can now obtain the ex-
ternal solution for q(x) from (9); we impose the
asymptotic condition q(~) =0 which determines the
integral constant. The internal solution for q(x)
is obtained from (5) and must be continuous at
r =R; the continuity of its radial derivative through
r =R follows automatically from the continuity of

a, S, and S', as can be seen from the following
general expression, valid for both internal and ex-
ternal regions:

In case f=1.1 and S, =10 ' (Fig. 1}the solution
almost coincides with that of the linearized equa-
tions as expected. The matter density p(x) is es-
sentially x 'sin x, which shows a maximum finite
value around the center and decreases monotoni-
cally to the boundary R =0.9l of the sphere; we
plotted p/10, where

P(x) =«'p(x)

is a dimensionless quantity. The also dimension-
less scalar field S(x) starts from the maximum
preassigned value So =10 ' on the origin and de-
creases monotonically to zero at infinity; in the
external region (x&0.9) it presents the usual Yuka-
wa behavior x 'e ". The dimensionless gravitation-
al potential q(x) shows the well-known pattern (we
plotted its negative in order to save space) with
maximum slope close to the boundary x =0.9; in
this weak-field limit (S'« 'P«1} we can relate
q(x) to the Newtonian potential 4(x) produced by
the matter density p(x),

q(x) =c 'C(x).

the potentials q and 4 then approximately present
the usual x ' behavior for x&0.9. Finally the met-
ric potential n(x) is related to the ratio between
radial physical lengths and the corresponding ra-
dial coordinate intervals, dl,„~=e dr; since n(x)
is positive from the center to infinity, all physical
radial distances are numerically larger than the
corresponding radial coordinate intervals. One
finds that n(x) has a parabolic (x') behavior near
the origin followed by a slight bending rightward
before reaching the boundary of the sphere. On
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this boundary n is continuous, but its x derivative
has a discontinuity

=elf' p(II)e"&» (15)int +ext

as can be shown from E&is. (6), (7), (8), and (11).
For x& 0.9 one finds that c&(x) closely follows -&)(x)
in this weak-field limit, as it should in a Schwarzs-
child external solution. The gravitational mass of
the whole system, as defined by

C2
M = ——lim [rg(x)], (16)

is 0.87x 10 ' in units c'l/G.
We next consider the case f=1.1 as before, but

with S, = 3 (Fig. 2); this is no longer a weak-field
solution. The density of matter p(x) still shows a
larger concentration on the origin, and dilutes
monotonically to a nonzero value at the boundary
R =0.32l. We note the diffused property of the dis-
tribution near the surface region which is not o-b-
served in the weak-field limit. Potentials &l(x) and

S(x) have a behavior similar to that of the previous
case. A somewhat different pattern, however, is
presented by the metric potential &r(x): It still has
a parabolic (x') behavior near the center and
reaches a maximum in the region of maximum ra-
dial derivative of the gravitational potential (&7'),

but it now decreases in the tail region of the mat-
ter distribution. There is a discontinuity of slope
(15) on the boundary of the sphere; for increasing
x, the potential a(x) gradually approaches the New-
ton-Schwarzschild hyperbolic (x ') behavior, since
the seals. r-field density S'(x) tends to zero expo-
nentially. It is worthwhile to stress the coinci-
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FIG. 2. Case f=1.1, SO=3. The scalar field S, matter
density p, and gravitational potentials n and —q as func-
tions of x.

dence of regions in which the material system pre-
sents maximum gravitation (as given by &)'} and
maximum dilatation of the physical radial dis-
tances (as given by n). It is also interesting to
remark that the maximum gravitation occurs in
the interior (x =0.2&R/1) of the sphere; this is a
consequence of the faint concentration of the outer-
most shells. The gravitational mass of the sys-
tem, as defined by (16), is 0.11 c'l/G

We finally consider the case f=5 and S, =1 (Fig.
3). A few preliminary words are necessary to
understand the peculiar situation found in this
case. It is known' that the "effective energy den-
sity" that produces a static gravitational field is

2T T = (c'/el2)(p+ S'), 17

which in our system is proportional to p+S'. In
the previous two cases, the major contribution to
the attractive gravitational effects came from the
dimensionless matter density p(x), but in the pres-
ent case the main contribution comes from S'(x).
A trivial calculation starting from (6) shows that
one always has p(x)~ S'(x) in situations where f/
S( }x&f' —2; in the present case (f =5) we then
have predominance of the S' contribution in re-
gions where S(x) &0.22, that is, from the center
f symmetry where p=0.25 and S,'=1, to the ra-

3.dius given by x =13.7, as can be seen in Fig.
Another interesting feature concerns the metric
potential c&(x); in the previous two cases we found
a positive parabolic behavior near the origin. In-
deed, a few calculations starting from (7) and (8)
show that one always has near the center

I' [x 'o&(x)] = —'S (f' —1) 'I2f- (f' —3)S ] (18)
x~0

we then have negative values for n(x) in the inner-
most shells when 2f/S, (f' —3. This is what hap-

FIG. 3. Casef =5, S(}=1. The quantities S, p, e, and
—g as functions of x.
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FIG. 4. The proper mass Mp, the Schwarzschild mass
M, and the ratio of the binding energy Mp- M to the
proper mass (in units & =1), as functions of the central
value Sp of the scalar field, for J =1.2. A log, p-logip
scale is used.

(19)

and the binding energy is

8 =(M, —M}c', (20}

where M is the gravitational mass defined in (16}.
All these quantities increase almost linearly in

alog»-log»scaleuptolog»S, =0.5x10 '(nonrela-
tivistic region), then bend down in the relativistic re-
gion. For very high central values of S, (log„S,) 5),

pens in the present case. The metric potential
n(x) starts from the zero value on the origin and
assumes negative values with increasing x, with a
minimum in the region where the gravitational po-
tential ri(x) shows a minimum derivative. For x
)13.7 one finds positive values for n(x), with a
maximum near the boundary x =15.8 of the sphere,
a region where ri(x) presents a maximum radial
derivative; with increasing x in the external re-
gion, the two functions n(x) and -ri(x) asymptoti-
cally coalesce, as originated by a mass M
= 7.63c'I/G.

For a better understanding of the behavior of a
system under various degrees of concentration, we
plotted in Fig. 4 the gravitational mass M
(Schwarzschild mass), the proper mass M„and
the ratio of the binding energy to the total proper
mass, as functions of the central value of the
scalar field. The value 1.2 is arbitrarily chosen
for f. The main characteristics described in the
following are quite analogous for other values of

f. The proper mass (invariant mass) M, is de-
fined' by

the numerical procedure fails due to the compu-
tational dif ficulty.

It is interesting to note that the gravitational
massMhas a maximum atlogypSp -—0.8. A similar
situation is well known in the case of neutron-star
models when the gravitational mass is plotted
against the central density of the neutron star. '
In the latter case the existence of maximum mass
is related to the gravitational instability, and so-
lutions with the central density higher than this
maximum point are unstable against collapse. In
analogy to the above, it seems that the solutions
of our system withlog, pSp )0.8 are unstable for the
value f=1.2. However, we should note that the
proper ma, ss does not have a maximum, in con-
trast to the neutron-star models. The ratio of the
binding energy to the proper mass seems to in-
crease monotonically with S„ tending to unity.
Around the maximum of M the binding energy
reaches about 60% of the total proper mass.

We found, in (17), that the scalar field S contri-
butes positively to the effective energy density.
One might then conjecture whether a bounded,
massless scalar source could have static equili-
brium under the combined effects of its inherent
short-range repulsion and the gravitational attrac-
tion produced solely by the term S'(x). This situa-
tion could be formally obtained from the previous
results by making p-0 and if' -~ in such a way
that o =fp is finite. However, we prefer to revert
to the original Eqs. (1) to (3), and make p=0. We
then obtain

oS' =0, (21)

S'=(S—el'o)e" —x 'S'[1+(1+x'S')]e" (22)

g'=-z' —xS",
2xns 1 x2Si2 (I +x~S2)e~n

(23)

(24)

The solution of (24) which is regular in the origin
is

exp[-2 n(x) ]

=1+— (S2($)+S"($}exp[-2n(()]]V«, (25)

S =const =S, , a =S,/&P =const,

exp(2q) = exp(-2n) = 1+S,'x'/3 .

(26)

(27)

which implies that n(x) 0. Since in gravitational
solutions of bounded systems one must have the
asymptotic Schwarzschild behavior, in which n(x)
~ 0, we conclude that it is impossible to have
bounded distributions of massless charges in static
equilibrium.

An unbounded exact solution exists, however, in
(21) to (24). It is
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This is the static, spherically symmetric solution
regular in the origin of Einstein's equations

(28)

as can be seen from (l) and (8), with S = const
=S,. Since (28) is a vacuum equation with cosmo-
logical constant A =S,'/P, we are allowed to iden-

tify the vacuum pressure produced by A to the re-
pulsive effects created by a constant scalar field
of short range.

Our scalar field has no self-interaction. It may
be of great interest to study the system of a pure
Yukawa field w'ith self-interaction under gravita-
tion. Investigations along this line are in progress.
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