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Particle emission rates from a black hole.
III. Charged leytons from a nonrotating hole*

Don N. Page~
W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125

(Received 6 April 1977)

The Hawking emission rates from a nonrotating black hole of small charge are calculated for electrons and
muons and their antiparticles. During the stochastic emission of these charged leptons, the charge of the hole
fluctuates. Assuming that the only type of charged particle emitted significantly by a hole of mass M is one
of these spin-1/2 species with mass p, and charge e, the probability distribution for the charge of the hole is

computed for 0( GMp, /A'c (0.4. The rms value varies from 6.14e for GMp/Ac = 0 to 2.76e for
GMp/Ac=0. 4 and is predicted to be 2.34e for GM p/fic» 1. The electrostatic attraction between the
emitted particle and its antiparticle, along with the charge fluctuations, causes the average emission rate and

power to be lower than for otherwise-similar uncharged particles. This effect of the charge is calculated
(ignoring radiative and self-energy corrections, which are of the same order in e) to be a few percent,
depending upon GMp, /Ac. The particle rest mass p, also impedes the emission, but by factors which can
become much greater for a large enough hole: The average power is reduced to 50% of its value for massless
spin-1/2 particles at GM p,/A'c = 0.160 (M = 8.33 )& 10' g for electrons, 4.03 X 10" g for muons) and to
10% at GM p,/A'c = 0.271 (M = 1.41 )& 10" g for electrons, 6.82 )& 10" g for muons). It is estimated that
muons and heavier particles would contribute about 14% of the power of a nonrotating black hole of
M = 5 )& 10" g, helping it to decay away in nearly 16 )& 10 yr, roughly the present age of the universe.

I. INTRODUCTION

the charge neutralization will rapidly make

Qg =—Q/M«1, (2)

Previous papers in this series"' have made numer-
ical calculations of the rates at which black holes emit
neutral massless particles by Hawking's quan-
tum process. ' It was found that a primordial black
hole of initial mass around 5 x 10"g (if nonrotat-
ing) to 7 x 10"g (if created maximally rotating)
would just decay away within the present age of
the universe. A black hole in this interesting mass
range has a temperature of order 20 MeV, so in
addition to the massless radiation there will be
prolific emission of electrons and positrons and
some emission of muons and heavier particles.
The present paper investigates the effects of the
charge and mass of these spin-2 particles on the
emission.

Gibbons, ' Zaumen, ' and Carter' have shown that
a small black hole will quickly give up most of its
electric charge, though paper I noted that there
should remain random charge fluctuations of order
unity [i.e. , of order (hc)'~'= 11.7e, where e is the
positron charge, using here and henceforth the
Planck units spelled out in paper I]. Before doing
any numerical calculations, let us estimate the
size of these fluctuations.

For a nonrotating black hole with mass

M» 2.18 x 10 '
g = P lanck mass = (Sc/G)'t' —= 1,

(4)8fNg 4 4totZ
dtdco 2n' ~

It is not obvious how I', should vary with Z. How-
ever, one might expect electrostatic repulsion to
produce a decrease with Z (for positive particles)
by a fractional amount of order Zn, partially can-
celing the effect of Z in the exponential thermal
factor in Eq. (4). To get an order-of-magnitude
estimate, one may ignore the variation of I', with
Z and integrate Eq. (4) to obtain

dÃ, /dt = Ce'"

Then as the black hole emits particles and anti-
particles stochastically and possibly builds up a
net charge of one sign or the other, it will tend to
emit more charges of that same sign than of the
opposite sign, pushing the black hole back toward

as explained in Refs. 4-6 and paper I.
Therefore, the Hawking emission rate' for

charged leptons will be

dn, r, /2w
+Br@+ V 4m Z

where the sum is over all angular modes i, I'; is
the absorption probability for each modei at frequen-
cy +, n = 8' is the fine-structure constant, and Z is
the charge of the hole after the particle is emitted,
in positron units (Q= Ze in Planck units).

Paper I showed that the peak in the neutrino
power spectrum occurred at M& = 0.18, where
e """= 0.01 «1, so we might expect that over the
dominant part of the spectrum
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neutrality. Over a time long enough for many par-
ticles to be emitted, the fluctuations will result
in a certain stationary probability distribution for
the charge of the black hole.

Later in this paper the actual probability distri-
bution will be computed numerically, but first
let us see what Eq. (5) as a crude guess gives us.
The probability distribution, P(Z), will be sta-
tionary if the number of black holes going from Z
to Z —1 balances the number going from Z —1 to
Z. Let R(Z) be the rate for a positive charge to
come from a hole with a net Z left behind (i.e. , Z
+1 excess charges originally). Under the assump-
tion of CI' invariance for the emission process,
R(-Z} is the corresponding rate for the antipar-
ticle to be emitted leaving a hole with charge Z be-
hind (charge Z —1 before the emission). There-
fore, the balance in Z —Z —1 requires

P(Z)R(Z —1)= P(Z —1}R( Z). (6)

One can solve this inductively from Z= 0 to obtain

R( Z)R( —Z+—1) ~ R(-2)R(-1)
7)

R(Z —1)R(Z —2) R(1)R(0)

where P(0) is chosen so as to normalize the dis-
tribution. Now if we use Eq. (5) as an approxima-
tion for R(Z), we obtain

P(Z) =e 4'"~ P(0) (8)

which is like a normal distribution with standard
derivation

,=(8vo) "'= 2.33506,

except that Z is not continuous but discrete, though
the rms value for the discrete distribution is the
same to nine decimal places. This is the same
probability distribution that Bekenstein' predicts
from information-theory arguments.

We may also ask how the average emission rate
is affected by the charge fluctuations. If we write
Eq. (5) in terms of the charge of the hole before
emission and then average over the probability dis-
tribution (8) for the cha, rge, we get

(dN, jdf) =CP(0) P e" '

g m 00

= e " C = 0.933 536C. (10)

Thus we might expect the average emission rate
of charged particles to be about 7% less than it
would be for otherwise-similar uncharged particles.
Under our crude assumptions, the charge will
cause a fractional correction of about 7' to the
average power emitted also. It will be shown be-
low that numerical calculations imply that the re-
duction in average power due to the charge varies
between 2' and 5', for black holes of mass up to

2~ 10"g, depending upon the mass of the hole.
However, the numerical calculations ignore cer-
tain interactions with photons, discussed below,
which should also give a fractional correction of
order o.'to the power emitted.

The rest masses of the particles emitted can
have a much larger effect upon the emission rates.
Basically, the particle mass p. provides a lower
cutoff on the energy that an emitted particle may
have, thus eliminating the part of the spectrum at
lower energies that a massless particle would
have. For example, the neutrino power spectrum
peaks at M+= 0.18,' so if Mp. & 0.18, one would ex-
pect the particle power spectrum to be decreasing
for all cu & p, and to include less than about half of
the total neutrino power. It also turns out that the
rest mass reduces the absorption probabilities in
the various angular modes at a given energy, but
this is a smaller effect.

II. METHOD OF CALCULATING THE EMISSION RATES

The emission rates will be calculated from Eq.
(3) after solving the Dirac equation in the field of
the black hole to find the absorption probabilities

This calculation actually involves the approxi-
mation that each particle is emitted individually and
is coupled only to the stationary gravitational and
electromagnetic field that represents the black hole
after the emission. Since the average time between
the emission of successive leptons will turn out to
be greater than 10'M, it should be a very good ap-
proximation to ignore the interactions between dif-
ferent leptons emitted. However, it will not be so
accurate to ignore the interactions between the
leptons and photons, by which are meant nonsta-
tionary electromagnetic fields in contrast to the
stationary field used as a potential in the Dirac
equation to be solved. For example, the emission
of a free photon will give a radiative correction of
order a. Furthermore, each charged lepton will
be surrounded by a cloud of virtual photons and so
will not propagate exactly the same in the curved
spacetime as the point Di,rac particle model used
here. Viewed classically, tidal forces act on the
extended electric field of the particle. This self-
energy correction will also be of order ~. There
will be additional corrections from the vacuum po-
larization of the black hole, but they will be smaller
than the ones above by factors of Zn, which is
small for a typical value of the fluctuating hole
charge.

As a result of this approximation, the results
will be physically accurate only to order n. In
particular, the differences in the average emission
rates between charged and neutral particles need
radiative and self-energy corrections of the same
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R =(X ipse)d ft .(
d jE

dr

To reduce the coefficients in these equations to
real quantities, let

8, = G+iE and 8,= G -iE. (14

Then adding and subtracting 2n'i' times Eqs. (12)
and (13) result in

(r '"d/dr x)G+( Kr-'i' pr)E= 0,

(n. '~'d/dr+ x)E+ (+K4 'i' —p.r)6= 0. (16)

These are the general xadial equations fox a
chaxged Dirae particle in the Kerr-Newman field
of a charged, rotating black hole.

When the black hole is not rotating,

a= r'-2M~+ Q', K= ~~'- e@r,

and the angular eigenvalue becomes

&= j(j+1) —I(i+1)+a =(j+ 2) sgn( j—I), (18)

where j is the total angular momentum of the par-
ticle (unfortunately called I in papers I and II) and
E=j+ ~ is the orbital angular momentum, so that
X is anonzero integer. Then Eqs. (15) and (16) be-
come proportional to Eq. (39) of Ref. 8, where k
is the SRIQe Rs my -~.

In particulax', we are interested in black holes

order as their magnitude given here. The numeri-
cal results are listed to more significant figuxes
than their physical accuracy warrants in order that
they need not be recalculated when the radiative
and self-energy corrections can be made.

The Dirac equation in R spherically symmetx ical
gravitational and electromagnetic field has been
given by Brill and Wheeler', they reduce it to a
pair of coupled first-order radial equations, Eq.
(39) of their paper. However, for illustrative pur-
poses let us show how these saxne equations can be
gotten from Chandrasekhar's separation' of the
DllRe equation in the Kel x' geoIQetl'y Rnd PRge s
extension' of this result to the Kerr-Newman
fields.

Let

R, i2
=—ft, and 8„@—=(2/n)'~'A2

in Eqs. (40) of Ref. 9 and substitute Z from Eq.
(14) of Ref. 10 into Eqs. (18) of Ref. 9 to generalize
it to a Kerr-Newman fieM. Also, for simplicity,
replace v 2 p, and v 2X in Ref. 9 by p and X, as in

Ref. 10—then p becomes the particle mass and X

is an angular eigenvalue which reduces to an inte-
ger when the hole is nonrotating. Then Eqs. (40)
of Ref. 9 take on the symmetrical form

+—ft, =(A+i p, ~)n.
d jK

obeying Eq. (2), so that the Reisner-Nordstr5m
geometry becomes indistinguishable from the
Schwarzschild geometry even though the electro-
magnetic coupling to the charge may not be negli-
gible. In that case, Eqs. (15) and (16) may be
written out as

To calculate the emission rates, we must solve
Eqs. (19) and (20) to get the absorption probabili-
ties I',. to insert into Eq. (3). We start with a pure-
ly ingoing wave near the horizon, integrate the
equations outward, and then resolve the solution in-
to incoming and outgoing wRves Rt large x'Rdii to
see what fraction I',. of the incoming waves have
gone down the hole and what fraction R,- have been
reflected back to become the outgoing waves. The
difference between the calculated I', +A, Rnd unity
gives a measure of the numerical error in solving
the radial equations.

The Appendix describes R numerical method de-
veloped to solve the general Eqs. (15) and (16) for
a black hole of arbitrary charge and rotation.
Once the angular eigenvalues become available for
a rotating hole, " ealeulations of the emission from
a general Kerr-Newman hole can be done by the
methods of the Appendix. However, the px'esent
paper gives the results only for a weakly charged
nonrotating hole. In this case fewer calculations
Rre needed, since Rll the angulRI' IIlodes with dif-
ferent axial angulax momenta m but the same j and
1 give the same emission, and the contributions of
different modes decrease x"apidly with j, so that
only a few angular modes need be calculated.

After the computer program was developed for
calculating the absorption probability I' for a given
Mp, , Ma, eQ=Zn, and angular mode, the F's
were summed over the dominant angular modes,
and Eq. (3) was used 'to give the emission rate per
frequency interval. This was then integrated over
frequencies to give the total emission rate and
power for various values of Mp and Z.

Equation (7) was used to calculate the probability
distributions for the charge Z {in positron units)
of black holes of various masses. The emission
rate and power Rs R function of Z for each M p, was
then averaged ovex each distxibution to give the
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average emission rate and power as a function of
Mp, the black-hole characteristic size (half its
Schwarzschild radius) in units of the particle's re-
duced Compton wavelength.

III. RESULTS
—4

~s ~ ~ ~ ~ ssssIa ~ sas ~ ~ ~ ~ Is ~ ss ~ ssssI ~ sss ~ s ~ ~ ~ Is\a ~ ~ ss ~ as

To illustrate how the black-hole cross section
o, emission rate, and power depend upon M~,
Mp, , and Z, Figs. 1-3 show ov'/27vM', dlV, /dt's,
and MdEJdtd&u vs M&u for Mp =0, 0.2, and 0.4 a,nd
Z= -20, 0, and 20. These were calculated accurate
to roughly one part in 10' or better. The quantity

ov' 1
27 M' =

2V (M )' ~ ~ ~ " (21)

where the eigenvalue X is summed over all positive
(l J 2 = & —1) and negative (l= j+—,

' = -X) integers
which give a significant contribution, was calcu-
lated rather than the cross section itself or its di-
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FIG. 2. Emission number rate in spin-2 positively
charged particles from a hole of Z =20 (dotted curves},
0 (solid curves), and —20 (dashed curves). Curves for
each Z have My=0, 0.2, and 0.4 and start at that value
of Mco.
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FIG. 1. Cross section 0 of a black hole of mass M to
spin-21 particles of charge e, mass p, and energy u, ex-
pressed in dimensionless form [Eq. (21}]with the singu-
larity at zero velocity e factored out. Dashed curves are
for a hole with Z= —20; solid curves, Z=0; dotted
curves, Z =20. The three curves for each Z correspond
to different black-hole masses and start at Mrs = Mp,

=0, 0.2, and 0.4, respectively, for black holes of M ~0,
1.04x10 ' g, and 2.08x10 '

g for electron emission or
~ =0, 5.03x10 g, and 1.01x10"g for muons. Tabular
values of the data represented by this figure (at inter-
vals of 0.01 in I+}are available upon request.
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FIG. 3. Power in spin-2 positively charged particles,
with the same notation as in Fig. 2.
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~ ~ e ~ ~ ~ ~ w ~ I ~ ~ ~ ~ ~ ~ ~ ~ eI w ~ ~ ~ e ~ ~ ~ eI ~ e ~ ~ ~ ~ ~ v ~ I ~ ~ ~ ~ ~ ~ wee
dN, 16 i.~ i2 8@MR+4.og
dtdm m

(24)

MdE, 16 x, w3 8gg„y 4g~g
dtd& m

(25)

over v «1, which includes the dominant part of the
spectra. Thus one may integrate the spectra to
get the total emission rate and power from a large
hole:

~1O ' M + (M )2 8PNll + 4'tolz

dg
(26)

M2 + (M )3& 8rNg + 4raz
df 7T

(27)

~ ~ ~ ~ $44 ~ ~ I ~ ~ ~ ~ ~ ~ I ~ ~ IS ~ ~ $$ ~ i ~ II ~ ~ ILLS j III' ~ I ~ ~ ~ ~ I ~

-25 -15 -5 5 15 85

Charge
FIG. 4. Emission rates in spin-2 particles of charge

e from a black hole with charge Ze after the emission.
The abscissa gives the charge Z in positron units. The
dots at each integral value of Z are all that are signifi-
cant; the lines merely connect the dots with the same
3fp.

dX, 27(M&@)'/v ov'
dtd(d e"' " "O 1 27rM'

M dE, 27(Mu) '/v o'v'

dtda e" " " +1 27@M'

(22}

(23)

For AIp, » max(1, Za), Og =16mM at v &&1, as
noted above, so then the spectra become

mensionless form &I '0, since the cross section di-
verges as v ' at low velocity v = [1 —(Mp/Mv)']'~', "
whereas the quantity above remains finite. For
M~» max(1, Zot) the quantity above varies from
at v= 0 to 1 at v= 1, as shown by Eq. (95) of Ref.
12, and as hinted by the convergence of the curves
in Fig. 1 toward 1 at high energy. The oscillations
of the curves with energy occurs as successively
higher angular modes become strongly absorbed to
contribute in Eq. (21). In other words, the quanti-
zation of angular momentum causes the maximum
effective impact parameter b= j/(uv) that is strong-
ly absorbed to be discrete and increase in jumps.

From the values of ov'/27vM', the emission rate
and power data shown in Figs. 2, 3 can be com-
puted by the following formulas:

The formulas are the same for negative particles,
except that Z is replaced by -Z. These formulas
agree with Eq. (5), so the charge probability dis-
tribution should be the same as given in Eq. (8)
if M p, » max(1, Z+). Also, the emission averaged
over the charge distribution should be, as in Eq.
(10),

(Mdtro

/dt) =(2/v')(Mp) e 8~+I'

(M dE /dt) = (2/v )(Mp ) 3e

(28)

(29)

For other values of M p, and Z than those shown
in Figs. 1-3, the emission was calculated only at
those values of Ma (generally S 0.6) needed to give
accurate results for the numerical integrations
over frequency. For Mp. = 0, the calculations were
made at all integral values of Z from -25 to 25 to
an accuracy of roughly one part in 10'. For i'If'
= 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, and
0.40, calculations were made at every fifth value
of Z from -25 to 25 to an accuracy of roughly one
part in 10' at low Mp. and 10' at high Mp. , and cubic
spline interpolations" were made for the other in-
tegral values of Z. When the interpolation scheme
was tested with every fifth value calculated for Mp,
= 0, it reproduced the other values with an average
error of about one part in 10'

~

The results for the total emission rate in positive
spin-~ particles vs Z is shown in Fig. 4, where Z
is the charge of the black hole after it emits the
particle. If the curves were straight lines on the
semilog plot, then Eq. (5) would apply (possibly
with a different coefficient of Z in the exponent-
the slope of the semilog curve), and the charge
probability distributions would have Gaussian
shapes as in Eq. (8). The actual probability dis-
tributions, calculated from Eq. (7) with R(Z) being
the values of M dNJdt shown in Fig. 4, are shown
in Fig. 5. The rms values of Z and a comparison
of the higher moments with those of normal distri-
butions having the same standard deviations is
given in Table I.

The total power emitted in positive particles at
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FIG. 5. Probability distribution for the charge Z (in
positron units) of a black hole that emits charged parti-
cles predominantly of mass p. The curve for Mp =0.05
(not shown) is very near the one for Mp, =0; those for
Mp =0.35 and 0.40 would be very near that for Mp =0.30.

Charge
FIG. 6. Sum of the power in spin-2 particles of charge

8 and -e from a hole with charge Ze before the emis-
sion. (The labeled value of the charge is Z rather than
Ze.} The bottom curve, not labeled, is for Mp =0.40.

all energies has a similar dependence on Z as the
total emission rate shown in Fig. 4. Therefore,
it is more interesting to plot the sum of the power
in both positive and negative particles vs Z, which
is shown in Fig. 6. Here, unlikein Fig. 4, Zis taken
as the charge of the black hole before emission;
i.e. , the curves are the power in emitting a posi-
tive charge to leave a hole with charge Z —1, plus
the power in emitting a negative charge to leave
the hole with 8+1. Contrary to the naive expecta-

tion that one would get if the power obeyed a for-
rnula like Eg. (5j, the sum in positive and negative
charges does not always rise with ~Z~ but in-
stead falls when Mp ~ 0.15, at least at low j Zi.

The power in positive and negative particles as
a function of Z may be averaged over the charge
probability distribution to get the average pomer
emitted as the black hole fluctuates in charge.
This quantity, as mell as the average emission rate
in positive and negative particles, are listed in

TABLE I. Root-me — qan-s uare charge of a nonro a mg act t bl k hole and ratios of the higher moments of the charge pr'oba-
value. An lar brackets denote an average over the proba-bility distribution to those of a Gaussian with the same rms value. ngu ar rac e

bility distribution.

«') ~»!«'&' (z'& /5!!&z'&' &z'&/7!! (z')4 (z "&/9 t! (Z')' (z")~»!!(z')'

0
0.05
0.10
0.15
0.20
0 ~ 25
0.30
0.35
0.40

6.1428
6.2527
5.6466
4.1791
3.1196
2.8247
2.7589
2.7608
2.7578

0.9396
0.9444
0.9573
0.9864
1.0149
1.0046
l.0017
1.0016
0.9977

0.8361
0.8476
0.8808
0.9623
1.0441
1.0141
1.0052
1.0047
0.9934

0.7088
0.7263
0.7818
0.9303
1.0878
1.0291
1.0105
1.0090
0.9873

0.5751
0.5961
0.6711
0.8925
1.1464
1.0501
1.0177
1.0144
0.9794

0.4481
0.4695
0.5584
0.8506
1~ 2211
1.0777
1.0270
1.0208
O.9701
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TABI.E II. Total emission rate and power in spin-~ particles and antiparticles of mass p from a nonrotating black
hole of mass M. "Charged particles" means particles of charge +e, with the emission averaged over the probability
distribution for the charge of the hole. "Neutral particles" means particles of zero charge whose emission does not

depend upon the charge of the hole. "Charged/neutral" means the ratio of the average emission of charged particles to
that of neutral ones. Radiative and self-energy corrections have been ignored, so these numbers are physically signi
ficant only to order o. .

Emission rate, M dlV/dt

Mp Charged particles Neutral particles Charged/neutral
Emission power, M dF/dt

Charged particles Neutral particles Charged/neutral

0
0.05
0.10
0.15
0.20
0.25
0.3Q

0.35
0.40

9.516 x 10 4

8.581 x 10 4

6.430 x 10-4

3.974 x 10 4

1.892 x 10-4

7.396 x 10 5

2.729 x 10 5

9.965 x 10-'
3.682 x 10

9.714 x 1Q"4

8.788 x 10 4

6.642 x 10 4

4.151x 10-4

1.993 x 10 4

7.768 x 10 ~

2.859 x 10 5

1.029 x 10 '
3.735 x 10

0.9797
0.9765
0.9680
0.9571
0.9495
0.9521
0.9543
0.9684
0.9859

1.589 x 10
1.499 x 10
1.243 x 10
8.770 x 10
4.909 x 10 5

2.264 x 10 5

9.692 x 10 6

4.029 x 10 6

1.664 x 10 6

1.637 x 10 4

1.546 x 10
1.288 x 10 4

9.163 x 10
5.165 x 10
2.378 x 10-'
1.016 x 10-'
4.171 x 10-'
1.695x 10 '

0.9706
0.9696
0.9657
0.9571
0.9505
0.9519
0.9537
0.9661
0.9818

Table II at the nine values of Mp. used. For com-
parison, the power and emission rates for neutral
Dirac particles are also listed„as well as the
ratios of the charged-to-uncharged results. The
charged particles always have a lower average
emission, though not 7/o lower as naively pre-
dicted above. This effect would persist even if the
curves in Fig. 6 were flat so that the average pow-
er were the same as the power from an initially
uncharged hole, for when a charged particle is
emitted from such a hole, it leaves behind a charge
of the opposite sign which tends to hold back the
emitted particle. Again it should be noted that these
calculations do not take into account other effects
which should give fractional corrections of order
Q,

In order to get a smooth plot of the dependence of
the average emission rate and power on Mp, crude
functional fits were found, and then the correction
factors were approximated by cubic splines. The
crude functional fits were chosen to be

1.166 at Mp. = 0.4. Therefore, one might expect
cubic spline fits of R&(z) and P&(z) to be fairly a,c-
curate. The results of these fits were inserted
back into Eqs. (30) and (31) to get the approximate
average emission rate and power vs Mp. , and then

10

R 10
—4

dN, dP' 4+ 2z + z'
dt dt 16z'(e'+ 1)

(30)

dE, dE 12+ 6z+ 3z'+ z "~p ( ), (31)
dt dt 128m'(e'+ 1)

where z =—8zMpandwhere R,&(z) and Pz(z) are the
correction factors. The functions in Eqs. (30) and

(31) were chosen so as to guarantee that A& and

P& have no low-order derivatives at z = 0 and that
they reduce to unity as z becomes infinite. Indeed,
the correction factors did turn out to be fairly con-
stant over the nine values of Mp, calculated, with

R& increasing from 0.794 at M p. = 0 to 1.232 at M p.

= 0.2 and then generally decreasing to 1.141 at Mp
= 0.4, and P& increasing from 1.111 at Mp, = 0 to
1.290 at M p. = 0.2 and then generally decreasing to

~ ~ a a ~ ~ s ~ ~ I ~ a ~ ~ ~

0.0 0.1 0.2 0.3 0.4

FIG. 7. Average emission rate and power of spin-2
particles of charge e and mass p from a black hole of
mass M. The curves are the results of a fit to the cal-
culated values at nine values of Mp, spaced evenly across
the graph. Mp, =1 corresponds to jr=5.20x10" g or to
2.52x 10~~ g for JLf being the mass of the electron or
muon, respectively.
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these values were plotted in Fig. V. The power is
down a factor of 2 from the M p = 0 power when M p,

=0.160, down a factor of 4 when Mp. =0.215, and
down a factor of 10 when Mp =0.271.

IV. IMPLICATIONS FOR ELECTRONS AND MUONS

Any black hole smaller than about 10"g mill be
emitting electrons and positrons prolifica11y and
so have rapid charge fluctuations of a few positron
units, with the rms value approaching 6.14e as the
black hole gets much hotter thanthe electron rest
energy. The average power in electrons and posi-
trons of both helicities becomes greater than 50/o
of the power in all four kinds of neutrinos as a
black hole gets smaller than 8.33 & 10" g, and it
approaches 9VVo of the neutrino power as the ma, ss
gets much smaller (e.g. , within 1' of this limit
for M ~ 1.1 x 10"g). The average power in muons
and antimuons similarly reaches 50Vo of the neutrino
power at 4.03 x 10"g and becomes greater at
smaller masses.

Now we can try to estimate the total emission in
all kinds of particles from a black hole with
M= 5 x 10"g. The muon-antimuon power is about
3IVo of the neutrino power. At this black-hole
mass, pions have My=0. 26 (w') and 0.25(v ). If
their power mere the same as an equaL number of
spin states of spin-2 particles at the same Mp,
they would contribute about 9/o as much power as
neutrinos. Known heavier particles would con-
tribute only negligibly, so the total power mould be
that in gravitons a,nd photons (whose emission was
calculated in paper I), plus roughly 2.37 times the
neutrino contribution, or

dE/dt=4 25x10'M '.=2.93x10"erg sec '

M= 5x10"g=2. 30x 10"Planck units. (33)

If the power went as M ' at lower masses, the total
lifetime of such a hole would be 16 billion years,
roughly the age of the universe. Muons and pions
will contribute power which mill increase some-
what faster than M"' at lower M as their rest mass-
es become less of a hindrance to their emission,
but since they make up only about 14/o of the power
at 5 x 10"g, the lifetime should not be much short-
er than 16 billion years. This result strengthens
the estimate of paper I that a primordial black
hole mill have just decayed away within the present
age of the universe if its initial mass mere about
5X 10 g.
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APPENDIX

y = ln(e" —1)

as dimensionless radial variables, where

(A2)

defines t', and x . The waves have an infinite num-
ber of oscillations near the horizon at x = 0; y- -~
there and stretches out the waves so that they re-
main well behaved in that variable. By defining

(r,' +a)~ —egr, -am
r+ -r-

2r, (a) —eQ,

IC, =(r, —r )ro,

M, =r, p, , M, =(r, —r ) p.

(A4)

(A5)

[where I have replaced o and m in Eq. (14) of Ref.
9 by cu and -m, respectively, in order to return
to the conventions of Teukolsky's original separa-
tion of the neutrino equation in the Kerr" field],
we may write the general radial equations in the
explicit form

M +My K +K@+Kg3
1 „)x'a(1+x)'" x(1+x)

de -X(i e )

dy x'~(1+x)'~'

M +My K +Kg+K~
x'"(1+x)'f' x(1+x)

Here y is taken as the independent variable, and
x is defined implicitly by Eq. (A2), which has the
explicit inverse

x = ln(1 + e"),

For the purpose of calculating the emission rates
of charged leptons from black holes of arbitrary
charge and rotation, a computer program was
wtitten to solve the general Eqs. (15) and (16). It
proved convenient to define

y' —y'+
x=-

r+ —r
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Go= e'~0", I' =i C. (A9)

At small nonzero values of x, the solution was ex-
panded in a power series of the form

a slight numerical advantage over the Regge-
Wheeler tortoise coordinate" or the analogous ra-
dial coordinates used in the Kerr geometry by var-
ious people (see Ref. 14).

At the horizon (y--~, x-0), an ingoing wave
has the form

(A13)

p= 2 2 +O(x '),X(X —1)
(A14)

(A&5)

X(X+ 1)
4y2 2

&' —K' '~'dx = const+ kx + c lnx+ 0 x ',

R, = e' &&'x'/'(a, + b,x+ c,x'),

P2 = e'ro'(1+ //p + cp'),
(A10)

where a» b„c„b„and c, were found explicitly
in terms of X, Ko, K» K„~V„and M, and used to
give highly accurate starting values for R, and 8,
[and hence G and E by Eq. (14)]. Then Eqs. (A6)
and (AV) were integrated outward to y» 1 by the
Bulirsch-Stoer method" with variable step sizes
for controlled accuracy.

At large radii, where the difference between x
and y is negligible, the solution may be expressed
in the form

with

l1(x —1) (x —1)(H.+ ex+ 2kv) —xc

(A17)

X(X+ 1) (X+ 1)(kX+cX+ 2kv) + Le
2&x 4@x

(A19)

(A20)

2Q g eQ +6+'f1' + 'l (P g eaI +8 $Y $(P
in OUt (A11)

(A&2)ig 8 1+0+$6 +It(P ig e 0'+6+'l6 i///

in out

where
I
Z„I2 and l&,„,I2 are the fluxes of incoming

and outgoing waves, relative to the purely ingoing
Qux down the hole, and where

firn (x2 cg2)1/2 (K 2 M 2)1/2

c—= (2K,K, —2K,' —2M+I, +M, )/(2k),

v =—(2K,M, —K2M, —2K2MO)/(2k) .
By using these expressions, we can calculate

(A21)

(A22)

(A23)

I g, I
'+ IZ,„2 I 2e 2~"212G I'+ 2e2~'~

I 2E I' - tan(y —e) Re(2G 2E)
lm(2G ~2E)

Then the absorption probability is W=
I R, I' —IR, I' = lm(2G 2E) = const. (A26)

This method of calculating I' from the solution
at large radii is accurate through O((2kx) ') (as-
suming the solution is accurate) and is independent
of the normalization of the solution at the horizon
(so long as it is purely ingoing there). However,
the differential equations give rise to a conserved
quantity (analogous to a Wronskian), proportional
to the net inward flux of particles:

This constant is normalized to unity at the horizon,
so inasmuch as the numerical scheme is success-
ful at keeping it constant, the solution at large
radii should give I2'„I' —I2',„2I'= 1. Therefore,
another value of & can be obtained from the nu-
merator alone in Eq. (A24) and the corresponding
value of I' obtained from Eq. (A25). The difference
between this and the previous value for 1 gives
a measure of the error incurred in numerically
solving the radial equations.
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