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We have used the Feynman-diagram technique to calculate the differential cross sections d crt' 0 for the

scattering of zero-rest-mass plane waves of spin 0, 1, and 2 by linearized Schwarzschild and Kerr geometries

in the long-wavelength, weak-field limit (wavelength of incident radiation )0 radius of scatterer )& mass

of scatterer). We find that the polarization of right (or left) circularly polarized electromagnetic waves is

unaffected by the scattering process (i.e., helicity is conserved), and that the two helicity (polarization) states

of the photon are scattered differently by the Kerr geometry. This coupling between the photon helicity and

the angular momentum of the scatterer also leads to a partial polarization of unpolarized incident light. For

gravitational waves, on the other hand, there is neither helicity conservation nor helicity-dependent

scattering; and the angular momentum of the scatterer has no polarizing effect on incident, unpolarized

gravitational waves.

I. INTRODUCTION

Recent observations by Harwit et a/. ' have placed
an upper limit on the difference of deflection be-
tween left and right circularly polarized radio
beams passing near the limb of the sun. Whereas
previous electromagnetic tests of general relativ-
ity (light bending near the sun, Shapiro time delay
of radar signals, gravitational red-shift') probe
only the geometric-optics limit of electromagnetic-
gravitational coupling, this experiment goes be-
yond geometric optics. The deflection is indepen-
dent of polarization in the geometric-optics limit;
but for real, physical waves the helicity of the
wave should couple to the angular momentum of
the deflecting object ("magnetic-type" gravitation-
al effect) to produce helicity-dependent deflection-
helicity dependence which, for the sun, is below
the accuracy of Harwit et ul. , but which should

exist nevertheless.
A number of recent papers have used general

relativity theory to investigate this helicity depen-
dence and other aspects of the interaction between

incoming waves and a gravitating body. ' " Grad-
ually the full picture of such interactions is emerg-
ing, but there remain as yet a number of gaps in

the picture. The purpose of this paper is to fill in

one of those gaps: the full details of the long-wave-

length limit for rotating and weakly gravitating
bodies

(wavelength) -=2m/u» (size of body) =I. -
» (gravitational radius) -=M

and it is most useful to calculate the amplitude

T&, for scattering of an incoming plane wave ~i)
into an outgoing (final) plane wave

~
f). From this

scattering amplitude one can derive everything of
interest —the explicit form of the scattered wave,
the differential scattering cross section do/dQ,
the amount of focusing, the deflection angle in the
regime where it has meaning, i.e. , (wavelength)
«(impact parameter), etc.

We, like some others before us, "'"have found

the Feynman-diagram technique to be far more
powerful than partial-wave analyses for studying
the long-wavelength limit of classical scattering.
Historically the Feynman technique was first used
in conjunction with quantum-electrodynamical pro-
cesses." " Its efficiency as a problem-solving
tool soon led to its widespread use in many aspects
of quantum interactions, including quantum grav-
ity. "" However, since classical scattering is
the long-wavelength limit of quantum scattering,
one can perfectly well use the technique to solve
our type of classical problem.

Our paper is in six sections. Section II gives the
I.agrangians, vertex rules, and diagrams needed
for each type of wave (scalar, electromagnetic,
and gravitational), as well as the formula for the
differential scattering cross section in terms of
the transition amplitude. In Secs. III, IV, and V
we treat the scattering of scalar, electromagnetic,
and gravitational waves, respectively. Section VI
discusses and contrasts our results with those of
other authors.

II. FEYNMAN DIAGRAMS FOR SCATTERING

for scalar and gravitational waves as well as elec-
tromagnetic.

In the regime 2 /&u»vI. »M it is better to speak
of a, "scattering" of the waves than a "deflection";

The classical problem of the scattering of a
massless field propagating in a slightly curved
spacetime may be treated by quantizing both the
gravitational background and the scattered field.
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In this scenario both fields evolve in a Minkowski
spacetime and couple according to the Feynman
vertex rules. This approach may be contrasted to
the work of Peters, "in which the gravitational
background is considered to be a passive nondy-
namical entity, whose influence on the propagating
field is embodied in a curved-spacetime Green's
function. In this section we summarize the rele-
vant Feynman rules.

The wave equation for source-free scalar waves

g -uR$=0

may be obtained from the Lagrangian density

~s 2 ~g (g 0, 0,8+uB4 )

(2.1)

(2 2)

where u is a constant, R is the curvature scalar,
g=detllg~all, and&-=(-g) "s„(g v'-gas). For u

=,—', g represents conformally invariant waves.
Following Feynman' ' and Gupta, and since

we require that Ih"
I
«1 everywhere, we expand

the gravitational field about the flat Minkowski
background:

v'-g g ~=-g '-=q"'-2' ' (2.3)

g"'= q' 2~(h' .'h-q")+ o-(~-'),

8 = 2P. (h ~a+ gh ~ ) + O(x ),

(2.5)

(2.6)

where the trace of the metric perturbation is de-
noted by h =h„". Expanding (2.2) in powers of A.

we find that

(2.7)

where

~0= -z'0 $,~&,8,aa

Z, =h g ~g 8 u(h 8+-~h )g'.
(2.8)

The free (i.e. , noninteraction) Lagrangian 2, de-
scribes the free propagation of the scalar field g
in Minkowski space, whereas the terms propor-
tional to X, A.', etc. represent the interaction parts
of 2, i.e. , they determine how the gravitational
field h ~ couples to the scalar field g. In this for-

where the gravitational coupling constant A =v 8m

and we use units in which G = k= c = 1. Indices are
raised and lowered using the Minkowski metric
t) s=q 8=diag(-1, 1, 1, 1), commas denote partial
derivatives, semicolons denote covariant deriva-
tives with respect to the metric, and h is the
trace-reversed metric perturbation.

The determinant factor v -g, g", and A now be-
come infinite series in A,

~a= (-«tli g.all)" = (-«tll o'll)" =1 —~+o(~'},

(2.4)

FIG. 1. The graviton-(zero-rest-mass field}-(zero-
rest-mass field) vertex. The wavy line represents a
graviton. The solid lines represent either scalar,
electromagnetic, or gravitational quanta.

'k= 'k+ q . (2.11)

In this calculation we shall limit ourselves to in-
teractions proportional to X2 (single-graviton ex-
change); in other words, we shall calculate the
scattering cross sections in the first Born approx-
imation. In the classical limit for the scattering
of waves with angular frequency co by a mass M
with angular momentum J, this corresponds to
calculating at first order in the dimensionless
quantities Me and Je'. Since our interest is re-
stricted to a gravitational-background geometry
generated by classical energy-momentum distri-
butions which are not affected appreciably by the
scattering process, we may replace the virtual
graviton by an external field. " In particular we

malism, quantization of the Lagrangian density is
equivalent to treating h and g as quantum field
operators.

From 2, we may derive the amplitude 721 for a
transition of the scalar field from an initial plane-
wave state with wave vector ("momentum"} 'k" to
a final state with "momentum" 'k" while absorbing
a graviton with momentum q and polarization e
(Fig. 1):

T„=2& e['k& 'k8&+u(q qa+2q Sq')]. (2.10)

Here we have used the notation A~„Bai =
& (A~8

+ B„As) and the superscript 1 (2) denotes the ini-
tial (final) state. Conservation of 4-momentum re-
quires that
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$„=6»+ i(2v)~5'( k —'k —q)T2~, (2.12)

where S» is the S matrix connecting the initial to
the final state. With this normalization for 7»,
the differential cross section for the scattering of
a zero-rest-mass wave with frequency ~ into a
solid angle dQ is

(2.13)

where D denotes the density of final states,

(d2

(2v)' (2.14)

Turn now to the scattering of electromagnetic
waves off a slightly curved background. The mani-

consider only static fields; hence in the vertex
rule (2.10) e E stands for the 3-dimensional Fourier
transform of h and the graviton 4-momentum is
pure spacelike (qa= 0).

The transition amplitude T» above has been nor-
malized by the definition

festly covariant photon Lagrangian density, ob-
tained by minimal coupling to gravity, is

gEu = -~ v'-g (g" g" F~aFa()), (2.15)

where I'&„ is the electromagnetic field tensor
computed from the Maxwell vector potential A „by

(2.16)PV AV P L4P V ~

From (2.15) and (2.16) one obtains the field equa-
tions for the source-free electromagnetic field:

+PV;X++V X P
+ ~XP V

F:V =0.pv

(2.17}

(2.18}

1 ~P a VBp

(hu q ~ht)v r) E)F» F
(2.19}

(2.20)

After proper permutation of the photon labels cCy

provides the graviton-photon-photon vertex rule
(see Fig. 1)

We expand the photon Lagrangian density in powers
of X according to (2.7) and obtain

T2, 2)(e ('k—(at'k8)( E E )+ E(a E())( k k) k(a E())( k E}

ka E() ( k e+) -g))a()[( k' k}( E ' Ea}—( k' Ea}( k' E}]}. (2.21)

Here 'k~ and 'e are the 4-momentum and polarization vector of the ingoing photon, whereas 'k~ and
denote the respective properties of the outgoing photon. In accordance with the external-field approxima-
tion e E denotes the Fourier transform of h . Note that the transition amplitude (2.21) is invariant under
a gauge transformation of the form

(2.22)

where y is an arbitrary scalar.
Finally we turn to the scattering of gravitational waves by the gravitational background. One arrives at

the matter-free Einstein field equations

(2.23}

by varying the Lagrangian density

(2.24)

Taking for our basic fields g~" = 4-gg"" and g„„=g„„/v'-g rather than the metric itself, we can express
the Einstein gravitational Lagrangian density (2.24) in the particularly convenient Goldberg" form:

1 as a 8 PT
16)(2 ( 0 ()ap Qr a 9 ((pr ()aa 4 1 a 7 r Spv)(), a (),E ~

After we expand (2.24) in powers of )(, the components of Za become

(2.25)

(2.26)

(2.27)

The interaction part Zy appropriately symmetrized with respect to the graviton labels, provides the ex-
pression for the three-graviton vertex (see Fig. 1):
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T' =le""f 2('e 'e» 'k 'k —'e e» q 'k +'e~ 'e q 'k)

4[ le 2e» lk8 2klx q8(2e» ax lk le 2e»42 2k }]
+4('k 'k'e 'e»2 —q ~ 'k'e 'e~ +q ~ 'k'e~ 'e 2)

-['k 'k('e„„2e» +2e~„'e) —q ~ 'k'e~e~„+ q ~ 'k'e* 'e „+q„„(q~ k —q ~ 'k)'2: 22»]

+ ['k 'k 'e e»+q {q 'k e» 'e 2- q 'k 'e~e»"2)]f (2.28)

where 'k~, 'e~~; 2k, e 8; and q, e 8 refer to the
momenta and polarizations of the gravitons and
'e t denotes the tensor inner product. Unlike the
graviton-photon-photon transition amplitude (2.21),
the three-graviton transition amplitude is not in-
variant under the analogous gauge transformation,
which in this instance is of the form

i —as i—as i~a 6 iy8 (i =1,2), (2.29)

III. SCALAR %(AVES

Since the waves have wavelength much larger
than the scatterer, they cannot probe (at first or-
der) either the scatterer's internal structure or
the quadrupole and higher-order moments of its
gravitational field. For this reason, and because
we calculate only to lowest order in A. , we can ap-
proximate the scatterer's gravitational field by the
linearized metric for the exterior of a spherical
body endowed with angular momentum:

2M
(a, xr), , (3.1)

2M
8 k ~+ ~ik'r

where X represents an arbitrary vector.
In general, the gauge invariance of the ampli-

tudes is guaranteed by the Feynman-diagram for-
malism as long as all the diagrams of the same
order in the coupling constant are included. Owing
to our ignorance of the propagator for an object of
mass M and very high quantum-mechanical spin,
we omit all diagrams but the graviton-pole dia-
gram. (This difficulty in formulating the quantum
problem could probably be avoided by a classical
analysis. ) In the external-field approximation (no
recoil of scatterer} the amplitude corresponding to
this diagram is given by (2.28), where e"" stands
for the 3-dimensional Fourier transform of h"'.
The external-field approximation serves to simpli-
fy the algebra, but the effect of the omitted dia-
grams is to yield an amplitude (2.28) that is not
gauge invariant, and is valid only for small scat-
tering angles.

Here M is the mass of the body and Ma= Sis its
angular momentum. The Fourier transforms of
the h 8 are given by

A.M
e 00

iVf
e21 =el, = 2, (ax@

2g
(3 2)

elk

where q is the (pure spacelike) momentum transfer
q='k —'k (q'=0). Permitting the angular momen-
tum per unit mass a, to vanish in (3.1) or (3.2), we
recover the linearized Schwarzschild geometry.
Using Eqs. (2.10), (2.13), (2.14), and (3.2), the
differential scattering cross section becomes

M
. , ;— [[I—2u sin'(28)]'

dQ sin'(-', 8)

+&ll'[a ('kx'k)]'}. (3.3)

In the above ~ is the angular frequency of the
scalar wave, '0 and 'k are unit 3-vectors along the
propagation directions of the incident and scattered
fields, respectively, and 0 is the angle between 'k
and 'k. Allowing a to vanish (linearized Schwarzs-
child geometry) one recovers the result previously
obtained by Peters":

. «—— [1 —2u sin (-, 8)](
do M

~ 2 1 2

dQ 2,„„sin'(-2'8) (3 4)

Owing to the x ' dependence of the Newtonian po-
tential, for the case of minimal coupling (u =0),
Eq. (3.5) reduces to the usual I/sin'{28) Ruther-
ford-type cross section. For nonminimal coupling
(u» 0), the cross section still exhibits the Ruther-
ford-type angular dependence, but only for 8 «1.
This is not surprising, since it is the scalar cur-
vature R which gives rise to u-dependent terms in
the cross section. Considering that 8 is nonzero
only along the world line of the scatterer, we see
that for large impact parameters (i.e., small scat-
tering angles) the scalar curvature cannot signif-
icantly contribute to the differential cross section.
One may rewrite the scattering cross section for
rotating bodies (3.3) in the suggestive form
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+, , 8
sin a sin 8

since'

(3.5)
scsw

with e, 8, and y as shown in Fig. 2.
Equation (3.5) shows that the effect of angular

momentum is to add a positive-semidefinite term
to (do/dA) s,„„. For small scattering angles this
angular momentum term is negligible with respect
to (do/dQ) s,„„. This can be easily understood by
noticing that for large impact parameters the r '
dependence of the Newtonian potential h«dominates
the r ' dependence of the magnetic-type gravita-
tional field h„, which is the source of the angular
momentum term. Another interesting feature of
(3.5) is that the scattering in the backward direc-
tion is finite and independent of the angular mo-
mentum a:

= Ms(1 —2g)s .
dQ e=~

(3 5)

FIG. 2. The spatial orientation of the angular momen-
tum a and the scattered direction k relative to the inci-
dent direction «S.

IV. ELECTROMAGNETIC %(AVES

Theoretically more interesting and of possible observational importance is the gravitational scattering of
electromagnetic waves. We choose the polarizations of the photons to be purely spacelike ['e = (0, 'e), 'e
= (0, 'e)] and use Eqs. (2.13), (2.14), and (2.21). The result for the scattering of electromagnetic waves
with initial polarization 'e into some polarization '~ is

M
((1+cos8)('e 'e*) —('k 'e*)('k ~ 'e)

dQ 4 sin'(-,'8)

+ i@[2('kx'k) .a('e ~ 'e*) + [('k —'k) && 'e*] ~ a('k ~ 'e)+ [('k —'k) x 'e] a("k 'e*)]['. (4.1)

For linear polarizations ('7 and 'e real) the contribution of the angular momentum a to the cross section (4.1)
will be proportional to a'&u', whereas for circular polarizations ('e and 'e complex) the contribution will in-
clude an a&a term. We first consider circular polarizations (i.e. , pure helicity states) and we choose for
the photon basis states

'P~= — (e, pie, ), '&~= (eerie~),
v'2 42 (4 2)

where e„,e»ee, e~ are unit vectors in the x, y, 8„and y directions. After some algebraic manipulations
(4.1) yields

(4 3)

=3f [[cot'(s8)+ 2a~ coss8(cosa cos&8+ sina sin-, 8 cosy)]'+4a'&u'sin'a cot (s8) sin &p], (4 4)

where the first (second) subscript denotes the initial (final) polarization and the upper (lower) sign in (4.4)
refers to the RB (I I ) case. For the linearized Schwarzschild geometry (4.4) reduces to recent results ob-
tained by Peters":

de d(x
(4.5)

In the circular polarization basis the scattering matrix is diagonal, which explicitly shows that helicity is
conserved by the scattering process. This is not restricted only to our situation, but rather is a general
property of electromagnetic wave propagation in any orientable spacetime manifold. ""Moreover, for the
Schwarzschild geometry the scattering cross section is helicity independent, whereas for a rotating scat-
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terer it is helicity dependent. This results in a differential gravitational deflection of right and left circu-
larly polarized electromagnetic radiation by a rotating object. For a given impact parameter b of the in-
cident beam, we define the angular splitting as

5 = (angle by which It helicity photon is scattered minus angle by which I. helicity photon is scattered).

(4.6)

We then solve the inverse scattering problem" and find, to lowest order in ace,

5 =2a&u cosa(4M/b)'[In(b/2M) --,'] .
To obtain this result we have used the constraint that

5 «4M/b «1.

(4.7)

(4.7')

It must be stressed that so far we have only discussed pure helicity states. For any linearly polarized or
unpolarized incident wave the scattering cross section summed over final polarization states becomes

(
= M'(cot'(& 8) + 4a'z'[c os'( ~ 8) (cosa cos2 8 + sinn sin-,' 8 c os')'+ (sinn cot2 8 stny )']J,

tot
(4.8)

which for the Schwarzschild case reduces to (4.5).
We therefore conclude thatall linearly polarized in-
cident beams are deflected through the same angle.
However, since the diagonal elements of the scat-
tering matrix in the circular-polarization basis are
unequal, linearly polarized incident waves become
elliptically polarized. For an unpolarized wave
packet, on the other hand, the paths of different-
helicity photons are split by an amount given by
(4.7). In addition, the angular momentum a induces
a partial polarization of the scattered waves. We
define the amount of this polarization by

ez =-,' [e,e, —e, e +i(e, e, +e„e,)],
el, =-,' [eeee -e~e„pi(eee~+e~ee)] .

(5 2)

Substitution of the initial and final states into (5.1)
yields

This result was derived in the transverse-trace-
less (TT) gauge. ' Although the transition ampli-
tude (2.28) is not gauge invariant by itself, (5.1)
yields reliable results for small momentum trans-
fers, i.e., for small scattering angles. By analogy
with the photon case, we choose for the graviton-
basis states the circular polarizations given by

(4.9)

and we find, to lowest order in a,
M
. «, —,

)
(cos'8+a'&o'sin a sin'8 sin'y)16 sin~(-'8

p =4am ~cosa cos&8+ sinn sin28 comp(

& sin~ 8 tanz 8 . (4.10)

x (1 —cos8)' (5.3a)

In concluding this section we note that, independent
of a or the initial polarization, the cross section
for scattering in the backward direction vanishes. ~, ,—)

(cos'8+a u'sin a sin'8 sin &p)16 sin juste

V. GRAVlTATIONAL %AVES
x (1+cos8)'. (5.3b)

Using (2.13), (2.14), and (2.28) we compute the
differential cross section for the scattering of
gravitational waves from an initial polarization 'e
into some final polarization 'e:

der M'
dQ sin'(-,'8) (cos'8+ &u'[('h && 'h) ~ a]')

~

'e: 'e~
~

'.
(5.1)

The nonvanishing of (5.3a) clearly illustrates that
here, unlike the electromagnetic case, helicity is
not conserved. Moreover, there is neither differ-
ent scattering of opposite helicity states [see (5.3)]
nor partial polarization of unpolarized incident
gravitational radiation. The latter is easily seen
by noting that the scattering cross section for
either helicity state is given by [adding (5.3a) and

(5.3b)]
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scattering angles), one finds from (5.8) that the
gravitational backscatter in a linearized Schwarzs-
child geometry is given by

x (cos'8+-,' sin'8) . (5.4)

)
(cos'8+ a'&u' sin'n sin'8 sin'y)

sin (z~ do schW

dA e
(5.9)

Similarly, for the scattering of orthogonal linear
polarizations denoted by

In addition, if the incident radiation is in a pure
helicity state, the backscattered radiation must
have the opposite helicity.

'e, = ~ (e, e, —e„e„),
(5.5) VI. SUMMARY AND CONCLUSIONS

1&x= (e, e, +e„e,),

one finds, after summing over the final polariza-
tions and use of (5.1),

(
M (cos'8+ a'&u sin'o, sin'8 sin'y)

dA, sin'(-,'8

x (cos'8+-,' sin'8 cos'2y), (5.6a)

(cos 8+ a ur sin n sin 8 sin rp)(
2 2 2 2 ~ 2 2

dA „sin' —,'8

x (cos'8+4 sin'8 sin 2') . (5.6b)

For unpolarized incident gravitational waves [i.e. ,
averaging over y in (5.6a) and (5.6b) and summing],
the differential scattering cross section is given
by (5.4). Allowing a-0, we recover Peters's re-
sults apart from a factor of cos'8:

(42),„(dQ) (5.7)

For small-angle scattering there is good agree-
ment. One may recover Peters's result exactly by

calculating the scattering of gravitational waves
off a massive spin-0 meson. Inclusion of all the

relevant Feynman diagrams then leads to a gauge-
invariant transition amplitude. Actually, for the

choice of the TT gauge only the graviton-pole and

seagull diagrams survive, and one obtains Peters's
results exactly, i.e.,

(5.6)

As a concluding remark we note that, independent
of the polarization of the incident gravitational
wave and the angular momentum a, the cross sec-
tion for backscatter is nonzero. Whereas the ex-
act dependence of (do/dQ)e, on the angular mo-
mentum a cannot be inferred from the cross sec-
tions derived above (they are valid only for small

The differential cross sections for the weak-field
gravitational scattering of long-wavelength scalar,
electromagnetic, and gravitational waves have
been calculated using Feynman perturbation meth-
ods.

For the linearized Schwarzschild geometry, we
have recovered the results obtained by Peters, "
although he used a Green's-function formalism. In

particular, for electromagnetic waves helicity is
conserved, whereas for gravitational waves it is
not. Endowing the scatterer with an angular mo-
mentum a leads to helicity-dependent effects in

electromagnetic wave scattering. Although the
photon helicity is still conserved, the coupling be-
tween this helicity and the angular momentum of
the scatterer results in (a) different scattering of
right and left circularly polarized photons and (b) par-
tial polarization of unpolarized incident electromag-
netic radiation. The high-frequency limits of these
effects have been discussed before by Mashhoon. '"
Whereas in the high-frequency limit (+M»1), the
angular split 5 [defined by (4.6)], and polarization
p [defined by (4.9)] are proportional to 42~ ', in the
low-frequency limit (~M «1) they are proportional
to av. This confirms the belief that the magnetic-
type gravitational field of a rotating body distin-
quishes between the helicity states of a photon only

in the diffraction limit, i.e. , when the wavelength
of the incident photon is of the same order as the
Schwarzschild radius of the scatterer.

Gravitational waves do not exhibit any of these
angular-momentum-induced effects.

As a final comment, we note that this method

may easily be applied to the gravitational scatter-
ing of noninteger spin or massive fields.
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