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The renormalization of the f, f; co, and $ trajectories through the crossed-loop (or cylinder) insertion is
exhaustively studied in the context of dual unitarization. The trajectory functions a(t), mixing angles, and

couplings are obtained for the range —1.0 t 2.0 GeV'. In particular, it is found that the f is

renormalized upwards by a considerable amount, acquiring an intercept af(0)=0.93 and slope nf'(0) 0.4.
It becomes still flatter for t & 0. These characteristics, together with its symmetry properties, strongly

support its identification with the experimental Pomeron. At the same time, the mass splitting of f and A, is

correctly given as about 0.1 GeV'. The co trajectory is renormalized downwards, and acquires a considerable
admixture of the strange component, in agreement with the phenomenological estimates of
y~zlypK~ 1.4. Furthermore, the t dependence of the calculated quantities in general verifies the prediction
that renormalization effects decrease as t increases.

I. INTRODUCTION

In hadron interactions there are several experi-
mentally deduced regularities such as the exchange
degeneracy of Regge trajectories, the ideal mixing
of quark states, and the Okubo-Zweig-Iizuka rule
for resonance decay. Deviations from these pat-
terns are in general small. Dual unitarization' '
is a scheme constructed to reproduce such regu-
larities as a first approximation and to calculate
deviations from them as higher-order corrections.
The most important of these corrections concerns
the vacuum trajectory f, which has been studied
by many authors" "and which is found to deviate
from exchange degeneracy by a considerable
amount; the deviation is, furthermore, strongly
t dependent. These studies were, however, all
done at or very near the forward direction. In
this paper we wish to extend these ideas to a larger
range of t, both positive and negative, for not only
the f trajectory but the other zero-quantum-num-
ber trajectories f', e, and p. Preliminary re-
sults of this study have already been reported else-
where. "

Dual unitarization starts with the set of all pla-
nar quark diagrams, which preserve the symme-
tries mentioned above, and derives a bootstrap
equation'"" restricting the quantities that come
into play at this planar level. Let N be the number
of quark flavors and let us assume for the moment
exact SU(N) symmetry. Then bootstrap gives us
the schematic equation

N-1,
as illustrated in Fig. 1(a), where g is some effec-
tive coupling constant averaged over the loop.
This gives us the value of g, which then fixes the
scale of higher-order corrections. The ideas of
topological expansion" are very similar to ours.

The next higher order corresponds to the crossed
loop, as illustrated in Fig. 1(b), having the top-
ology of a cylinder. "" This is a nonplanar dia-
gram. Since the quark lines return they cannot
carry any quantum numbers, so that it can only
renormalize trajectories with zero quantum num-
bers (of both signatures), i.e. , the f, e, f', and

In principle, other higher-order diagrams,
corresponding to more complicated topology,
should also be considered when studying the re-
normalization of these trajectories. However, cal-
culations'"" of the next order diagram in connec-
tion with the p-A, and K*-K**trajectories show
that the splitting is less than 0.1 for the intercepts,
whereas as we shall see the crossed loop gives a
renormalization of about 0.5 for the intercept of
the f. Hence the most significant diagram for the
vacuum trajectories is still Fig. 1(b).

There is another very good reason why we want
to study exclusively Fig. 1(b) here. It is the only
one [besides Fig. 1(a)] for which a full three-di-
mensional formulation has been constructed, "'
and this is necessary if we want to know about not
only the intercept, but also the t dependence of the
renormalization.

Our calculations show that the f trajectory ac-
quires an intercept of about 0.93, with a small
slope of about 0.4 at t= 0. This is extremely remi-
niscent of the experimental Pomeron. At the same

I

)

(b)
FIG. l. (a) The bootstrap condition on planar loops.

(b) The crossed loop, .
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time, we obtain the correct fo-A, mass splitting
at the resonance position. Further comparison of
predicted couplings with data strengthens the f-
Pomeron identity in this model. The up trajectory
is renormalized downwards and acquires a con-
siderable mixture of the XX component. In gen-
eral, our renormalized trajectories attest to the
prediction that renormalization effects decrease as
t increases. '" Some results for the secondary
trajectories f' and»t» are also obtained. Besides
trajectory functions, me have also calculated Regge
couplings and mixing angles, all in fair agreement
with experiment wherever comparison is possible.

II. THE CROSSED-LOOP INSERTION

For definiteness, let us take the case N= 3. We
shall consider SU(2) symmetry breaking only to
the extent that the X quark is heavier than the nor-
mal quarks X= O', In principle, we can incorporate
charm. Homever, the charmed quark is supposed
to be even heavier than X and is hence much more
difficult to excite. Its inclusion mill therefore have
very little effect on the high-lying trajectories that
me are interested in.

Before any nonplanar diagrams are introduced,
Regge trajectories are exchange degenerate and
the quark states do not mix. This means that me

have, to start mith, three distinct exchange de-
generate trajectories. The crossed-loop insertion
will mix states, but since it cannot ea.rry any
quantum numbers, only trajectories with zero
quantum numbers mill be affected. Let us repre-
sent the planar ("unrenormalized") Regge propa-
gator by the matrix P, and the crossed-loop ker-
nel by the matrix C, as in Fig. 2. Notice that P
is diagonal.

In contrast to the uncrossed loop [Fig. 1(a)],
which has one free quark loop and so is formally
of order g'Ã- I, the crossed loop [Fig. 1(b)] is of
order g'."" However, if me iterate the crossed
loop n times (Fig. 3), we still get an order of g',
since g'(g'N) '-g' by (1). Hence when we con-
sider the crossed-loop insertion, me have to in-

i~I

)(
FIG. 3. A chain of crossed loops.

elude its iteration to infinitely many times as well.
Notice, however, that because of the direction of
the quark lines, iterations with an even number of
loops have positive sign for both signatures, while
iterations with an odd number of loops have posi-
tive sign for even and negative sign for odd sig-
natures. ' Hence if we denote by P,' and P' the re-
normalized propagators for o = k, me have

P' = P + PCP+ PCPCP t PCPCPCP+ (2)

Because the elements of C are all positive, this
means that the f and f ' trajectories will be re-
normalized upwards a,nd the v and P downwards.

Equation (2) tells us only schematically that we
have to calculate chains of crossed loops such as
ln Fig. 3. In order to obtain the renormallzed
Regge propagators me need a more concrete model.
In an earlier work, '" a formula based on Regge
asymptotic behavior and semiloeal duality mas
written for the imaginary part of the n-loop am-
plitude for SU(N) symmetry. It is readily gen-
eralized to our case of broken SU(3) and different
input trajectories.

Since me are considering only tmo distinct types
of quarks, we have, to start with, three trajec-
to s p d g to the states

(i) (1/v 2)(XJI+ &5'): n», which we call the "p
trajectory" for convenience,

(il) ZX» jyX and ZX» O'X: @~2 and Q2~» or the K
traj ectory, " and

(iii) XX: o„, or the "»j» trajectory. "
%'e assume them to be linear, but not necessarily
with a universal slope:

FIG. 2. (a) The unrenormalized propagator, and Q)
the crossed-loop kernel, both in matrix notation, where
solid lines represent the normal', (p quarks and dotted
lines represent the strange quark X.

Next let V(f; f„t,') denote the triple-Regge ver-
tex (Fig. 4), where the t's are momentum trans-
fers as indicated. Following Ref. 2 me represent
its rapid cutoff at large t, and t,' by a factor simi-
lar to the Veneziano beta function, and the rest of
the various .t dependences by exponentials. We
thus write
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FIG. 4. Variables appearing in the triple-Regge vertex.

V(t; t„t', ) =g'(1 —Rt, ) «(1 —Rt,'}'&

equation' determines one more parameter among
the functions ««(t} and i«(t„t«). The function
)«,(t„I,') is more amenable to comparison with ex-
periment. In fact, an arialysis with data' shows
that if we write )«(t„t,') = p,(t, +t,'), then i«, is con-
sistent with the va, lue 0. So only the function ««(t)

remains. This will be discussed in the next sec-
tion.

With these modifications in mind, the formula
for the imaginary part of the n-loop amplitude can
be rewritten as follows:

x exp[n'«««(t) + n«~)«, (t„I«) ], (4)

where R=4/e and g= the coupling constant. Be-
sides giving the value of g the planar bootstrap

(Io(s, t))««= 6,~s «&s "«««

and for n) 0

oe 0
(I„(s,t))«, = g ds, s,' ««F(s, s„t)„(I,(s„t))»,

a

where
0

xs Mgj s 20. )~
(E(s,s„t))„=W(f, k) ds, — s, iis,'"«i'(H(s, s„s„t))„,

0 S2

(5)

(H(s, s„s„t)),~=, —. , exp(2n, '„at „){1—exp[-2n«~a(AX')'~'/s])exp[2n«~at(X'/X)'~'+ n,'«««(t)],

sa=in, , +R, s'=s+C, s,'=s, +C, s,'=s, +C,

X = X(s„,0, 0), X'= X(s, s„s,},
t „=—[ X*(s,s, 0, s„0,s,)+(XX')'i'],

i, k) =

(I'(s, t))« ~= Q (l„(s,I))««.
g«so

(6)

and the indices i,j are not summed. The matrix
5' takes account of the fact that there are two nor-
mal quarks to one strange quark. For detailed
explanation of the other symbols the reader is re-
ferred to Eqs. (14) to (24) of Ref. 2. We note that
the n-loop amplitude is given in a recursion rela-
tion which greatly simplifies the summation of the
different loops.

Equation (5) was to represent the imaginary pa, rt
of the n-loop amplitude for a physical process, so
that we should put in external couplings and in gen-
eral nonzero external masses. However, since
we are now interested in Eq. (5) as representing a
renormalized Regge propagator, by factorization
we can leave out the external couplings and then
the value of the external masses is irrelevant. "

To get the imaginary part of the amplitude, we
sum up the loops:

For the symmetric ca.se, it was found' that (6} had

Regge behavior at high energies. In the case of
broken SU(3), we have to work a bit harder because
we want to extract information not only for the
leading trajectory but also for the next-to-leading
one. Now although there are only two poles in the
input, we cannot expect not to generate new sin-
gularities after renormalization. It is only in very
simplified cases, for example, with a constant
kernel C', that this can be true. A simple j depen-
dence in C already produces extra low-lying com-
plex poles. ' Our more realistic representation of
C is sure to give a richer structure in the space
of the output states. In particular, the two high-
est-lying output poles do not in general constitute
a complete set of states. There may be daughters,
complex poles, and even cuts. In terms of mixing
this means that the angles representing mixing
will in general be j dependent. This is in contrast
to the normal usage for mixing angles. However,
the use of angles to describe mixing is still con-
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= p&'(t) cos8&(t) sin8&(t)s t'"'

+ Pt,2(t) cos8tgt) sin8q)t)s t'",
(I'(s, t))»-—P&'(t) sin'8&(t}s &"'

+ Pq2(t) cos'8qgt)s'&'"'.

(7)

The P's are ratios of the couplings of the renor-
malized to the input trajectories, and 6)& is not

necessarily equal to 8&,.
For odd signature, we take alternating signs in

the summation [cf. Eq. (2)],

(8)

with the matrix elements corresponding to ~ and P
as the two highest output trajectories, in exact
analogy to (7). Here we call the highest lying o
= -trajectory &, and the next-to-leading Q.
Whether they actually correspond to the (d and (t)

mesons remains to be seen.

IV. CALCULATIONS AND RESULTS

First of all we shall fix the input trajectories.
To do this we make use of the fact that nonvacuum

trajectories are not affected by the crossed loop
and consequently only very slightly by the other
higher diagrams. This means that we can take
their experimental values a,s their bare values
without appreciable error. Linear interpolation
and extrapolation of the Chew-Frautschi plot then
give us

o.'„(t)= 0.5+0.85t,

n„(t) = o.„(t)= 0.35+ 0.81t,
o., (t) = 0.2+0.77t,

following the parameterization of Eq. (3). The last
trajectory is obtained assuming the Cell-Mann-
Okubo rule for both the intercepts and slopes. "
On the Chew-Frautschi plot one sees that &»(t)
actually passes through the physical P and f'. The
smallness of the renormalization of f', which we
obtain later, partly justifies this, although we are
unsure of the renormalization of the (t) for reasons
we shall discuss.

Next we turn to the planar bootstrap for fixing
the triple-Regge vertex. Now the planar boot-

venient in our formalism.
Hence, if we are interested only in the two high-

est-lying poles, we can write for the matrix ele-
ments asymptotically

(I'(s, t))„=pq'(t) cos'8t(t)s x"'

+ Pt,2(t) sin'8qgt)s "~'"',

strap' gives

for SU(N) symmetry. In principle we can do a sim-
ilar bootstrap for broken SU(N). In practice, how-

ever, because of the difficulties in formulating
rigorously the bootstrap condition, this is neither
feasible nor profitable. Furthermore, since the
heavier quarks are progressively more difficult
to excite, it is reasonable to substitute for N an

X,«while keeping the bootstrapped value for the
product g'X,«. Using a suppression factor for the
A. quark derived from experiment Papadopoulos
et al. ' gives the estimate

2~K « —2.5.
They also find that the effect of charm is negligi-
ble. At the sa.me time, Dodd" obtains in a sim-
plified model calculation

X « —2.3

when he considers broken SU(4). This is a rea-
sonable value to use in our ca,se, considering the
conclusions of Papadopoulos et al. Equations (10)
and (ll) then give

(12)

The last input we need to specify is the t depen-
dence of the triple-Regge vertex, which was left
as s(t) in Eq. (5). The restricted small-t region
we are considering justifies the use of exponen-
tials in V(t, t„tf}. Now if we further assume

as in Ref. 2, then the bootstrap gives

so= -0.9.
Most of our calculations are done with this para-
meterization and the results compare quite favor-
ably with data as we shall see. However, (13) and

(14) cannot be entirely satisfactory because they
give a slightly curved output trajectory in the boot-
strap once we take t away from zero. This means
that V should have a stronger t dependence. In

principle one can do a planar bootstrap at every
(small) value of t and thus obtain the exact t de-
pendence of V. Unfortunately the particular form
of the bootstrap equation adopted in Ref. 2 is not
suitable for this and does not give sensible results
away from t=0. So if we insist on improving (13)
and (14), we have to resort to data-fitting, for
example with the f, mass as detailed at the end of
this section. Although the addition of a quadratic
term in (13) would give a stronger t dependence to
V as desired, it is unsatisfactory for t& 0, where
the renormalization would be too small. Hence we
shall still keep the linear form (13) and only vary
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All amplitudes are divided by s for easier plotting.
Both the I'» (represented by dots) and the I» (rep-
resented by crosses) terms are well fitted by the
same power at high 8 which then gives directly
n&(0) = 0.93. The difference at lower energies be-
tween the I» term and its asymptote (represented
by pluses) also behaves as a power, which corre-
sponds to the second term in I», i.e. , it gives
n&$0) = 0.22. The mixing angle is given by the ra-
tio

limI»/I » = tan'8& ——0.14

Q.QI

IO IOO

s (GeV )

l

1000

FIG. 5. I »/s andI&2/s as functions of s, plotted at
t = 0. The straight lines correspond to the asymptotic
power behaviors giving o,f and ef {see text).

(14) when fitting with the f, mass.
All the other parameters that occur in Eq. (5)

a,re fixed as in Refs. 2 and 10.
Equations (6) and (6) were evaluated numerically

up to asymptotic energies in the small range of
-1.0% t~ 2.3. Our aim is to get to high enough en-
ergy for (7) to hold, so that we can extract from
it the Regge parameters of interest. In contrast
to the symmetric case,"energy has to be high
enough for both diagonal terms in (7) to reach
Regge behavior. For negative t and very small
positive t, we find that calculating up to s -5000
GeV' is enough for our purpose. For larger t& 0
we evaluated the formulas up to s "50000 GeV'.
We need higher energy here because the angle 8&

(and 8„) becomes smaller as f increases, so that
it takes a longer time for the first term in I» to
win over the second.

The number of loops required for a given energy
depends on that energy because higher loops have
higher energy thresholds. It also depends on the
t region. In general for even signature, where all
loops are added with a positive sign, we find that
summing up to n. = 11 is sufficient. This value of
g is also sufficient for odd signature for /~ 0.
For t&0, however, the term with alternating sign
[Eg. (8)] is typically four orders of magnitude
smaller than the term with positive sign through-
out, so that more accuracy, and hence more loops,
is required. Taking into account the overall ac-
curacy obtainable we have summed up to n= 19 in
these cases.

The extraction of renormalized parameters is
illustrated in Fig. 5, for the f and f' at I= 0.

and the coefficient of s & is obtained by extrapo-
lating either asymptote to s = 1 GeV'. For ex-
ample, we get the value 1.3 for theI» asymptote.
Using the calculated value of ~& we obtain from this
P&= 1.2. In principle, the same procedure can be
repeated to obtain 0&, and P&, . However, the differ-
ence between I» and its asympote, even at low s,
is too small to give results of any accuracy. "
Notice that the off-diagonal elements have not been
used directly. However, their approximate equali-
ty is a good check on our calculations.

Repeating the above procedure for the range
-1.0s I s 2.3 we obtain the renormalized f and f'
trajectories shown in Fig. 6 (solid curves). The in-
puts (9) are also shown for comparison. We notice

FIG. 6. The renormalized f and f ' trajectories,
against the inputs ~&&{t}and ~22{t}. The physical A. 2,fg'
mesons are also shown. The solid curves are obtained
with ~o —--0.9 and the dotted curve with f(.o=-1.3. The
data points are obtained from 7I.'p elastic scattering
{Ref. 26}.
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0.6"

0.4

0.2

from cr&

(GeV )

tious about accuracy, since the even and odd loops
are of comparable size. We believe that most
quantities extracted for the & are still reliable,
but things are aggravated for the Q, for which
one has to take further differences. For instance,
we obtain o.~(0) = 0, which we consider to be too
low.

The renormalized (d trajectory is shown in Fig.
8. It is apparently somewhat low with an intercept

(o) 0„(0)= 0.36. (18)

from 0&

0 6"
04"
02"

0 I

(GeV )

(b)

FIG. 7. The variation of (a) tane& and (b) P& as func-
tions of t. The solid curves correspond to no= —0.9 and
dotted curves to vo ——-1.3. In (a) the data points with
marked error bars are from flap and pp elastic ampli-
tudes at 9.3 GeV/c taken from Ref. 30.

immediately that f is considerably renormalized
with not(t) decrea, sing as a function of t. The
Regge parameters read from the figure are

This, we believe, is because we have neglected
baryon exchange, which is known to be sizable and
have a positive effect for the &." Figure 9 gives
the variation of -tan9 and P with t (solid curves).
Note that

~
tane„~ falls very fast Th. e negative

sign for tan0„ is derived from the off-diagonal ele-
ments which are negative.

Of the four zero-quantum-number trajectories
studied we are most interested in the f, because
it is the highest, and also because it has the same
quantum numbers a.s the vacuum and hence the
same as the Pomeron singularity. It is therefore
in relation to the f that we want to study phenomen-
ologically the function K(t). From Fig. 6 it is ap-
parent that renormalization effects are not damped
fast enough in the sense that the renormalized tra-
jectory "overshoots" the position of the f, meson.
This is related to the effect mentioned earlier in
this section in relation to the triple-Regge vertex.
If we insistnonetheless that the trajectory should

nt(0) =0.93, o.t(0) =0.4, (16)

with the trajectory flattening still more for t&0.
The slope becomes almost zero around t -1.0
(see next section). The f' trajectory, on the other
hand, is hardly renormalized at all, especially in
the positive t region. It only flattens off slightly
for t&0. We obtain for the intercept

ot&(0) =0.22. (17)

The values of tan0& a.re given by the solid curve
in Fig. 7(a). 8& is found to decrease as t increases.
Both this behavior and the t dependence of b, n&

shown are consistent with the idea that the crossed-
loop or cylinder insertion decreases as t in-
creases. '" Relevant experimental evidence is
presented in the next section. The values for P&

are given in Fig. 7(b). In the t range studied, P&

is not very different from unity, showing that the
renormalization in the coupling is small.

Similarly, the Regge parameters for the two
leading o.= -trajectories, named w and fly for con-
venience, can be obtained from the alternating ser-
ies (8). However, here one has to be more cau-

8// o I

t (Gev )

FIG. 8. The renormalized trajectory, aga, inst the in-
puts A f $ ( t) and e 22 ( t) . The physical p, cu, fkI) me sons are
also shown. The solid curve corresponds to K=-0.9.
The parameterization v= —1.3 gives almost identical
values, but for a larger range of t & 0, where the trajec-
tory is shown by the dotted curve.
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eters here are fixed internally. Varying the input
trajectories within reasonable bounds also does
not change our qualitative picture. " We find the
stability of our parameters satisfying indeed.

V. COMPARISON WITH DATA

$ portiol widths

t (Gev )

(b)

7

fram rrT

t (GeV )

FIG. 9. The variation of (a) —tang and (b) P„as
functions of t. The solid curves correspond to Kp= 0,9
and dotted curves to Kp= 1.3.

pass through the fo meson, and if we still keep the
linear parameterization (13) as explained earlier,
then we obtain

K= -1.3. (19)

We note in passing that in Ref. 2 two slightly dif-
ferent methods were used for the planar bootstrap,
giving two sets of parameters which agree within
errors. The two values obtained for If' are identical
to (14) and (19). This means that our fitted param-
eter (19) is still a reasonable value to use within
the bootstrap framework.

We repeated the calculations using this fitted val-
ue, and the renormalized trajector:ies tan6) and P
are shown in Figs. 6 to 9 by dotted curves. They
are not qualitatively different from the former
curves. Where they actually differ, although
slightly, the dotted curves seem to fit the data a
little better. For instance, the slope of f at t=0
is slightly less at around 0.3, in better agreement
with experiment. However, we want to emphasize
that the similarities are more significant than the
differences. The exercise with (19) shows that al-
though one can do a little better phenomenologically
with a more realistic triple-Regge vertex, the
bootstrapped values do almost quite as well, with
the further advantage, of course, that the param-

In the system of planar diagrams, there are the
exchange degenerate trajectories of the vector-ten-
sor nonet, but there is no Pomeron. The crossed
loop introduces diffraction, but as we saw in the
preceding sections, no new high-lying trajectory
appears. In our method diffraction is generated as
the shadow of multiparticle intermediate states,
which is also supposed to be the origin of the ex-
perimentally observed Pomeron singularity. Now
this experimental Pomeron is only known in the re-
gion I; ~ 0, where it has an intercept of about 1 and
a small slope of about 0.3. Furthermore, one at-
tributes to it the same quantum numbers as the f.
On the other hand, the f trajectory, though ex-
change degenerate with the p at the planar level,
lies considerably higher than the other trajectories
after renormalization. It now has an intercept of
about 0.9 and a slope of about 0.4 at t= 0. Under
these circumstances we think it natural, and com-
pelling if we believe our model at all, to identify
this f trajectory with the phenomenological Pomer-
on. '4

The f-Pomeron identityhas been much discussed
recently. This was first emphasized by Chew and
Rosenzweig, ' although it was implicit in the earlier
work of Chan et al."' On the basis of an analysis
of total cross sections at moderate energies,
Stevens, Chew, and Rosenzweig" concluded that
this picture is consistent with experimental data.
Since we now have not only the intercept but also
the trajectory function within a finite t interval, we
are in fact in a stronger position to compare with
data. A recent experiment at Fermilab measured
several differential elastic-scattering cross sec-
tions at laboratory momenta 50, 100, and 200 GeV/
c, in a range of negative f, values. " We took the
data at various -1.0 ~ f, ~ -0.1 and extracted the
Pomeron trajectory function from them assuming
a single power dependence. The values for m'p

elastic scattering are shown in Fig. 6 and are seen
to fall on the renormalized f trajectory within er-
rors. A similar fit is obtained with data for Pp
elastic scattering. Moreover, Leith in his review"
quoted the following parameters for pp scattering:

r-rf', = 0.37 +0.08, gati &0.1 GeV',

o'~= 0.10+0.06, 0.15& ~it ~i

&0.5 GeV'

We obtain respectively 0.29 and 0.09 using (19) and
0.41 and 0.28 using (14), for- the same two I; ranges.

The quantity P& is the ratio of the renormalized
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f coupling to the ba.re f coupling; the latter is the
same as the bare p coupling by construction. At
t=0, we calculated

Py(t= 0) = 1.2. (21)

This can be checked against values obtained from
total cross sections. Take for example values at
P„b=20 GeV/c:"

2[or(w'p)+or(w p)]=24. 3 mb

=y~y~s x ',

2[or(w p) or(w p-)]=0.3 mb

=y', y~s t ',

,'[or(—yp) + or(pp) ]=43.5 mb

yhyhs 0'p-&
f f

(22)

From these and assuming y', = 2y~ as in the additive
quark model we can deduce immediately

Pr = rrlr', = 1.3, (23)

in fair agreement with the calculated value (21).
Similar agreement is obtained for a range of Py
between 40 and 10 GeV/c. We are careful to choose
energy ranges before the total cross section rises,
where our ideas cannot apply. Incorporating mix-
ing effects at this t value does not affect the ap-
proximate agreement of (21) and (23).

The symmetry properties of the renormalized f,
as exhibited in the mixing angles, can also be com-
pared to similar quantities derived fromexperi-
ment. For example, at P„~=10 GeV/c, o(Kp)/o(wp)
= 0.77. Now by simple quark counting,

o(Kp) = p(1+ v 2taner),o wp)

becomes more negative. By taking the eikonal am-
plitudes instead of the full amplitudes to remove
effects of Pomeron-Pomeron cuts, Roberts" found
the above to be true for mN and KN elastic scatter-
ing. The ratio of the eikonals for Pp and pp at
9.3 GeV/c, taken from Ref. 30, is shown in Fig.
7(a). The uncertainties for this ratio are large
(possibly larger than shown), but the general fea-
tures agree with the behavior of tan8&. However,
we must bear in mind that this treatment is model-
dependent. The t dependence of our mixing angle
is probably not steep enough for t away from the
forward direction. This is a reflection of the facts
that for t large positive the crossed loop is not
damped fast enough, and for t large negative sin-
gularities other than the leading poles come into
play.

The qualitative, and often quantitative, agree-
ment of the f trajectory with different experimen-
tal aspects of the Pomeron appears to us as very
convincing for the f-Pomeron identity. We are re-
minded here of the popularly held idea of f domin-
ance of the Pomeron, first suggested by Carlitz,
Green, and Zee, " and exhaustively tested phenom-
enologically with considerable success by Inami
and Roberts. " Within our scheme this comes au-
tomatically, so that the success reported in Ref.
32 also corroborates, though in a weaker sense,
the f-Pomeron identity.

We do not have much to say about the renormal-
ized f' trajectory. For t&0, it is almost not renor-
malized at all, indicating that our original choice
of o»(t) to pass through the f ' meson wa, s correct.
The calculated mixing angle can be compared with
the ratio of the partial decay widths of f' into
strange and nonstrange mesons. Experimentally
it is estimated that"

giving tan8&= 0.38, as compared to the calculated
value of tan8&=0. 38. Similar agreement is ob-
tained from hyperon cross sections. " For ex-
ample, experimentally

o'r(Ap} 0 37o,(pp)

r( f' —ww)

r(f '-KK)

This is related to the angle through

r(f'- ww), [q(f'- «) ]'
r( f'-KK) r'

[q(f'-KK) ]'

(24)

Now in terms of the mixing angle 8&,

or(Ap) 2 1

( )
—— 1 ~t 8~

which gives tan8& ——0.43. Similarly the ratio of
or(rtrp) to or(pp) also gives an estimate of tansr.
Taking or(pp) to be 10 to 12 mb and &rr(pp} to be
23 to 25 mb, one gets

0.3 & tan8& ~0.4.

Another example deals with t& 0. One implica-
tion of dual unitarization is that invacuum exchange
amplitudes the singlet component dominates as t

where the numerical factor —,
' results from counting

spin and quark states. This gives

tan8&, = 0.05.

Since we cannot calculate accurately tan8&„we
compare this value to tan8& in Fig. 7(a). Although
as we explained earlier 8& is not necessarily iden-
tical to 8&, , we do expect both to be very small at
t large, e.g. , at the f' mass. This is clearly borne
out by the behavior of tan8&.

Through the crossed-loop insertion, the leading
o= —trajectory, which we have called + for con-
venience, acquires a considerable admixture of
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y~«= 1.14 (mb)'~', y«= 1.63 (mb)'+,

giving the ratio

(27)

(28)

From Fig. 7 we read off

XX. This is in contrast to the f trajectory, which

remains relatively pure 6'++XX, at least for t -0.
The coupling P„, relative to the p, on the other
hand, remains fairly stable at 1. These predictions
can all be tested against experiment. A recent
analysis" of total cross-section data gives the fol-
lowing couplings:

elucidated by more detailed analysis of our numer-
ical results. However, because of the necessarily
restricting approximations we made for our model,
we have no way to estimate whether these features
reflect the real nature of the &.

Similar remarks apply to the p trajectory with
even greater poignancy. We obtain the Q inter-
cept to be around 0, which at first sight seems to
be rather low. However, Chew and Rosenzweig'
arrived at a similar low value using a one-dimen-
sional model. The value of the mixing angle can
be compared with the partial decay widths of Q.
We have

tan8„(f= 0) = -1.1, P„(t= 0) =0.9, r(P -ZT7) ~
~~(~ AZ) ]

(3o)

which give the ratio

y«/y« P„(cos8——„—v2 sin8 ) =1.5, (29)

Equating this with the experimental value of 0.20,
we obtain

(31)
agreeing well with (28}.

On the other hand, we know that our picture of
the ~ cannot be complete. Using a one-dimension-
al model, Chan and I' have shown that the effect of
baryon exchange is non-negligible at t= 0 for &.
Preliminary results of Hansson" a~ e similar. Now

baryon exchange has the effect of renormalizing
both signatures by a positive amount —much small-
er for the f than for the a. This effect, if incor-
porated in our present calculations, would push up
the (d trajectory, taking the intercept nearer to the
phenomenological estimate of 0.43."

Figures 8 and 9 for the & parameters are given
with a smaller t &0 range. This is because of the
difficulties we mentioned in Sec. IV, In the posi-
tive t region, where n& —Q.„ is not so large, the
terms I are still not too small compared to I'.
In other words, the accuracy in the z parameters
is still not much impaired by taking differences.
Unfortunately this is no longer the case for t& 0.
As t becomes more negative, a„goes farther and
farther away from a&, with the result, that I is
four or five orders of magnitude down from I' (in
the f region considered). Also, other effects come
into play. In the first place, at such low values of
n the leading-pole assumption certainly breaks
down. We know that low-lying complex poles"' are
present, whose effect will no longer. be negligible
here. The slightly oscillatory behavior of our re-
sults is a possible indication of this. Furthermore,
the term Iyy seems to go through zero somewhere
between t= -0.3 and t= -0.5." We doubt, however,
that this has to do with the cross-over zero near
t= -0.2. These features can probably be further

As with the f ' meson, we try to compare this with
tan8„at the P mass in Fig. 9(a}. Although this
comparison is quantitatively inconclusive due to
the possible difference between e„and 8, the
dramatic decrease of

~
tan8„~ from above 1 at

t-0 to less than 0.3 at the p mass shows that one
can expect the two quantities to be closely related.

In conclusion we think that the agreement with
data is satisfactory where such comparison is pos-
sible. In particular, our picture of the renormal-
ized vacuum trajectory f can account for most data
at moderate energies without introducing an extra
singularity with similar intercept. After renor-
malization our & trajectory acquires a significant
admixture of the strange component, which is
borne out by experimental estimates. However,
a complete description of the & should include the
baryon exchanges as well, which we are unable
yet to incorporate into our scheme with three-di-
mensional kinematics. Besides these compari-
sons with existing data, our model has definite
predictions about the trajectory functions, cou-
plings, and mixing properties for a range of t
which have yet to be tested.
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