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Consequences of the validity of the quark-line (Okubo-Zweig-lizuka) rule have been studied both
theoretically and experimentally. The present experimental data are consistent with the validity of the rule
for 1~ and possibly 2 nonets. With respect to the 0~ nonet, the rule is in reasonable agreement, if we
consider a suitable mixing scheme for the 1-n' complex. Theoretical implications of these facts are also
discussed. The possible violation of the rule has been estimated to be 6% for the 1~ nonet and 15% for the

0~ nonet.

I. INTRODUCTION

The recent discovery® of ¥/J has renewed inter-
est in the study of the quark-line (Okubo-Zweig-
Iizuka) rule?™ (hereafter referred to as QLR). As
we shall explain in Sec. V, the QLR is not a sym-
metry in the usual sense, since it cannot become
possibly exact (even in principle) under any cir-
cumstances in contrast to the ordinary selection
rules. Before explaining about the QLR, it may
be worthwhile to briefly sketch its historical out-
line. As we now know, one important supporting
evidence for the eightfold SU(3) scheme® of Gell-
Mann and Ne’eman is the mass formula for the
J?=%* baryon octet,

2[m@)+m(2)]=1[3m(A)+m ()], (1.1

which is experimentally well satisfied. However,
it is soon realized that the corresponding quadratic
mass formula for the 17 vector octet

m2(K*) = §[3m?(w,) + m?(p)] (1.2)

predicts the mass value m(ws) ~928-MeV for the
eighth member w; of the octet, which should be
compared to experimental values m(¢)= 1020 MeV
and m(w)="783 MeV, for the masses of ¢ and w,
respectively. In order to account for the discrep-
ancy, Sakurai® in 1962 proposed the so-called
w-¢ mixing model in analogy to the level mixing
of atomic and nuclear physics. In this scheme,
the physical w and ¢ are supposed to be coherent
mixtures of w; and w,,

¢ = cos fw, — sinbw,, (1.3)
w=sinbwg+ cos bw,,

where w, and w, represent the eighth component
of the vector octet V, and an SU(3) singlet V,
respectively. The SU(3) mass formula will now
simply determine the value of the mixing angle 6
to be” either

0=+(40°+1°), (1.4a)
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or
0= £(37°+ 1°), (1.4b)

depending upon whether we use the quadratic mass
formula (1.2) or the corresponding linear formula

m(K*)=[3m(wy)+m(p)]. (1.27)

We notice that the sign of 6 is undetermined.
However, this model caused the following prob-
lem. Experimentally, the decay width of ¢ —7*r"7°
is very small in comparison to that of w-7m*7"7°,

The currently accepted value’ is

T(¢—-m*nr7°)/T(w~7*r"1°=0.074. (1.5)
If we take into account the larger phase volume
available for the ¢ —7*7"7° mode, then the ratio

of matrix elements for these decays is roughly
estimated to be

M(¢p ~m*71°)/M(w—~n*7"1°)~0.10. (1.6)

More accurately, the decay ¢ — 37 is now found®
to proceed dominantly via ¢ - pm, followed by
p—~2m. Then accepting the SU(6) relation

Soor =28 = 28,~11.4£0.,5, (1.7)

which gives a good value® for I'(w—7%) as well as
I'(w— 37) by p dominance, we estimate the ratio of
coupling constants g,,, and g, to be!?

(&01)*/(8upr)* = 0.007. (1.8)

In Eq. (1.7), g, represents the standard p,-y cou-
pling constant. But Eq. (1.3) demands

Soom . COSOg, —sinbg,

=-——>28 — =20 (1.9)

guwor Sinfgg+cosbyg,
where g, and g, are coupling constants of wg and
w, to the p-m system, respectively. In order to
account for the small ratio for (1.8), a large can-
cellation in the numerator of the right side in (1.9)
must be taking place. This could be, of course,
purely accidental. But a more interesting possi-
bility is to postulate a principle underlying the
cancellation. If such a principle exists, then the
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octet wy and the singlet w, cannot act independently
of each other in contrast to a purely group-theo-
retical consideration based upon SU(3) symmetry.
Hence, it is better to treat both octet V; and sing-
let V, as constitutinga single entity which we call
the vector nonet Vy and represent by a nontrace-
less tensor GS. Then the nonet hypothesis is the
demand that the trace G} should not enter into any
physical expression. Under this assumption, it
was shown? by the present author in 1963 that we
indeed obtain

M(¢p—~pn)=0, M(¢p—-n*1"m%)=0 (1.10)
with mixing angle 6 being equal to
1
6,=tan™ —=35°16", 1.11)
0 \/7 (

which is known now as the ideal mixing., Note that
(1.11) is very close to the values given in (1.4).
Moreover, the same consideration leads to the
validity of the nonet mass formulas

(1.12a)
(1.12p)

m(w)=m(p),
m*(K*) = m*(p)= m*(¢) — m*(K*),

which are experimentally fairly well satisfied. If
we take into account the correction due to the trace
part G}, then we have to consider the mass opera-
tor of the form

M?=C, Tr(GG)+C, Tr(GGX,)+ C,(TrG)?, (1.13)
which leads to Schwinger’s mass formulal!
[m2(d) - m?(wg)][m?*(w) — m*(wg)]

= - LK -m*)F, (1.13")
where

m¥(w;) = Ham2(E*) - m*(p)].

If we set C,=0 in (1.13), we obtain, of course, two
equations (1.12a) and (1.12b) instead of the single
equation (1.13"). Experimentally, (1.13") is very
well satisfied.

In his 1964 papers, Zweig® noted that the nonet
ansatz can easily be reinterpreted in terms of
the quark model as follows. Let g,=p (or u),
g,=n (or d), and q,=X (or s) be three SU(3) quarks.
Suppose that the nontraceless tensor G, can be
represented as

G, =4,q,, (1.14)

which symbolizes a bound state of ¢, and antiquark
g,. Then w and ¢ are written as

- L

1 — -
w {2—(G1+G§)=-ﬁ(q1q1+qzq2)’

(1.14")
¢=-G3=-q.d,.

Let us call any hadron nonstrange if its quark con-
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FIG. 1. Quark-line diagram for decay w— n*n'7".

stituents (or valence quarks in more modern ter-
minology) are purely of ¢, and g, and/or of their
antiquarks g, and g,. Then w, 7, p, and the nu-
cleon N are nonstrange, while ¢ and K are not.
This is because!!? the former do not contain ¢, and
q,; quarks, while ¢ and K do. Then, in terms of
the quark lines, these decays, w- 37 and ¢ -~ 37,
are graphically depicted as in Figs. 1 and 2, re-
spectively. Comparing both, we see that w— 37
can be depicted as a graph involving only continu-
ous quark lines, while for ¢ - 37, the quark lines
for g, and 7, must be disjoint from the quark lines
containing g, and g, constituting pions. The nonet
rule which insists on the nonappearance of G}
terms is then equivalent to a hypothesis that first,
w and ¢ can be represented as in (1.14’) and sec-
ond, the disjoint process corresponding to Fig. 2
(the so-called hairpin diagram) must somehow
be either zero or very small in comparison to the
matrix element of Fig. 1. The same interpretation
of the nonet ansatz had also been independently
found by Iizuka et al.* in 1966. Hereafter we shall
refer to the rule as the quark-line rule (abbre-
viated as QLR). Note that the decay ¢ - K*K" is
allowed by the QLR as is seen from Fig. 3 and it
is indeed a dominant decay mode of ¢. We may
say that the nonet formulation is the algebraic
version of the QLR, while the quark-line diagram-
matic approach is its geometrical visualization.
With respect to the nucleon, the quark model
implies that the proton p and the neutron n are
nonstrange, since they are supposed to be bound
states!!® of three nonstrange quarks as ¢,q,q, and
q.9.4,, respectively. Then, using a straightfor-
ward generalization of the algebraic formulation
of the nonet ansatz, Sugawara and von Hippel'? in
1966 predicted!?® that the coupling constant g, 5
of the ¢ meson with the nucleon must be zero in
the exact ideal case. This fact can be more easily
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FIG. 2. Quark-line diagram for decay ¢ — n* 7 7.



2338 SUSUMU OKUBO 16

q3
> -
q3 4 q‘ K
—_—
| Jp——
q A ql
3 ‘ —_— K+
q3

FIG. 3. Quark-line diagram for decay ¢ —K~K".

seen from the corresponding graphical version of
the QLR. Since the QLR cannot be exact as we
will see in Sec. V, this should only imply

(oni/Bung)® < 1. (1.15)

We shall come back to the experimental discus-
sion of this prediction in the next section.

The analog of the nonet structure for the 1° vec-
tor mesons also appears to be present for the 2°
tensor nonet T, consisting of (1270 MeV),
f'(1514 MeV), A,(1310 MeV), and K **(1420 MeV),
which correspond to w, ¢, p, and K*, respective-
ly. As noted by Glashow and Socolow'? in 1965,
we can readily understand the smallness of the
decay width for f’—7*1" since the QLR will forbid
it just as for ¢ -~ 37. The present experimental
data'®1% indicate

L(f' ~m*1")/T(f=m*1")=(0.33+0.20) X 1072,
(1.16)

I(f =n*1")/T(f'~K'K)=(1.6+0.6)x 1072,
(1.17)

In terms of the coupling constants gp ., , &fkk,
and gy,,, these give'®!® in fact small values of

(8¢ 1s/8fee)?~0.0021 £0.0015, (1.18)
(&p+2e/8pxg)? = 0.0043 £0.0016. (1.19)

Note that the suppression in (1.18) is smaller than
(1.8) for the 1™ nonet. Also, the Schwinger mass
formula (1.13’) is quite well satisfied for the 2*
nonet as well as for the 17 case.

We shall review further experimental evidence
of the QLR for both 17 and 2* nonets in the next
section, for the 0” nonet in Sec. III, and for the

7 V2M[A+B—~C +°*++C,+(q.7,)]

Y particle in Sec. IV. Theoretical implications
as well as the limitation of the QLR will be dis-
cussed in the last section.

II. EVIDENCE OF THE QLR FOR 1~ AND 2* NONETS

In the preceding section, we have seen some
evidence of the validity of the QLR. We shall now
examine it in more detail. Let us recall the defi-
nition that any hadron is nonstrange, if it does not
contain the strange quark ¢,. Also, if we assume
the ideal mixing angle

§,=tan™ 1?2 =35°16’ (2.1)

as in (1.11), then ¢ consists of purely ¢,7,, while
the w meson is nonstrange. However, we shall
consider here a slightly more general case where
the mixing angle 6 in (1.3) is not exactly equal to
6,, but differs slightly from it as in (1.4). Noting
the fact

W= -‘/%(41‘71""12‘72 -294,),
(2.2)
1
V3

Wo= (@43, + 9:T>+ 4:75)5

then the ¢ meson can now contain a small portion
of nonstrange component in its constituent.
Next, let us consider an exclusive reaction

A+B—~C +C,+***+C,+(q,7,) (2.3)

and suppose that all particles, 4,B,C,,C,,...,C
in the reaction (2.3) are nonstrange, i.e., they
contain only ¢q,, q,, q,, and g, but nof g, and 7,
quarks. The reaction (2.3) must then proceed only
via a disconnected hairpin diagram analogous to
Fig. 2 for the ¢, quark line. Therefore, the QLR
demands that its matrix element should ideally

be zero, i.e.,

n

M[A+B—~C,+C,+***+C  +(q,7,)}=0. (2.4)

More accurately, we imply by (2.4) that the mag-
nitude of ratio

be small in comparison to one, i.e.,
|z | «<1. (2.6)

Rewriting (¢.7,) in terms of physical ¢ and w by
means of (1.3) and (2.2), we find

= M[A+B~C+++++C,+ (q,3,)]+ M[A+ B=~C + **++C + (q.7,)}

(2.5)

r

MA+B~+C +Cy+*2+C,+¢) _  Z+tan(f-6,)
MA+B—=C,+C,+*+*+C +w) 1-Ztan(6- 6,)

(2.7)

for the ratio of production matrix elements of ¢




and w. So far, (2.7) is exact. Since we have as-
sumed 8= §,, together with (2.6), i.e., |Z| <1,
this leads to!'%*

0(A+B~C,+C,+°**+C +¢)
0(A+B~C +C,+**+C + w)

«1 (2.8)

for the ratio of production cross sections for ¢
and w.

We now experimentally check the validity of
(2.8).

(1) pp~m*1"V (see Refs. 16 and 16a);

0.011*3:9% at p, =1.2 GeV /c,
0.009*3:9% at p, = 3.6 GeV /c,
0.020+0.003 at p, =2.32 GeV /c;

(2.9)

o(pp~'1"9) _
o(pp—~rtr"w)

(2) Tp~nV (Ref. 17) at p,=5-6 GeV/c:

omp=9m) _ 0035 +0.0015;
o(7™p — wn)

(2.10)
3) ™*n—-pV:
(a) p;=1.54-2.60 GeV/c (Ref. 18)

o(m*n—~¢p) _
o(m'n ~ wp)

(0) pr=5.1 GeV/c (Ref. 19)

0.021+0,011, (2.11a)

+
olr'n = ¢b) _ 4,020 +0.004,
o(m*n— wp)

(c) py =5.4 GeV /c (Ref. 20)

(2.11Db)

or'n=9p) .4 06+0.02;
o(m'n~ wp)

(2.11¢)
@) ™p -~ ATV
(a) p=3.70 GeV/c (Ref. 21)

o(m’p ~ pA™)
o(m*p - wA*)

(b) p.=8 GeV/c (Ref. 22)

o(m'p ~ pA™)
o(m*p - wA*)

<0.0033, (2.12a)

=~ 0,024, (2.12b)

(5) Tp—~1*pV:
(a) p; =3.54 GeV/c (Ref. 23)

o(r*p - ¢m°p) -
o(m*p - wr*p)

(b) p =8 GeV/c (Ref. 22)

0.019+0.011, (2.13a)

+ +
9mp = 97D £ 0.015+0.003

oy —ors) (2.13b)

(6) mp=mmm*pV at p, =19 GeV/c (Ref. 24):

o(rp = 1TT'D) _ () 00500- 0.

o'(n'p - m'ﬂ'ﬂ-“p) =0, 0027 (2-14)
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(7) pp~ppV, etc. at p, =24 GeV/c (Ref. 25):

olpp ~ dpp) _

(a) —'—‘—‘—o_(pp b0) 0.0265+0.0188, (2.15a)
o(pp — ¢ pp) _

(b) b =~ or T bh) (0p ~ wT*Tpp) =0.00115+0.0008, (2.15b)

(o) pp=em)un)pp)
c) =

olpp ~ wlnn*)nr)pp]
In (2.15¢), the cross sections are averages of
those for n-pion pair productions with n=0, 1, 2,
and 3.

Comparing these with (2.8), we can say that they
are of the same order as in (1.8), and that the
QLR is quite reasonable. However, one possible
exception is the unpublished result of the Syracuse
group,*®

o(pn~1"9) _

o(pn—~1"w)

=0.018+0.009. (2.15c)

0.253+0.059, (2.16)
at rest p,=0. Such a large violation of the QLR
is rather difficult to reconcile with other experi-
mental data given so far, Further experimental
verification of (2.16) is desirable. For analysis
which is to be discussed below, we omit taking
into account the value in (2.16) because of its
anomaly.

To determine the most likely value of the mixing
angle 6 from these data, we observe first that the
value of Z depends upon individual production
channels under consideration, while the mixing
angle 6 does not. We assume that the phase and
magnitude of the QLR-violating term Z will vary
its values at random with varying reaction chan-
nels. In other words, we regard Z to be a random
variable with its mean value being zero. If we
take the average of the right side of (2.7) over all
possible reaction channels, then its dependence
upon Z will cancel out in the lowest order of Z. In
this way we can approximately determine

0 6,= +5°43’ (2.17)

if we assign the average value 0.01 to the ratio of
cross sections in (2.9)-(2.15).

Alternately, we can proceed as follows. Let us
set

p= Z +tan(6 - 6,)

“1-Ztan(6-6)" (2.18)

Then, as we see from (2.9) to (2.15), the experi-
mental range of IB |2 varies in an interval (we ne-
glect spin complications)

0.0012= |3|2=0.026. (2.19)

Since Z is assumed to be a random variable with
its average value zero, we may determine the
most likely value of tan(6 — 6,) by requiring the
maximum dispersion of ]Z | to be minimum when
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8 changes in the range allowed by (2.19). Then
we determine the most likely value of 6 to be

6 6,=+5°34", (2.17)

which is not so different from the previous rough
estimate (2.17). Note that (2.17’) implies 6 to be
either 39°50" or 30°42’. The former value of
6=39°50’ is very close to the value (1.4a) based
upon the quadratic mass formula, although (1.4b)
could be still reasonable. This excludes a nega-
tive 8 solution such as 8= —40°in (1.4a). Also,
this dispersion (or variation) of |Z| in this case
is calculated to lie in the interval (we neglect
complications due to spin)

|Z| =0.062. (2.20)

In other words, the QLR violations are less than
6% for all reactions under consideration, i.e.,
the QLR is satisfied within 6%. As we shall see
in Sec. V, the QLR cannot possibly be exact even
in principle. Therefore, itsvalidity at better than
a level of 6% is quite remarkable. We may remark
that the small deviation of the mixing angle 8 from
the ideal value of 6,=tan™1/V2 is probably another
reflection of the small violation of the QLR too.
However, its precise mechanism depends upon
dynamical consideration.?’

Validity of the QLR for the 17 nonet can be seen
also from various decay rates. One example is
(1.5) or (1.8), and the second one is

I'(B-7¢)
T'(B—-mw) <1, (2.21)

where B is the B meson with mass 1228 MeV, and
JF=1*. Experimentally,” we know?® that the left
side of (2.21) is less than 0.01. In addition, if we
assume the validity of exact SU(3) symmetry,

then we compute
k"\?
<7e—> , (2.22)

T(¢~K'K™) 5 m(p) |
S = teosor{ ]

where &’ and k are magnitudes of the momenta of
K and pion in the respective rest frames of ¢ and
p°. For three different values of 6, which are
equal to 6;, 40°and 37°, the right side of (2.22)
gives 0.013, 0.0114, and 0.012 35, respectively,
which should be compared to the experimental
value of 0.0126. When we note that a possible
SU(3) violation could amount to as much as 10% in
this case,? the agreement is excellent for all
cases.

If we assume standard Regge-pole analysis to-
gether with SU(3) symmetry, then we can test the
QLR in the ideal mixing case 8= 6,. In this way,
Lipkin®® has found the following relations:

oKD~ wh)=o(K"p ~ p°A), (2.23)

o(Kp—~dA)=0a(mp~K*\). (2.24)

These relations are experimentally well satisfied
at p; = 3.9 GeV/c as has been already noted by
Lipkin. In passing, we remark that the relations
(2.23) and (2.24) are also known as the quark-mod-
el predictions of Alexander ef al.,* who originally
derived these relations by means of a simple quark
model.

Moreover, the QLR together with SU(3) sym-
metry leads to

T (K**~ Kw)

T Kp) = SLc08(0 - 8)+ V2sin(6- 6)}*

X (k' /R).

Actually, for the ideal mixing case 0= 6, the
validity of this relation depends only upon the QLR
involving ¢, and ¢, quarks (rather than ¢, quarks)
but not upon SU(3). At any rate, the right side of
(2.25) is calculated to be 0.279 for 6= 6,, 0.304
for 6=37°, and 0.346 for 6=40°. The present
experimental value is 0.682+0.432. Considering
the experimental error together with a possible
SU(3)-violating effect, the agreement is not un-
reasonable, In comparison, the SU(3) symmetry
for other 2* - 170" reactions will predict (without
QLR)

T(K**~K*r) _ (k')SN
TR0 - \% =~ 3.906,

(2.25)

(2.26)
1" ok ’\5
1:¢ K*n)_3<k>=0‘394,

T(A,~pr) 8\k

which should be compared to experimental values
of 4.68+1.52 and 0.461+0.108, respectively.

We have noted in the preceding section that the
coupling constant g, 45 should be small as in
(1.15). This fact is consistent with the small pro-
duction cross section of the ¢ meson with the nu-
cleon target as we see from (2.9)-(2.15). How-
ever, from a pole analysis of the nucleon, Genz
and Hohler® find

£.(pNN)/g,(wNN) =~ -0.40 (2.27)

in contrast to (1.15). From (2.5), we can estimate
Z in this case to be a very large value,

Z~0.30, (2.27")

which is at least five times larger than the bound
in (2.20). We may, however, keep in mind the
following facts. First, the pole analysis of the
electromagnetic form factor may not be reliable,
since we do not really understand the dipole nature
of the form factor. Second, an alternative inter-
pretation is possible,®® if the radially excited state
w’ of the w with massaround 1200 MeV exists and
couples strongly with the nucleon. Then the iso-



scalar contribution, discussed by Genz and Hohler
can result from the w’ contribution rather than
that from the ¢. In that case, g,(¢NN) in (2.27)
should be replaced by gl(w’NIV) so that the large
QLR violation simply disappears. Another pos-
sible advantage of the existence of the w’ is the
fact®® that it may help to explain the smallness of
the p* -~ m*y width in comparison to w-7%, since
the w’ pole in addition to the w pole could now
contribute to the p*—7*y decay width, We will
come back to the problem of p*—7*y in Sec. III.
In spite of these attractive features, the possible
existence of w’ will give rise to the vexing ques-
tion of why w’ then does not appreciably mix with
w and ¢. All present data are in general consis-
tent with the simplest w-¢ mixing theory we have
been dealing with.

Summarizing what we have found so far, we
may say that the QLR is in general excellently
satisfied for the 1° nonet. We could test it in
the future, for the ee—~V, P, F, reactions. In the
ideal mixing case 6= 6,, the QLR together with
SU(3) will predict the following relations®*:

o(ee—~om*n™)=0, (2.28)
o(eg -~ p°K*'K")=o(ee — wK*K"), (2.29)
o(ee - p°K°K°) = ¢ (e ~ wK°K?)

=o(ee - wr*nr")

= o(ee - K°*1°K°)

=30(eg~ PK°K°)

= 30(e ~ K°*n,K°), (2.30)
o(ee - OK*'K")=o(eg -K°*1*K"). (2.31)

Also, a possible test of the QLR for ¢-meson
production in extreme high-energy pp collisions is
discussed by Frautschi et al.*

Until now, we have investigated consequences
of the QLR for the 1° nonet. For the 2* nonet, we
have already seen the smallness of (1.16) and
(1.18). The inequality (2.8) should also be valid,
if we replace ¢ and w there by f’ and f, respec-
tively. For example, we find at p, =8 GeV/c (Ref.
22)

O.(,rrﬁp _.f lAﬂ)
o(m*p - fA™)
which should be compared to (2.12) and (1.16).

This is compatible with the validity of the QLR.
Also at p, =2.32 GeV/c, we have!®?

<0.037£0.003, (2.32)

o(pp~f 1) _
ooy ) = 0-028:+0.009.

Another important fact is the f-f’ interference.*
Utilizing this fact on7N - fN and f’N reactions, Paw-

(2.32)
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licki et al.* appeartofind a similar value tothe
cross-section ratio, althoughthe exact value is not
stated. However, some other data may indicate
rather large violations. At p;=1.5 GeV/c, Pic-
ciarelli et al.*® observe

T(fmrrrm) o
T(7=all) o(Mn—-fp)=9+1 ubd,
while Mettel'® at the same energy finds

T(f'=K*K)+T(f'=K*K)
T(f"~all)

Since we know’ that

T(f-m*n*n"n")/T(f~all)=0.028,

o(mn—~f'p)=6.4+£2.4 ub.

T(f'~ K*K)+ T'(f'~K*K)
T(f'~all)

=0.35,
these imply a rather large ratio,

o(mn~f'p)

W =>0.080+0.038. (2.33)
This is actually an underestimate, since I'(f’
- K*K) is expected to be far smaller [see (2.42)].
However, a possibility exists that the measured
data might not really be the decay of f'(1514 MeV)
with I=0, but rather of F (1540 MeV) withI=1
into K*K and K*K modes. Note that T'(f’ —all)
=40+10 MeV and I'(F,-all)=40+15 MeV so that
they could overlap each other for the decay chan-
nel K*K. Also, a possibly rather large cross sec-
tion for the QLR-violating reaction pp— 7%’ at
p1=0.7 GeV/c has been reported,’” although by the
same complication due to the presence of the F,
meson and of the f-f" interference, caution is per-
haps warranted. In view of the scarcity of data
relevant to the f-f’ mixing problem, more experi-
mental data on these cross sections are definitely
desirable.

If we assume the validity*® of SU(3) symmetry,
then we can test the QLR for the 2* nonet. Let O
be the mixing angle for the 2* nonet just as in
(1.3), i.e.,

f'=cosOrf, — sinbrf,, (2.34)

f=sinbp fy+ cosOrf,.

Then, the SU(3) mass formula gives”’
6= +(29°+2°),

or (2.35)
0= +(31°+2°),

depending upon whether we use the linear or quad-
ratic mass formula. But we will not consider the
case of negative 6, as in the 1” case. SU(3) sym-

metry together with the QLR predicts
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_T(f~KK)
17 T(f-7m)
B\
=31+ V2tan(§, - 97.)]2(;> , (2.36)
_T'(f~KK)
B Y=
=3[V2 -tan(6, - 9,)]2[—%—)]2%)5, (2.37)
g - LU ~KEK)

3° T@,~KK)

=[cos(6, - 87)+ V2sin(6, - 6;)]? [%1(2472)]2

()"
(2.38)

where 2’ and %2 are magnitudes of momenta of
daughter particles in the rest frames of the re-
spective parent particles. Also, we remark that
(2.38) is valid without assuming SU(3) symmetry
for the case of the ideal mixing 6,= 6, i.e., that
it is a consequence of the QLR (for the ¢, and g,
quarks rather than the ¢, quark) alone in that
case. The numerical values of R, R,, and R, are
computed to be

0.035, 6= 6,=35°16,
R,={0.043, 6,=31°,

1 (2.36")
0.047, 6,=29°,
0.314, 65=6,=35°16’
R,=0.282, 6,=31°, (2.37")
0.267, 6,=29°
0.711, 6,=6,=35°16’,
R,=0.864, 6,=31° (2.38)

0.937, 6= 29°,

These values should be compared® to experimental
values of

R,=0.033+0.008,
R,=0.274+0.097,
R,=1.014+0.490,

(2.39)

The general agreement is reasonable for all cases
by the following reasons. First of all, we did not
take into account corrections due to finite widths
of f, f/, and A,. Second, the SU(3) violation may
be considerable. As a matter of fact, the SU(3)
symmetry gives us

I'(A,~KK) _ 2[m K**)}2 R"\®

T(K**~Km) 3| m(A,) <F>

~0.127,

(2.40)

which should be compared to the experimental
value of 0.079+0.023.

Also, SU(3) symmetry predicts

T(f=K*R)+ T(f'~K*K) , <k'>5
=5 0..)2 | —

I‘(Az-—mr) Z(COS T) b ’

(2.41)
which gives

=, , = 0.010, = 6,=35°16’,

L(f ~KK)+ T~ K*K) )o'o11’ gr =310

I‘(f'-all) . ’ T ’

0.012, 6,=29°
(2.42)

III. QLR FOR 0" NONET

In preceding sections we have tested the validity
of the QLR for the 1" and 2* nonets. The same
idea may be applicable to the 0° nonet. However,
there are several possible complications involved
for a simple extension to the 0~ case. First, we
may have more than two candidates for the nonet
partner of 7. They are 1'(958 MeV) and E(1416
MeV). It is known*® that the Schwinger mass for-
mula is better satisfied by a choice of (7,K,K,n,E)
rather than (v,K,K,n,7n’) for the 0~ nonet. How-
ever, from a study of #’—~nr*n~ and E—-KKm,
Ueda* has concluded that 7’ is preferable to E as
the nonet partner of the n. Moreover, a recent
experiment®? strongly suggest that J®=1* assign-
ment for E, so as to preclude E. In this note,
we assume that 7’ is the nonet partner of 7. Sec-
ond, the 07 nonet does not satisfy the typical mass
formula of the 1° and 2* nonet. Indeed, the analog
of Eq. (1.12a) is m(n')=m(w), which is very badly
violated.. Third, the 0~ particles are likely to be
Nambu-Goldstone particles which are related to
spontaneous breakdown of the chiral symmetry
Ux(3)®U,(3). Hence, they may have characteris-
tics entirely different from the 17 and 2* nonets.
Indeed, the second and third points mentioned
above are connected with the so-called 7 puzzle*?
in quantum chromodynamics** (hereafter referred
to as QCD), although the pseudoparticle solution
by G. ’t Hooft** may have resolved the difficulty.
Fourth, in QCD, 1 and 1’ could couple strongly to
two-gluon states. In comparison, w and ¢ can
couple with three gluons. If we accept the asymp-
totically free QCD model,*® this will imply that the
two-gluon state contained in 7 and 7’ may not be
negligible.*” This fact may be related to a rela-
tively large C,(TrG)? in (1.13) so as to invalidate
(1.12) (see Sec. V). The neglect of three-gluon
states in w and ¢ may be justified in view of the
smaller coupling constant due to the larger masses
of w and ¢. Or at least its major effect will be
absorbed presumably into the small deviation of
the mixing angle 6 from its ideal value 6,.
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Regardless of these problems, it is nevertheless
worthwhile to consider consequences of the QLR
for the 0™ nonet. To maintain the general aspect
discussed above, let us, however, suppose that
n and 7’ may mix not only between them but also
with additional unspecified particle or particles
which we collectively refer to as £. Then the
physical n and 7" would be phenomenologically
expressed as

n=S8,(cosf,n, — sinf;ny)+S, £, (3.1)
n’'=S,(sinf,ng+ cos6,n,)+ S, £,

where S,,S,,5;,S; are some constants and we in-
troduced two mixing angles 6, and 6,. This gen-
eralizes the simple mass-mixing scheme which

demands

6,=0,=6p,

0p=+(11°£1°), (3.3b)
depending upon whether we use the linear or the
quadratic formula. Note that the sign of 6 cannot
be determined in this way. Equation (3.1) contains
also the case corresponding to the current mixing
scheme®® as a special case when we have £=0. We
may interpret £ in several possible ways. First,

£ may correspond to two-gluon states?” or bound
states®® of two gluons. Or, £ may represent other
0~ states such as E or more generally any radially
excited state of a q7 system with I=Y=J=0 and/or
daughter trajectories of 7 and n’. Presumably,
the last interpretation corresponds to the model

of Inami, Kawarabayashi, and Kitakado,*® who
base their argument on the dual unitary picture

of Chew and Rosenzweig.! A somewhat similar

(3.2) view has been recently expressed by Lipkin.’? Al-
§,=8,=1, S§!=S5,=0, though £ could contain in principle n,=q,7,, where
. q,=C is the charmed quark, its effect for prob-
where the SU(3) mass formula gives lems involving 1 and 7’ is expected® to be too
0p=2(24°£1°), (3.3a) small and we can ignore it.
or Let us set for simplicity
72 VoM[A+B~C +++++C,+(q.7,)] (3.4)
M[A+B~C,+***+C +(q,q)]+ M[A+ B=C +++++C + (q,)] ’
Z' __ MEA+B~C ++++C,+¥) (3.5)
Z M[A+B~C,+++++C,+(q3,)]’ ’
where ¢,g, (j=1,2,3) are fictitious 'S, bound states of gy and g;. Then we find
MA+B~C +++++C,+7") _S,[cos(8, - 8,)+Z sin(6, - 6,)]+S.Z’ (3.6)

MA+B~C ++**+C,+n) S/[sin(6,-6,)-Z cos(8,- 6,)]+S/Z"’

where 6, is,* as before,
1
6,=tan™ — =35°16", (3.7
° V2

So far, there is no approximation. Suppose now
that A,B,C,,C,,...,C, are nonstrange hadrons as
in the preceding section. Then as a generalization
of the QLR, we assume

|Zz]| <1, |Sjz'| <1, |Sjz’|«<1. (3.8)

An important difference in comparison to the 1°
case is the fact that both cos(6, - 6,) and sin(6, - 6,)
cannot be small theoretically as we shall see
shortly. Therefore, from Egs. (3.6) and (3.8), we
find that if we define K by

_GA+B-~C,+°°++C +7')

_6(A+B_.Cl+...+cn+n) ’ (3.9)
then the QLR predicts®
S,cos(6, -6 )]2
= =—2-""\0 "2/
H= [S, sin(6, - 6,)] * (3.10)

In Eq. (3.9), @ represents the cross section o
divided by the phase volume available in the final
state. For the mass-mixing case (3.2), several
special cases of (3.9) and (3.10) have been derived
also from a simple quark model by Alexander
et al.®® Our derivation of (3.10) is obviously inde-
pendent of SU(3) symmetry and of the Regge-pole
analysis, so that it directly tests the QLR.

Especially, we note that K, in (3.10) is a con-
stant independent of any energy and angular vari-
ables associated with the reaction A+ B—~C +° +°
+C,+n(n’). Also, it is independent of any speci-
fic reaction channel. Its value can be computed
once a theoretical model of n-n" mixing is given.
We shall consider several cases of mixing models
of practical interest. We consider only the case
with §]=5.=0 hereafter.

(a) Linear mass-mixing model with negative 6p:

6,=0,=0p=-24°, S =5,=1, (3.11a)

K,=0.35.
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(b) Linear mass-mixing model with positive 0p:
0,=6,=0p=+24°, S, =S,=1, (3.11b)
K,=23.9.

(c) Quadratic mass-mixing model with negative
0p:
6,=6,=-10°, S,=S,=1,
K,=0.95.

(3.11c)

(d) Quadratic mass-mixing model with positive
Op:
6,=6,=+10° S§,=S,=1, (3.11d)
K,=4.31.
(e) No mixing at all:

OKUBO 16
6,=6,=0° S,=S,=1, (3.11¢)
K,=2.

(f) Rosenzweig model®:
§,=-10°, 6,=-20°, S,=S,=1, (3.116)
K,=0.63;

(g) Model of Inami et al.*°:
6,= —6°, b,=—20°, (3.11g)

(5,/5,)?=0.69+0.19, (S,)*=0.64+0.11,
K,=0.50+0.14,

For the model (3.11g), we ignore hereafter all
errors quoted therein and we use only their cen-
tral values.

Next, let us compare our prediction (3.10) with
currently available experimental data:

S 'avy 0.40+0.18, p.=3.65 GeV/c, (Ref.56), (3.12a)
(1) ZEh oy =10.242 0,11, p,=5.45 GeV/e, (Ref. 57), (3.12b)
p=n 0.70+0.40, p,=8.0 GeV/c, (Ref. 58); (3.12¢)
O(mp—~n'a% _ - . 3.13
(2) 5(rp = 1A% =0.25+0.025, p,=17.1GeV/c (Ref. 59); (3.13)
(3) G(m*n~n'p) _)0.27£0.06, p,=1.66-2.10 GeV/c (Ref. 60), (3.14)
F(mn—~np) |0.56+0.28, p,=2.10-2.22 GeV/c (Ref. 60), ’
5(mp—~n'n)
——+t—— =0, . =3.8- . 61 and 62); 3.15
(4) ST =) 0.50+0.14, p,=3.8-200 GeV/c (Refs. 61 and 62); (3.15)
(5) ZLP=N"T"T) _ ) 23,015, p,=0GeV/c (Ref. 63). (3.16)

G(pp—~nm'nT)

We may remark that the ratio for o(n"p —~n'n)/
o(m™p ~mm) is experimentally found to be approxi-
mately constant over the wide energy range® % of
p.=4-200 GeV/c, and over some ranges® of the
angular variable . Also, for the reaction pp
—~7m'1"n(n’), the Dalitz plots for 1 and 7’ are ex-
perimentally found to be essentially identical to
each other. These are in accord with our predic-
tion of the constancy of K,. [See a discussion
after Eq. (3.10).]

Comparing Eqs. (3.12)-(3.16) with (3.10)and (3.11)
we can safely eliminate the cases corresponding to
(3.11b), (3.11d), and (3.11e). In other words, the
mixing angle 0p= 6, = 6, for the mass-mixing case
cannot be positive nor zero. This fact is gratifying
since other studies® ® especially on n—2y, 71’
-2y, and n—7'7"y lead to the same conclusion.

Similarly for the decay of the A, meson, the
QLR predicts

L'A,~77’) _Ko(kr

5
ra = Kol > =0.041K,,

z (3.17)

r
where % and &’ are magnitudes of pion momenta
in the rest frames of these decay modes. From
the known upper limit” for I'(4,~77’), we esti-
mate

K,<1.62, (3.18)

which still excludes the cases (3.11b), (3.11d),
and (3.11e).

From (3.12) to (3.16), we see that the values of
K are not exactly a constant K, but are scattered
over the range K= 0.24-0.73. Moreover, as far
as the first four reactions are concerned, they
are expected to go through the A, Regge trajec-
tory at very high energy. Therefore, irrespective
of the validity of the QLR, we expect to have

K= (gpym /8 aym) = K, (3.19)

for these four reactions in the very-high-energy
region. If the discrepancy between (3.13) and
(3.15) is real, then we have to conclude that a
pure Regge-pole model is not working well and
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that a Regge cut which also will violate the QLR
must be contributing considerably to these reac-
tions. However, the energies involved in the re-
actions (3.14) and (3.12a) are not high enough per-
haps to permit us the use of the Regge theory.
Nevertheless, the values of K are not significantly
different from other cases. Noting that our deri-
vation of (3.10) is independent of the Regge-theory
and that the energy variations in these reactions
(3.12)-(8.16) range in the wide region of p,=0-
200 GeV /c, the near constancy of K is still re-
markable.

We now propose to find the most likely value of
K,. As in Sec. II, we suppose that the QLR-vio-
lating terms Z and Z’ of (3.4) and (3.5) will change
their phases and magnitude randomly with vary-
ing reaction channels around the median (Z)=0
and (Z’)=0. Then if we take the average of K over
all available reactions, we expect that the depen-
dence of Z and Z’ will cancel each other at least
in the lower order to give (K),,,=K,. In this way,
we can roughly estimate K, to be

K,~0.5. (3.20)

This is gratifying since the QLR is expected theo-
retically to be better at higher energy (see Sec. V)
so that the most likely value of K, should be near
the one given by (3.15).

Now the variations of K which are found among
(3.12)—(83.16) are regarded as due toQLR-violating
effects. However, the magnitude of the violation
depends upon the theoretical model of 7-n" mixing.
If we adopt the model of Inami et al.*® with S]=S}
=0 (or Z’=0), as in (3.11g), then we estimate (we
neglect complications due to spin)

|z]=0.143 (3.21)

from (3.6) for all cases of 0.24=K=0.73. The
bound |Z| =0.170 can be obtained also for the
linear mass-mixing model (3.11a) with 6p= -24°,
but the Rosenzweig model (3.11f) leads to a larger
variation of

|z| =0.19. (3.21)
This fact may imply that the latter model is less
favorable in comparison to the former ones. Actu-
ally, for the mass-mixing case, we can determine
the most likely value of 6, as in the w-¢ case by
demanding minimum variations of IZ | . Then we
find

0, — 0p=+56°42", K,=0.43,
|Z|=o0.126,

(3.22)

which gives either 6p=-21°30" or + 91°50’. The
former value is very close to 6p=-24° of the linear
mass case. Thus, the linear mass-mixing model

is definitely better than the quadratic one. Note
that the second solution 8,=-90°0" implies that

1 and 1’ consist almost of pure SU(3) singlet 7,
and SU(3) octet n,, respectively. Although this
fact is rather suggestive, this solution is nof com-
patible with the SU(3) mass formula so that it can
be ruled out.

Returning to the discussion of the variation of
|Z|, Eq. (3.21) implies that the violations of the
QLR for models (3.11g) and (3.11a) are at most
15 to 17%, respectively. If we accept the linear
mass-mixing model with angle given by (3.22),
i.e., 6p=-21°30’, this is reduced further to 13%.
Compared to the analogous value of 6% for the
QLR violation of the 17 nonet, this is not good.
But considering the large experimental uncertain-
ties as well as the much larger energy range in-
volved (p;=0-200 GeV/c), this fact is neverthe-
less remarkable. It is certainly better than what
we would expect theoretically. For example, the
QCD gluon model would qualitatively predict a
much larger violation of the QLR for the 07 nonet,
although a quantitative calculation is almost im-
possible. In this context, we should emphasize
the fact that a large part of the QLR-violating
effects are implicitly hidden in the form of nor-
malization constants S, and S, as well as of mixing
angles 6, and 6,. Hence, we may say more cor-
rectly that once these effects are subtracted, then
the remaining residual QLR-violating terms Z
and Z’ are small, and at most of order 13-19%.

We have seen that the model of Inami et al.
(3.11g) and linear mass-mixing model (3.11a) as
well as possibly the Rosenzweig model (3.11f) are
reasonably compatible with the QLR. It is very
difficult at the moment to select the best candidate
from these three. If the mass-mixing model (3.2)
is assumed, then Lipkin®® has shown the validity
of the relation

o(Kp~nA)+a(Kp—n'A)
=o(Kp—~1A)+o(m"p~K°A) (3.23)

on the basis of the QLR and of the SU(3) together
with the Regge-pole model. As he remarks, this
relation is badly violated at p; = 3.9 GeV/c, where
the right side is larger by a factor of 1.6 in com-
parison to the left side. Recent experimental
data® at p; = 4.2 GeV/c show not only the same
discrepancy at £~ 0, but also a larger discrepancy
of a factor amounting to nearly 3 in a larger ¢ re-
gion of £=0.5-0.9 (GeV/c)?. However, the relation
(3.23) is not valid for the models of Inami et al.
and of Rosenzweig. Therefore for the latter two,
we have no contradiction. This may suggest that
the latter models are better than the linear mass-
mixing scheme. However, a word of caution is
perhaps advisable. It could be that the Regge-pole
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model could be bad®® at these energies especially

in larger values of . Or it would be that the SU(3)

symmetry might be badly violated also in the re-
actions. For example, if SU(3) is violated by an
amount of 10% and if the QLR violation is of the

order 15%, then the combined 25% violation for the

scattering amplitude could easily account for the
discrepancy of 1.6 observed near (=0,

For the decay modes 2* - 170", SU(3) together
with the QLR predicts

R = L'(A,~mn)
1~ T(A,~ KK)

= 2[S, sin(f, - 91)]2<%'>5, (3.24)

_ I(K**~Kn)

R Tk =K&n)

= 3(S,)4sin(6, - 8,) — V2 cos(6, - 91)]2&7')5 ,

(3.25)
which give
4,258 for (3.11a),
R,={2.907 for (3.11c) and (3.11f), (3.24")
1.605 for (3.11g),
0.002 for (3.11a)
R,=40.008 for (3.11c) and (3.11f), (3.25")

0.010 for (3.11g).

These values should be compared to the experi-
mental values of

R,=3.19£0.59,

R,=0.036+0.036.
Therefore, the model (3.11a) is better than
(3.11g). We may test the QLR also from

L(f' —=nm)

m = [Sl COS(B0 - 91)}4

X [‘E‘ tan(6, - 67) tan®(6, — 91)}2 (k ,>5

V2 —tan(6, - 6,) k
(3.26)
which predicts with 6,=~30°
0.033 for (3.11a)
r !_. b
r—((ff__—K’% ={0.156 for (3.11c) and (3.11f),
0.086 for (3.11g).
(3.26")

So far, no good experimental value is available to
test this.
Next, we find similarly that the QLR gives

%Z—:Z% =L[cos(8, - O

x[1+2tan(8 - 6,) tan(8, - 6,) <}2—,>3

(3.27)

For the ideal mixing case 6= 6, for the 17 nonet,
the right side of (3.27) for all values of 6, is sim-
ply 0.096, while for 6=39° it gives values of 0.143,
0.123, and 0.119, respectively, for (3.11a),
(3.11f), and (3.11g). The recent experimental
value for this ratio is found® to be 0.10+0.02 so
that all models are nicely consistent with the ex-
periment. However, the most troublesome prob-
lem facing the QLR for V,~ Py decay is the ratio

C(w-7%) _

k' 3~
W-Q[COS(%— 9)?(;) ~9.47, (3.28)

which differs from the present experimental value
by a factor of 2.5. For the ideal angle 6= 6,
(3.28) is a direct consequence of the QLR involving
g, and g, but not g, quarks. Asiswell known,” this
discrepancy cannot be resolved unless we demand
either a large SU(3) violation or a large QLR vio-
lation (for ¢, and g, quarks but not necessarily
for ¢, quarks) or both. With respect to other decay
widths such as I'(¢ - 7ny), Borchardt and Mathur™
have investigated them in detail, so that we will
not repeat them here. The models (3.11g) and
possibly (3.11a) appear to give reasonably good
values for these widths except for I'(K*— Kv) and
T(p* —7*y).

We remark that the QLR predicts

T(n'=p%) _ <k_’>3_

Tl = ol ) = 1:98K, (3.29)
and

T(n'~wy) _ (E')a -

Tlommy = 3Kly ) = 152K, (3.30)

where we assumed ideal mixing for w and ¢ in
(3.30). From (3.29) and (3.30), we obtain also

T(w=mny) _ I'(n' - wy)

1.28 . 3.31
r(po - n.y) F(TI ', poy) ( )
A measurement by Andrews et al.” gives two
possible solutions:
o -
T(p°~ny)=50+13 keV, (3.32a)
I'(w—-ny)=3.01%5 keV,
or
0 =
T(p°—~nY)=T6+15 keV, (3.32b)

T(w=7ny)=29+7 keV,

However, the second solution (3.32b) is in rather
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bad agreement with (3.31), if we use the experi-

mental value® of I'(n’ = wy)/T'(n’ -~ p%)=0.10+0.02,

Accepting the solution (3.32a) and using the known
branching ratio’ of

I'(n' - p%)/T'(n’ - all)=0.304,
then (3.29) predicts
T'(n’ -all)~ (160 + 42) keV, (3.33)

if we use the value K,=0.5.

All these decay modes are intimately related to
ee—~V, P, reactions. Assuming the exact SU(3)
together with the QLR, we find

G(ee~7°¢)=0, (3.34)
T (ee -~ 1°w)=9G (eg -~ 1%°)
=95(eg~1"p7), (3.35)
G(eg - np°) = 95(ee ~ nw)
=Jtan*(6, - 6,)5 (e2~n¢)
=9S,%2sin%(f, - 6,)5(ee ~1%°), (3.36)
G(eg - n'p°)=95(ee ~ n'w)
=2 cot?(6, - 6,)0(ee~ ')
=95,%cos?(6, - 6,)5(ee —~1°°),
(3.37)

where for simplicity we assumed ideal mixing for
w and ¢. From these, we may hopefully be able
to discriminate various models of the -1’ mixing
in the future. Also, studies of o(e€ —7"p*) will
shed light on the vexing problem of I'(p*—m*y).

Some other predictions of the QLR are given in
Ref. 54. We did not discuss here the decay widths
of n— 2y and 7’ - 2y since that involves various
other assumptions. Some calculations based upon
the mass-mixing models can be found in Ref. 66.
Also, it is possible that the QLR involving the ¢,
quark is better than the QLR for ¢, and g, quarks.
Note that the QLR involving the charmed quark g,
is better satisfied than that for the ¢, quark as we
will see in the next section.

IV. QLR FOR y/J AND 0*

The narrow decay width of 67 keV for ¥/J with
mass 3100 MeV definitely requires a new quantum
number.! Ordinarily, we introduce the fourth
quark™ g, (or ¢) which is called the charmed
quark, ¥/dJ is then assumed to be a bound state of
4.9, in the °S, state just as ¢ =4.7, in the ideal
mixing case. Then the QLR readily forbids the
decay of ¥/J into ordinary hadrons involving only
q,, 4., 4 and their antiquarks. Therefore, the
hadronic decays of ¥ are possible only in a weaker
QLR-violating mechanism. The narrow width of

%/J implies that the QLR involving the fourth quark
q, is much better satisfied than the QLR involving
the third quark g,. Also, the eross section o(ee
-~ )+ hadrons) at 4.0-5.0 GeV /c is found™ to be less
than 0.1% of total hadronic cross sections. This is
also compatible with the validity of the QLR with
respect to the fourth quark, ¢,. The answer for
this may be sought™? in the QCD gluon model. At
any rate, we refer, hereafter, to the QLR viola-
tion only those with respect to the third quark, ¢,
but not to g,.

One outstanding problem is how to explain a
relatively large decay rate

L'~ on'n”)

'I.,—(m =0.20+0.10. (4.1)

Since the decay ¥ - ¢7'7" violates the ¢, quark
QLR, we expect the ratio in (4.1) to be of the order
of 0.01 as we judge from the results of Sec. II.
However, a recent experiment” may have resolved
this dilemma. They discovered the two-pion in-
variant-mass spectra are markedly different’® be-
tween ¥~ ¢1*1” and P~ wr'n”. It appears that the
decay ¥~ ¢n*1" is really a two-step decay process
in which the ¥ first decays into

Y~ ope’ (4.2)

and then the resonance €’ with mass value around
900 MeV decays into

€ —7tr”. (4.3)

Here €’ could be a new 0* resonant state with
rather narrow width or it could be identical to
S*(993 MeV), except for its slightly lower mass
value. Tosimplify the argument, let us suppose
that €’ consists dominantly almost of ¢.7,. Then
the reaction (4.2) is allowed by the QLR, but

P~ we’ (4.4)

is forbidden by the QLR in conformity with the
experiment. Therefore, the experimental differ-
ence of the dipion mass distributions for ¥ - ¢n*r~
and - wr*r" is readily explained. Indeed, the
decay ¥ -~ wr*nr” dominantly proceeds via ¥ -~ wf,
followed by f—n*nr~, Now the decay (4.3) is nor-
mally forbidden by the QLR just like ¢ - p7. How-
ever, because of zero phase space, the QLR-al-
lowed decay

€'-KK (4.5)

is kinematically forbidden. As a result, the nor-
mally forbidden mode (4.3) can now be essentially
the only dominant decay process possible, thus
explaining the large ratio in (4.1) as well as the
rather small width of €',

Moreover, they find”® other evidence for the
validity of the QLR such as
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?((‘fp “’Q<o 084+0.035, (4.6a)

Ez‘i“g,; <0.20+0.12, (4.6b)
lf((‘f gff?) <0.46+0.29, (4.6¢)
%% <0.19£0.18. (4.6d)

If the QLR involving the ¢, quarks is exact, then
values of the left sides in Eq. (4.6) should be zero

J

T@=m°):T(=nw): T =n¢): T(¥=n'w): T(¥=n'¢)

in the ideal-mixing limit.
Also, if C,,C,,...,C, are all nonstrange, then
we should have®*

T(p~C,+Cot**+C +7') _
T@—-C,+Cy+s+e+Cp+n)

(4.7)

just as (3.10), where T is the decay width divided
by the phase volume. This relation may be tested
in the future. A similar test of the 7-7’ mixing
theory is suggested by Lipkin.’? Moreover, if the
interaction responsible for hadronic decays of ¥
is dominantly SU(3)-singlet, the QLR gives

=1:|S,|%sin%(6, - 6,): |S,|2cos?(8, - 6,): |S,|2cos?(8, - 6,): |S,|?sin%(6, - 6,), (4.8)

where we assumed ideal mixing for w and ¢. So
far, the present experimental data™ are not accu-
rate enoughtodiscriminate among various models of
the n-n’ mixing discussed inthe preceding section,
although the data are roughly consistent with (4.8).

In pp high-energy collision, ¥ appears to be
produced” via a QLR-violating process rather
than the QLR-preserving reaction

PP"DI—)ZP*'"' . (4.9)

However, a similar situation already exists®*2®

for the ¢ production in high-energy pp and mp col-
lisions, where the ¢ meson is usually more copi-
ously produced via QLR-forbidden processes
rather than by the QLR-allowed reactions

pp~KEKp+ . (4.10)

These facts are presumably due to smaller un-
favorable phase volumes for the QLR-preserving
reactions (4.9) and (4.10) at the currently available
energy range.

Up to now, we noted that the QLR are quite well
satisfied experimentally. However, we may have
one theoretical problem of the following nature.
Computing the so-called pion ¢ term on the basis
of the chiral SU;(3)®SUL(3) model, Cheng™ has
obtained a rather large value for

VBV 17,(0)q,(0) | V)
(N1[g,(0)g,(0)+ 7,(0)g,(0)]IN)
~0.35, (4.11)

Z=

which is significantly far from the value 0 pre-
dicted by the QLR. This is essentially two times
larger than the maximum value |Z|=<0.17 for the
0" nonet. In (4.11), 7,(0)¢;(0) is the scalar density
operator involving the jth quark. In the pole ap-
proximation, this fact implies a large coupling
constant g.. vy of €’ to the nucleon, suggesting a
large violation of the ideal mixing in the nonet

r
structure of the 0* meson. However, on the other
hand, the decay width of ¥ - we’ appears to be
small in comparison to that of - ¢€’. This fact
requires contrarily that the ideal nonet structure
for the 0* meson must be reasonable. One pos-
sible way to resolve this dilemma will be to mea-
sure.the ratio of cross sections such as

Z +tan(fg - 6,)
1-Ztan(6g - 6,)

G(mp-ne’) _
G(np—~ne)

where € with mass 1200 MeV is probably the 0*
meson corresponding to quark structure (1/
V2)(q,7,+4q,7,) (see Sec. II).

In ending this section, we simply remark that
there may exist a further hierarchy of importance
among QLR-preserving diagrams. One example
is the dominance™ of the so-called quark-rear-
rangement diagram over the other diagrams in
pPp —~V, P, P, reactions.

(4.12)

V. LIMITATION OF QLR AND THEORETICAL MODELS

In spite of its reasonable successes, the QLR
fundamentally differs from the usual selection
rules, since it is in general incompatible with the
unitarity condition

ImT(G~f)= ) T*f~=n)T(i~n)o(E - E,).
" (5.1)

As is well known,®”®! the unitarity correction can
lead to violation of the initial QLR rule. A simple
example is the case with i=¢, f=7"p*, and
n=K'K", as we may see from Figs. 3, 4, 5, and
6. Since the real part Re7 (i ~f) can be computed
from the imaginary part Im7 (i - f) on the basis of
the dispersion relation, the validity of the QLR
suggests that the summation over all intermediate
states n in Eq. (5.1) must be canceling® greatly,
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qI qI
K" < ‘ < -”'"
*q, T,
Y 1
a, q,
Kr—e+— —e= p*
q| c|I

FIG. 4. Quark-line diagram for reaction K "K*— 1=p*,

leaving a small residual QLR-violating term.
Such a behavior may be partially understandable,
if we assume an ansatz analogous to the so-called
local-compensation hypothesis®® on the multiple-
particle production reactions. Suppose that the
initial state “Z” differs from the final one “f”, i.e.,
t¢#f. Then in high energy, T(i-n) and T(f—n)
would randomly and independently change its mag-
nitude and phase, as the intermediate state “n”
varies. Because of this mismatch between phases
of T(i~n) and T(f-n) the cancellation would
result.?3 If this argument is valid, then we expect
that the QLR is better satisfied in higher energies,
since many intermediate channels “n” will be open
in high energy so that the cancellation will be
better.®®* However, this argument fails for i=f,
since the sum in (5.1) is then coherently additive
as we see:

ImT (i ~i)= Z | T(i~n)|?6(E - E,). (5.2)

Therefore, the QLR is not expected to be good for
the reaction ¢ -2, Indeed, the cross section

o(¢p - ¢p) with i= ¢p is known to be large via the
Pomeron exchange, which symbolizes a large
QLR violation.

The unitarity correction is likely related to the
presence of the sea quarks® inside any hadrons.
Since the sea quark is expected to be an SU(3)
scalar, this implies that the physical proton and
pion can contain strange-quark pairs ¢.7, inside
them. This will be another possible mechanism
for violations of the QLR.

So far, the best possible explanation of the QLR

93 9, 9,
p—wm—p S = -
RE q, 9 RPS
¢ r 49,
N I a as aQ |
A e % —<+ P
q, q,. q,

FIG. 5. Quark-line diagram for combinations of Figs.
3 and 4, representing the two-step mechanism ¢ —K~K*
— 1 p*.

a5 q,

43 j—a— L2

4 9

FIG. 6. Quark-line diagram for ¢ — n*p, which is
topologically equivalent to Fig. 5.

is the asymptotically free color-SU(3) gluon model.
Since this fact is well known, we need not go into
detail. However, one interesting consequence of
the gluon model is an interpretation of the term
C,(TrG)% in (1.13). It can be due to contributions
of three- or two-gluon intermediate states to the
mass operator of 1 or 0~ and 2* nonets, as q7

-~ (3 or 2 gluons)~gg7. Since we expect that this
contribution would be small for the 17 nonet, we
can set C,=0 so as to obtain a reasonable validity
of the two nonet mass formulas (1.12a) and
(1.12b). On the other hand, the 2* nonet requires
two gluon exchanges and hence the coefficient C,
may not be so small as compared to the 17 case.
This may account for a slightly poorer validity of
(1.12a) and (1.12b) for the 2* case. With respect
to 07, the C, term could be very large because of
the smaller masses of the 0™ particles. There-
fore, the nonet formulas (1.12) will be very bad.
Also, because of this the Schwinger mass formula
(1.13’) itself is not well satisfied for the 0~ nonet
in comparison to both 17 and 2* nonets since we
may require the additional presence of
C,Tr(Grg) TrG term.

The QLR-violating scattering ¢p - ¢p mentioned
already can proceed via gluon exchanges of pos-
sibly infinite numbers. Then the Pomeron may be
identifiable with exchanges of possibly infinite
number of soft gluons, as has been suggested by
some authors. The QLR-forbidden reactions

PP~ Q0 , 00, f'f, (5.3)
pp—f'¢ (5.4)

are interesting in the gluon model. The reactions
(5.3) can proceed via a minimum of two gluon ex-
changes, while the reaction (5.4) requires at least
three gluon exchanges because of the charge con-
jugation. Therefore, we expect a much smaller
cross section for (5.4) in comparison to those of
reaction (5.3) in the very-high-energy region.
Note also that pp—~ ¢¢ is a crossed reaction of
¢p = dp.

Last, we simply remark that the QLR may be
somehow related to the asymptotic chiral theory
of Oneda. Indeed, Oneda and his collaborators®®
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have derived I'(¢ - 7p)=T(f’'~2m)=0 as well as
the Schwinger mass formula by his method without
explicit uses of the QLR. A possible reason for
this fact is that the asymptotic freedom of the
color-gluon theory may automatically imply the
validity of the asymptotic SUg(3) X SU.(3) in One-
da’s sense.

Note added. (i) After this work was completed,
it came to my attention that R. Baldi et al., Phys.
Lett. 68B, 381 (1977), found

o(n=p—~ pn=p)/o(n=p~ wr=p) =0.006 + 0.003 ,
o(pp—~ dpp)/o(pp~ wpp)=0.020 £0.005,

by 10-GeV/c pion and proton beams. (ii) The
quark-line rule could be exact in the sense of the
usual symmetry. Suppose that we have an addition-
al symmetry group G, which may be finite, and
that all low-lying hadrons belong to nontrivial rep-
resentations of G,, while the colored gluons are
assumed to be singlets of G,. Then the ¢ and ¢ /J
mesons can never couple with any numbers of
gluons because of the new symmetry G,. This im-
plies that the quark-line rule for hairpin diagrams
can be exact in some theories.

Nole added. (i) After this work was completed,

it came to my attention that R. Baldi ef al., Phys.
Lett. 68B, 381 (1977), found

o(n"p—¢n p)/o(n”p~ wn p)=0.006+ 0.003,
o(pp~ ¢pp)/o(pp—~ wpp)=0.020+0.005,

by 10-GeV/c pion and proton beams. (ii) The
quark-line rule could be exact in the sense of the
usual symmetry. Suppose that we have an addi-
tional symmetry group G, which may be finite,

and that all low-lying hadrons belong to nontrivial
representations of G,, while the colored gluons
are assumed to be singlets of ‘G,. Then the ¢ and
¢/J mesons can never couple with any numbers of
gluons because of the new symmetry G,. This im-
plies that the quark-line rule for hairpin diagrams
can be exact in some theories.
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