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General expressions are derived for soft-meson theorems in the framework of the recently proposed

extended partially conserved axial-vector current hypothesis (EPCAC). Applications are made to K„, K ~uvre,
K ~2m, nonleptonic hyperon decays, pseudoscalar-meson photoproduction, and meson-nucleon scattering. In
all cases it is found that the EPCAC predictions improve the agreement between soft-meson results and

experiment. Moreover, the EPCAC approach allows a unified treatment of several chiral-symmetry-breaking

problems. Finally, an extension to SU(4) X SU(4) is briefly discussed.

I. INTRODUCTION

In a. recent paper' (hereafter referred to as I)
we proposed an extended partially conserved
axial-vector current hypothesis (EPCAC) incor-
porating a family of heavy pseudoscalar mesons
(v'„, K'„, q„') in a, model-independent way. This ex-
tension of ordinary "strong" partially conserved
axial-vector current (PCAC) was mainly motivated
by the impossibility of accounting for the correc-
tions to the Goldberger-Treiman relations (GTR},'
both in SU(2}xSU(2} and SU(3) xSU(3), by means of
ordinary dynamical continua. " The suggestion
that there might exist a heavy pion" which could
be responsible for the rather large magnitude of
those corrections was incorporated, some time
ago, into different kinds of models. ' ' In I we
defined EPCAC by

where N(N~ 1), m, ', p, ", and f, were left un-
specified in order to have a model-independent
formulation. " The second working hypothesis
made in I referred to the strong couplings of the
meson daughters, a„, to hadrons, H and H', viz. ,

s~' -g.~H (s = 0, 1, . . . ) . (2)

However, this was not strictly necessary and
could be replaced by the following alternative
assumption: One can assume that for q' small
the dominant diagrams are those of Figs. 1 and 2

[Fig. 3 defines the a„—a, coupling k, (q')]. In this

case it was shown in I that the corrections to GTR
are given by

Moreover, it turned out that 6, is universal, i.e. ,
the corrections to GTR in SU(2) x SU(2), L„are
independent of the hadrons undergoing the b,S= 0

P decay, and the same situation holds for A~ in
SU(3) xSU(3). This result is important because it
links several chiral-symmetry-breaking problems
together in a unified fashion as was already dis-
cussed in I. Quite recently, Fuchs" made the in-
teresting discovery that the universality among b, ,
on the one hand and among b~ on the other may be
obtained in the framework of the quark model.
This brings the EPCAC approach to chiral-sym-
metry breaking into close contact with the quark-
model approach. " The purpose of the present
paper is to derive general expressions for soft-
meson theorems, in the framework of EPCAC, "
and discuss additional applications not covered in I.

The paper is organized as follows: Sec. II is
devoted to the derivation of soft-meson theorems;
in Sec. III we discuss kaon decays (K„, K- vvv,
and K-vv) and in Sec. IV, hyperon decays; Sec. V
is devoted to pseudoscalar-meson photoproduction,
Sec. VI to meson-nucleon scattering, and Sec. VII
to conclusions.

II. SOFT-MESON THEOREMS

Let us start by considering a process involving
one soft meson, a, in an external "field" H, i.e. ,

ai

FIG. 1. Off-diagonal contribution to the matrix ele-
ment of the divergence of the axial-vector current be-
tween hadronic states cy; and Pf.
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FIG. 2. Diagonal contribution to the matrix element of
the divergence of the axial-vector current between had-
ronic states cy; and pf.
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FIG. 3. The an a0 coUpllIlg h (q ).

the reaction'4 A —B+a . Defining the amplitude

r, = i d'xe"*{BIr(A„"(x)H{O))IA),

and contracting T„with q" and using the EPCAC
hypothesis, Eq. (1), one finds

q&r„"= —Q ~n, 'f, i&'xe"*(BIT(y, (x)H(0))IA)
n=o

d 'xe""5( -„x)( BI[A,"(x),H(0', JIA) .

Extracting the meson poles and assuming, as in I,
that for q-' small the dominant diagrams are those
of Figs. 1 and 2, it follows that in the soft-meson
limit

T (q' = o, ~ = o) f.+ P f. ». (0)
n= 1

=(BI[+:",H(0}IIA) 1,(q"H„), (6}

where T"(q-'= 0, v= 0) stands for the amplitude of
A -B+a" (soft), », (q') is represented in Fig. 3,
and A contains all other possible singular contri-
butions to T„, in the soft-meson limit, besides
the meson poles. The factorization of I in Eq.
(6) is a consequence of the assumption that only
diagrams of the type illustrated in Figs. 1 and 2

contribute for q'-0. This has already been used
in I for the particular case of three-point functions.

Recalling the expression for the corrections to
QTR, Eq. (3), one finally has the following EPCAC
soft-meson theorem:

if, (l —a,)T (q-'= 0, v=0)

= (B I[E„",H(0) J IA)+ lim(q"Hq) . (7)

In the chiral-symmetry limit &, vanishes and one
recovers the standard result. " Therefore, the
correction to the soft-meson theorem of ordinary

PCAC is connected to the breaking of the chiral
symmetry as measured by the universal quantity

Let us turn now to processes involving two soft
mesons, a and a, in an external field H, i.e. ,

3 —.8+a"+a . Here, we shall treat both mesons
in a symmetrical way and we shall let them be-
come soft at the same time. The relevant ampli-
tude is defined as

d X 0'ye"l" e"2'

& (B IT(A„(x)A,(y}H(0))IA) .

Contracting with q", q.,' and symmetrizing, one
finds, after some algebra, that

q", q,"T„B= —T~~+ —'X"8~(q —q )"T~

+ ai(BIA ~+A ~IA)+S" +D", +B, ',

d4~ d4y ef Qlx etgog

&&(B
I
T(&"A~(x)B'A, (y)H(0))IA),

d'xe" *(BIT(a~A„(x)H'(o))IA), (11)

i&'xe"~'"'"(Bfr(o" (x-)H(0))IA), (12)

T~q = d'xe' '&"-' '(B
I T(P„'(x)H(0))IA); (13)

iH (x)6(x) = 5(x,)[A~ (x), H(0)J, (14)

iu' (x)&(x —y)=[A (x) &"A~(y)J5(x —y ) (15)

i~" ~ V~(x)5(x —y) =[A„(x),A, (y)J5(x, —y„}, (16)

and A, in the sof t-meson limits, is given by

~"' = —[F,",[F,', H(O}JJ.

Some care has to be exercised here in extracting
the meson poles when using EPCAC, For instance,
the double-pole contributions to T are

(m,
'-—q, ')(m, ' —q„-) (m, ' —q, ') ~ (m, ' —q, ')

fm "-~ f )&&
+ &a a & an&+an ~ ae ~+an n8

where A. ~ stand for the reduced amplitudes. Assuming once again that for q'-0 the dominant diagrams
are of the type illustrated in Figs. 1 and 2; 7 in the soft-meson limit reduces to
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(im r"= f *~ 2.f E.j.„&,„(0) -Ei, &, (0)g i (i.,.(0(A"
0 n=& n= 1 k= t.

= j, '-(1 —a,)'A"', (&9)

where A stands for A„and Eq. (3) has been used. Using this procedure the soft-meson limit of Eq. (9)
becomes

j.'(1 —a, )'A (A-8+a {soft)+a'(soft))
= 2i{8IA +A IA&+»m al(" «(q, —q, )"T«„+ lim 8"s —lim (q", q,"8„"s),

q~ ~0 ql ~O
a~ Q2 ~0

where R„"8 contains all singular contributions in
the soft limit except the meson poles. Once more,
ln the chlral-symmetry llm1t (6 = 0) one 1'ecovel s
the standal d I'esult.

The generalization of these soft-meson theorems
to any number of mesons is straightforward and

can be performed along the lines first discussed
by gfeinberg" in the context of oxdinary PCAC.
As a rule of thumb, wherever f, appears in the
PCAC version it should be replaced by j,(l —a, )
in the EPCAC formulation. Therefore, the larger
the number of soft mesons emitted, the larger
will be the correction to PCAC results.

In the next sections we shall discuss several
applications of Eqs. (7) and (20) and see how they
improve the agreement between soft-meson pre-
dlctlons and expex'1ment.

III. KAON DECAYS

A. A&3 decay

The corrections to the soft-pion" and soft-kaon'7
theorems of K» have been already derived in I
following a somewhat different approach. The
same xesults may be obtained from the master
equation (7) by choosing {8l= {Ol, ~A& = lE'), and

H(0) =44„'"'(0}for the soft-pion case, and (8 l
= ((i l,

lA) = l0), and H(0) = J„""-(0)for the soft-kaon case.
The results are

j,(0) = 0.98 + 0.08. (25)

Since we are only interested in finding the cor-
x'ections to PCAC x'esults we shall avoid hex e any
discussion about the l r(, f l

=,'- rule a.s well as other
related problems. The master equation (7) can
be used with the following identifications: H= Xp',

l8)= l~, v.,&, lA&= lff,.&, a.nd

T = lim {s(v,v, lX"l ft,&,

where Xp' is the parity-conserving part of the
weak Hamiltonian (the parity-violating part K~"

not contributing to K-3m) and and a, i are isospin
lndlces. Hex'e %'e shall let the ploD &3 becoIQe
soft, thus leaving the &,&, system in an I = 0 state.
%e then find

As discussed in 1, Eq. (22) gives a value for js/
j,j, (0) in good agreement with experiment if j,(0)
is taken to be j,(0}=0.96, according to Pagels. '-'

The only additional point we wish to make hexe is
that Eq. (22) is in fact predicting the value of j,(0)
since it provides us with j„/jsj,(0) while experi-
ment furnishes js/j„j, (0). Using the linear param-
etrization for f,(0) together with the data from
Ref. 19, we find

= [j,(rus')+ j (ms')j(l —a„),
Tl

j' =[j,(~.')- j (},')j(1-~„),

where the experimental values of A„and A~ are"
(28)

The general expression for the isovector ampli-
tude A that describes all K-37j modes can be
wx'ltten as"

A(s„s„s,) = g (Ti, ~ Tr, )v,j(s„s„s,),
cycl

{29)

g ABC K
where Q,„„stands for all cyclic permutations of
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123, Tt,. are isospin functions for the pions,
f(s, , s, , s„) is symmetric in S„S,to comply with

Bose statistics, and s, = (p„-p,.}'. The experi-
mental information is contained in f(s„s,, s„}
which is usually assumed to have the following
linear form":

I A (X~0 —v'v v')
I
= (0.82 + 0.03) x 10 ' .

For 6„=0 one obtains instead

&=0.73x10 ',
which is off by three standard deviations.

f(s„s,, s, ) =A 1 —,(s, —s,), (30)
C. E~Zn

where s0= ~m+2+ —,'p. „2. It can be easily seen that
the ordinary PCAC predictions for the slopes are
unchanged by EPCAC; the only modification coming
from Eq. (26) is that A is now given by

In this example one has to let both pions be-
come soft at the same time in order to be consis-
tent with kinematics. Therefore, we shall use the
master equation (20) with the following identifica-
tions:

A= IA (fp v'v-)
I

8f„(1—n,.)

Equation (31) gives

A = (0.78 ~ 0.02) x10 '

to be compared with the experimental value

(31)
if(0}= 30'",

A," = lim &v (q, )vs(q, ) I3C""IK,(p)& .
ql 0

The soft-pion theorem then reduces to

lim &v"(q, )v (q2) IR' Iif;(p)&
q1 0

q2 0

f ~ I )
&0[@' [@ 3C'"j~'I@" [@' 30'"]i lff(p;)&+f . 1 ), Iig, S"', {33)

q 02

where all other terms give no contribution, "and
the term s"s might be absent if the Inij= —,

' rule ts
exact (thisho, wever, does not seem to be the
case"). In any case since numerical predictions
are dependent on the particular model one chooses
for the nonleptonic weak Hamiltonian we shall not
proceed any further. However, note that the
EPCAC corrections in this decay are larger than
for K-3v. In fact, from Eq. (33) one reads a 12%
correction due to chiral-symmetry breaking,

IV. NONLEPTONK HYPERON DECAYS

In this section we point out how nonleptonic
hyperon decays may be used as a probe to study
the interrelation between chiral- and SU(3)-sym-
metry breaking. Examples of this situation have
already been discussed in I in connection with sets
of sum rules which become identities in the chiral-
and SU(3)-symmetry limits but retain their forms
even if both symmetries are broken.

The general form of the amplitude for Y- P+m
may be written as

I&y'viz„„„l y}=S'&A. +y,tI)s,
where A and 8 describe parity-violating (pv) s-
wave and parity-conserving (pc) p-wave decays.
Let us concentrate on pv s-wave decays" and use

the master equation (7) with IA}= I y&, IB}= I
Y'},

and H(0) =X'", to derive the following EPCAC soft-
pion theorm:

f„(1—b„)T'"(I'- r'+ v"(soft))

=(I"I[+, , X'"j Iy&+ lim (q"R„). (35)

The soft-pion limit of q"g& is finite and of the
order of SU(3) breaking since it is proportional to

(mr -m„). However, since we are dealing with
s-wave decays we have mass degeneracy and

therefore no contribution from such terms to the
soft-pion theorem (35). In this case one obtains
the following relations:

f.(I —~.}A(~'-p")=-'&pl30" IE"&,

g„)A(w nv') =-,'&six"IA),

f, (1 —n„)A(:-'-As') = —,'(A I3P'I:-'),

f (1 —n„)A(z n7r )=&sjx 'lz },
~2f. (I —~.)A(A pv-) = —&s I

x&'I ~},
~2f.(I —~.)A(=---~ -) = &A l~"I=-'),

~2f.(I —~.)A(E --")=&pl~"IE'&

&2 &n I
sc"-I z'& .

Clearly, the Lee-9ugawara relation" is not modi-
fied at all by the presence of d „.
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The extrapolation of the standard soft-pion
theorem [Eq. (35) with 6,= 0] to the physical world
involves corrections due to both SU(2) x SU(2)- and
SU(3)-symmetry breakings. The first correction
has already been taken care of by means of
EPCAC, as shown by the appearance of the uni. -
versal quantity 6, in Eq. (35). Therefore, one has
reduced the problem to the SU(3)-breaking part,
and once this is accounted for one can gain insight;
into the interrelationship between the breakings of
both symmetries. In a sense this resembles the
situation that holds in eonneetion with the Dashen-
Weinstein sum rules" for the hadronie corrections
to generalized GTR. These corrections can be
parametrized in terms of f and d couplings and
thex'efore one derives xelations between 6„, h~
and strong-coupling constants. Vfe have already
discussed in I how, from the universality of 4„
and of d~, one ean obtain more infox'mation from
those sum rules and thus study the interrelation-
ship between chiral- and SU(3)-symmetry break-
ings. The nonleptonic hypex'on decays are just
another example of such a situation.

V. PSEUDOSCALAR-MESON PHOTOPRODUCTION

%e shall concentrate here on the EPCAC pre-
diction for single & photoproduction, It is a
straightforward exercise to extend this result to
othex single and multiple pseudoscalar-meson
photoproduction as well as electroproduction
px'oeesses.

Using the master equation (7) with ~A) = IN(p, ))
and 8 = (IV(p, )) representing nucleon states, and

H(0) = V'„(0) being the electromagnetic current,
one has the following EPCAC soft-pion theorem:

f, (1 —b,„)r„()N -Nt( (soft}}

= t~ '~(N(p, ) (AQN(p, ))+ lim (q"R„„), (37)

where

r"„=i+(p,)v (soft) j V'„(IV(p,)).
Next we define the invariant decomposition

e "r"= x () ~)r + )' [-'(p + p ) ~]r"
and the isospin decomposition

(38)

The charged-pion photoproduction amplitudes ean
then be written as

(40)

(41)

Following standard steps" one finds that the dif-
ferential cross section for m' photopxoduction at
threshold is given by

(R[ do(v')' a I ' g„'
iqi dQ th.„4)( I+ p, 2f '(1 —a„)'

VI. MESON-NUCLEON SCATTERING

Let us start by considering &-nucleon scattering
and use the master equation (20) to obtain the
EPCAC version of the soft;-pion theorm" for the
forward amplitude

r:& =r '(& (4)+&(p)-&'(e)+&(p)}
=r",~((, t, q', q'),

where v=p q. %riting the standard isospin de-
composition

ra() 6 r(+) &[7~ &8]r(-) (43)

lt follows that» ln the soft-pion bmlt»

r( )(v, 0, 0, 0) 1 -g„'
~v™0 v f, '(1 —n„)' '

Therefore, the EPCAC correction amounts to a
12% over the standard result Substit. uting the ex-
perimental numbers" in Eq. (44) one finds

—(1.29+0.05)p,„', 6„=0
r( )(v, 0, 0, 0)

—(1.46+ 0.09)I),~
zpcAc, zq. (44}

to be compared with on-shell values" ranging
from -0.88'., ' to -1.1p, , '. Clearly, with such
errors it is notpossible to distinguish unambiguously
betweenthe PCAC and EPCACpredictions. Amore
sensitive test is provided by the Tomozawa-steinberg
relation, "holding at the physical threshold, which
in the EPCAC version reads

Sp.„M 1
8v(M+ p, ,) f, '(1 —a,)' ' (45)

where M ls the nucleon mass and gg the p-decay
constant. In the chiral-symmetry limit ()),„=0,
b, ,=0) Eq. (42) becomes the Kroll-Ruderman theo-
rem, while for 6,= 0, p, „+0 one recovers the stan-
dard soft-pion theorem" (in our approach, how-
ever, this last situation is inconsistent). Numeri-
cal results ax"e as follows:

20.8 pb/sr, p, ,= b„=0

13.6 pb/sr, PCAC (b,„=0)
do(v') =( 15.4+0.4 p, b/sr,

zrcAc, zq. (42)

&15.6+0.5 i(b/sr, expt. (Ref. 23)

As one can see, both the KroH-Ruderman and the
standard soft-pion prediction axe not in good
agreement with experiment, whi. le the EPCAC re-
sult has improved the prediction.
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T '(0~ Or 0 0) = -f 2(1 ~ ), . (46)

As with the off-mass-shell odd amplitude, Eq.
(44). one finds a 12@ correction which is the ap-
proximate size of the ambiguities in O„„and there-
fore we cannot draw any definite conclusion.

A similar situation prevails in connection with
the Adler-Weisberger relation, "which now reads

1= (g &)'+f.'(1 —&.)' —„
22

x —0„, ~ p) -at, t &'p
VO

(47)

where 0... stands for the off-mass-shell total
cross section. In fact, the 67o correction to (g„)
obtained from Eq. (47) is presently undetectable.
However, this is no longer true for the soft-kaon
sum rule, i.e. ,

2 = (g»)'+ (g".)'

+ f»'(1- &»)',

&(v)[o„,(K p) —o„,(K'p)],
V

where k(v) = (1/M)(v'-M'm»')"'. Here we ex-
pect a sizable correction to gA~, Some time ago,
Lopez" made a model-independent evaluation of
Eq. (48) (with b»= 0) finding very good agreement
between gA~ and its experimental value. This re-
sult, however, does not contradict our previous
statement because Lopez had explicitly assumed
that the GTR for SU(3) x SU(3) were exact, and
therefore evaluated the following sum rule:

2 ~g
' (M+M») M

A2 — + A + 2(g»)

X —2k V Cr„, K P -&to, E'P),
(49)

where c, and a, are the s-wave ~-X scattering
lengths for isospin —,

' and —,
' in the s-channel and M

is the nucleon mass. Numerical results are as
follows:

0.239 p. „', 6„=0

a, -a, = (0.27+0.01) p, ', EPCAC, Eq. (45)

(0.259+0.006} p,, ', expt. (Ref. 26),

showing that the PCAC result is off by more than
three standard deviations while the prediction of
EPCAC is in good agreement with experiment.

Concerning the even amplitude, it is well known

that its off-mass-shell value ls given by
T"(0,0, 0, 0) = -o, „/f, ', where o, » is the c term. "
The EPCAC expression is

where f~ had been replaced by its GTR value

(d» = 0). Recalling the definition of n», Eq. (24},
we ean see that Eq. (49) reduces to the EPCAC
sum rule Eq. (48). Therefore, the numerical re-
sults of Lopez are actually the predictions of
EPCAC, "Eq. (48), which give (g~»j = 0.67 + 0.06 to
be compared with the experimental value" ~g»»(

= 0.66+ 0.05.
As a fina. l point let us consi.der the EPCAC ver-

sion of the analog of the Adler-%eisberger rela-
tion for ~K scattellng, l.e. ,

—[o't, t (K' v ) —5„,(K' m') J

where the number has been derived from Eqs. (23)
and (24). If one takes the value f,(0) = 0.97, then
from Eq. (51) one has f»/f, f+(0) = 1.3a0.3 to be
compared with the experimental value of 1.26
+ 0.02. On the other hand, combining Eq. (51) with
the soft-kaon theorem, Eq. (22}, one has a pre-
diction for f,(0), i.e. ,

f,(V.') -f (W. ')=1 1
(52)

Using the linear parametrization for f, (0) and the

K» data from Ref. 19 one finds

f,(0) =0.93+0.02,

which is consistent with Eq. (25), although the
prediction (53) is less uncertain since a, is known

more accurately than ~~.

VIII. CONCLUDING REMARKS

'@e have seen in this paper how the EPCAC
hypothesis improves the soft-pion and soft-kaon
predictions of PCAC and current algebra. How-

ever, a more important point is, perhaps, the
unification of many chiral-symmetry-breaking
problems achieved through the universality of the
corrections to GTR in SU(2) X SU(2) and SU(3)
xSU(3). Moreover, this universality allows one
to obtain more information about the interrelation-
ship between chiral- and SU(3)-symmetry break-
ings.

As a final remark we would like to suggest an
extension of the EPCAC approach to the ease of
SU(4) XSU(4). Here one would be in principle re-
luctant to derive soft-charmed-meson predictions
due to the large chiral-symmetry breaking. In

=f '(1-& )' —[c,. (K v') -ct.t(K'v")].
v

(5o)

Assuming the equality of the integrals one obtains
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other mords, one mould expect soft-meson theo-
rems and sum rules to be in morse shape than the
corresponding ones for SU(3) xSU(3). However,
as me have seen in I and in the pxesent paper one
can satisfactorily account for the corrections to
kaon and q PCAC in the framemork of EPCAC.
Therefore, if an extrapolation to SU(4) &SU(4) is
tried one could presumably handle the chiral-
symmetry-breaking effects in the same fashion as
for SU(3}&&SU(3}and SU(2) X SU(2). Besides, from
the universality of the corrections to GTR for
charm-changing baryon P decays, one could gain
insight into the interrelationship between SU(4}

&&SU(4} and SU(4) breakings through the use of
generalized Dashen-%einstein sum rules and
charmed-baryon nonleptonic decays. Clearly,
much more experimental information mould be
needed before attempting to develop such a program.
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