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Simple symmetry breaking in a chiral SU(4) X SU(4) model of pseudoscalar mesons*
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We calculate the efFects of simple symmetry breaking on the mass spectrum, neutral isoscalar mixing

angles, and decays of pseudoscalar mesons using a chiral SU(4) nonlinear model to describe the mesons. We
find that in addition to quark-mass-type terms, a simple U(1)-breaking term will induce a reasonable
isoscalar mass spectrum, give a low value for the q'~yern decay, and is the dominant contribution to the
q" (paracharmonium) decay into three isoscalars. We also calculate the efFects of symmetry breaking on
hadronic currents and thus on the weak decays of new mesons.

I. INTRODUCTION

In this paper we shall construct and discuss a
chira. l U(4) x U(4) phenomenological Lagrangian' '
for the 16-piet of pseudoscalar mesons. Since
symmetry is broken in lowest order by the masses
of particles, we expect to see most clearly the
structure of symmetry breaking in the mass spec-
trum of the lowest-lying baryons —the pseudo-
scalars. The nonlinearity of the model we use lets
us calculate these symmetry-breaking mass terms
and the effects of these terms on higher-order pro-
cesses that can be compared with experiment.

In Sec. II we discuss the construction of the mod-
el and its symmetry-breaking terms. We calcu-
late the entire mass spectrum and the three iso-
scalar-meson mixing angles. We also construct
the Noether vector and axial-vector currents from
the basic Lagrangian density. In addition we also
calculate the strong decays of the isoscalar mesons
and discuss the effects of the symmetry-breaking
terms on these decays.

In Sec. III we discuss the weak decays. The cur-
rents computed in Sec. II are used to compute the
CP-conserving decays of the mesons, and the re-
sults are compared to experiment.

II. CONSTRUCTION OF THE STRONG LAGRANGIAN

The phenomenological Lagrangian density we use
is a straightforward extension to U(4) of U(2) mod-
els of Nishijima' and Gursey, ' and the U(3) model
of Cronin. ' The pseudoscalar mesons transform
nonlinearly under chiral U(4) in such a way that the
auxiliary meson matrix function M(C) satisfies

M(e)M'(e) = M'(4)M(4) = I {2.l)

(2.2)

The matrix M(C) transforms according to the re-
presentation (4~, 4~) of U(4)~ x U(4)~. The Hermitian

conjugate matrix M~(4) transforms as (4+~, 4z). In
these expressions C is the 4 x4 Hermitian pseudo-
scalar-meson matrix P', (a, 5= 1, 2, 3, 4). We use
the standard identifications m'= (t),', K'= P,', D'
= @42, E'= $43, etc. The three neutral isoscalar
members of the pseudoscalar multiplet are denoted
as 'g, 'g

y
and 'g

The meson matrix M is now expanded in a power
series in ft)~ as

', =Q a„(iy,'lf)"

The expansion coefficients a„are considered to be
real and independent of Pt while f is a, parameter
of dimension (mass) which will later be identified
with the (unrenormalized) pion decay constant.

Using (2.1) and without loss of generality we can
write (2.3) as

Mb gb+ ~~ 5 2 5 ~+3 c 5

2(a, -1)
(2.4)

M~= exp

We now construct the Lagrangian density with the
four-quark model as our guide. We shall add to
the Lagrangian a quark-mass-type symmetry-
breaking term which transforms as (4, 4*)+(4*,4)
and an additional term which breaks the larger
U(4) x U(4) symmetry of the model toSU(4) x SU(4).

where repeated indices denote summation. It would
then seem that up to order fouI in p there is only
arbitrary constant, a» in the expansion. In fact,
by invoking the theorem of Chisholm, ' all the 8-
matrix elements are independent of the value of
a, in (2.4). Thus, to order four in p af/ nonlinear
chiral models are equivalent. ' For calculational
purposes it is useful to let a, =-, , which is equiv-
alent to letting
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where

—U(detM + detM~) ],

A~ =—A, 5~ (no sum).

Expanding the matrix M, we see that

Z~„= —~g( ~P, ~d'~+A, P,Pv +Up;Ps).

We now note that

Thus we write the Lagrangian density as
2

(2.6)

(2.7)

(2.8)

(2.9)

so that one of the isoscalars is degenerate with the
pion. Hence we must have a nondiagonal term to
construct a more realistic theory.

It is now necessary to solve for the eigenvalues
(v", 7I', q", 7)'") of (2.14) which satisfy

det(5)1 —x 1)=II (x —q, ') =0, (2.15)
a

where the q, 's are defined in (2.13). Since we have
assumed isotropic-spin invariance, we can divide
out (X —v') from both sides of (2.15), which leaves
us with

(X —A, )(X —A, )(A. —A, )

2(X A~)(X —A~)+(X -A, )(X -A~)+(X -A, )(X—A, )
so that assuming isotopic-spin invariance we have

7T A] A~y D ~ (A~ +A4) y

K' = ~g (A, +A, ), F' = ~g (A, +A,),

where for simplicity of notation we have substi-
tuted the particle symbol for its mass. From (2.9)
we also see the mass-squared sum rule

(2.10)

Using as input

(2.16)

This equation is linear in U and cubic in X so that
one value of U will specify all three roots of the
equation and thus the three isoscalar masses. A
plot of the three solutions as a function of U is
given in Fig. 1.

To complete this picture it is now necessary to
specify the q-g', g-g", and q'-q" mixing angles
x, y, and z. Thus in matrix notation we have

(2.17 )

E'= 13.60,

D'= 191.1,

we see that

(2.11)
where the mixing-angle matrix R(x, y, z) is

A, =A, = m~= ].,

A = 2$P -7t'= 26.20,

A =2D' —m'=381. 2,

(2.12)

(&lt ~2t f39 14) (v
y lr ) (2.13)

(2.8) gives us the following mass-squared matrix
(in a nondiagonal basis):

and F'= 203.7. For the four neutral pseudoscalars

I 000

m (q")exp

0

III

E
1 00

O

Vl

C

I I I I i I I I I ( I I I

A, +U U U

U A+U U

U A+U U
(2.14)

O

o 10

m (~ )t.xp

U U U A4+U

If we had taken the entire Lagrangian density to be
U(4) & U(4) invariant (so that U= 0), then (2.14)
takes the form

2K —m

I I I I I I I I I I I I I I I I I I I I

0 IO 20 30 40 50
u in units pf m (m )

FIG. 1. A plot of the q, q', and rf' masses squared
as a function of &, a11 in units of m (x ).
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1 0 0 0 1 0 0 0 1 0 0 0 1/ 2 -1/v2 0 0

0 cosx -sinx 0 1/&6 1/W6 2/v 6 00 cosy 0 —siny 0 1 0
B(x,y, z) =

0 0 1 0 0 0 cosz -sinz 0 sinx cosx 0 1/ 3 1/ 3 1/ 3 0
(2.18)

0 siny 0 cosy 0 0 sinz cosz 0 0 0 1 0 0 0 1

Here we have taken the paracharmonium picture of the q" so that the unmixed q" is Q4. The unmixed q and
q' are then members of the SU(3) octet and singlet, respectively. The matrix elements of (2.14) ca,n now
be expressed in terms of the masses and mixing a.ngles as follows:

K» = —+ —(x ' cos'y+x, 'sin'y sin'z) +—x, ' cos'z+ (x ' sin'y+x, ' cos'y sin'z) + ' ',q'" —q') sin2y sinz,

K» ———(x,' cos'y+x ' sin'y sin'z) +—x' cos'z + (x,' sin'y+x ' cos'y sin'z) — (t)'" —q') sin2y sinz,

= q sjn2ycos z+7f sin z+q cos ycos z

2 12 /r2

K» —— ' (cos y —sin y sin z)+ ' cos z — ' (sin y —cos y sin z)g X X 2 ' 2 2 g X+X 2 g XIX 2 2

3~2 3v 2 3v 2

(2.19)

+ (q'" —q')(x ' —x.') sin2y sinz,
6v~

2 I2 f12
sin'y sin2z — ' sin2z+ ' cos'y sin2z+ (71'" —q') sin2y cosz,

2v 6 2&6 2~6 2v 6
2 I2 I/2

K~= sin y sin2z — sin2z+ cos y sin2z — ' (q —q ) sin2y cosz,g X~ 0 2 y g X~ g X» 2 X
g P2

2v3 2v3 2v3 2v3

where

x, = ~2 cosx+ sinx,

x = cosx —~2 sinx,

x + x 3

(2.20)

U= —,
' [q'"+ q" + q'+ m' —2(D'+ IP) ]. (2.21)

We then solve for the mixing angles x, y, and z
which are given by

(2.22)

We can now solve for the mixing angles in terms
of known masses for specific values of U. From
the trace of (2.14) and (2.12) we see that 71'(16.54) = 14.82,

q "(50.35) = 64.83,

q'"(440) = 402.7,

(2.26)

where the experimental masses squared are in
parentheses. To complete the picture, we find
the mixing angles to be

Let us now look at the isoscalar mass spectrum
and mixing angles for a specific choice of U, the
only remaining free parameter in the theory. As
can be seen from Fig. 1 it is impossible to exactly
fit the g-q'-q" masses, but one can get a reason-
ably good fit for 10& U& 30. Using a least-squares
fit we find that for U= 18.50 we have

and

X/2

cosz = ~"cos'y —L (2.23)
x = —14.2',

y= 1.2

z= 5.3'.
(2.27)

1
slnx = — sln2y cosz,

293 U

where we have defined

half

~ll2 ~2

= 2D2 —p2+ U qr2

(2.24)

(Z. 25)

These values of the masses and mixing angles
seem quite reasonable considering the simplicity
of the model used. An exact fit could probably be
obtained in a more realistic model by slightly vary-
ing the parameters in (2.6).' Thus we expect the
general Lagrangian in (2.6) to give us the general
features of a 16-piet of pseudoscalar mesons
obeying simply-broken chiral symmetry.



SIMPLE SYMMETRY BREAKING IN A CHIRAL SU(4)X. . .

In addition to the mass matrix me can also construct the vector and axial-vector Noether currents
from (2.6). They are seen to be

/f2(v) = [M s M]=i(g's p)+

(P,').= (M, s.M'P. =fs.@.'+—[{4-&3)4'.s.A,'4g-&3(s d'0'4g+O'A. 's 4~) l+' ' '
~

From (2.29) we see that f, the pion decay constant =m„ is also equal to the K, D, and F decay constants. '
Reference 6 gives a detailed connection between this type of model and the current algebra including par-
tial conservation of axial-vector current (PCAC).

We shall now apply (2.6) to some strong interactions of mesons, most notably the strong decays of the
isoscalsrs. Expanding (2.6) to terms of order 4, we see that

&.(4') =
2 .(2(s, —I)s.e'.s.e'0,'0;+ ( .—2)'.0'.0'se', 0'+ (,—1)&.e'0'0!el

1

+ U[4-:4tA.'0', +{3s.-4) 0:4&4'&N~

Calculating to lowest order in I/f (tree diagrams), we find that

T())'-))v'v ) = —
2 (R„)(R„)v',

where R,~ is defined in {2.17) and (2.18). Calculating the q width, using as input (2.26) and (2.27), we find
that

I'(q' qv'v ) = 2.07 keV,

which is mell below the upper limit of 450 keV.
With the definition S,. —= -(P —k, )', we calculate the strong-decay T matrices for )l as follows':

(2.32)

T(q"- q,v'w ) = ——,(R„)(R„)w',

T(q "(P)—q, (k, ) + K'(0, ) +K (0,))=,[(R„-R„)(R„—R„){3S,—q'" —q,
' 2K') ]

1

(2 33)

~ [R4,R„(K +v')+R4, R„(3K' —v ) (R„R,3+R,~R4, )K ],

T(q"- q,q,)),) = —, Q (R„R„R„R„)v'+2(R„)(R„)(R„)(R„)(K'-v')+ 2(R„)(R„)(R„)(R„)(D'—v')
4

The widths for the appropriate decays are listed in
Table I.

As can be seen from (2.8), (2.14), and (2.31) to
(2.35) the U(1)-breaking parameter U initially is
determined by the isoscalar masses, and also con-
tributes only to the decay q" to three isoscalars.
In (2.30) we see that the U(1) term gives rise to an
explicitly Okubo-Zmeig-Iizuka (OZI) -rule-break-
ing term not dependent on the isoscalar mixing an-
gles. Since no analog exists in SU(3) to the q"
-'g,gp, decay, we nom have a test for this type of
symmetry-breaking term. As has been shown in
Ref. 6, there are other types of symmetry-break-
ing terms that will lead to off-diagonal elements
in (2.14) such as (M; -M,")', but these terms lead

to a high value for the q'-)7v)7 mode. The U(l)-
breaking term, however, gives a small value for
the q'- pm' decay while also giving a reasonable
))-)7'-))" mass spectrum. Another feature of the U(1)
term is that in the current-algebra approximation
it contributes to the electromagnetic decay of
q-3m, mhile the symmetry-breaking terms of Ref.
6 do not. "

Equation (2.30) also describes meson-meson
scattering amplitudes and thus scattering lengths.
These are completely calculated and discussed in
Ref. 6, and the extension to U(4) is straightfor-
ward. It should be noted that in this model there
is no strong E-m scattering amplitude since there
are no quark flavors common to both mesons.



Decay mode Width (MeV)

6"-nvlfl
n" —nnn'

n -nn'n'

1.62 x 10 2

6.68 x 10 3

1.06 x 1Q i

3.08 x 10 2

1.3Qx 1Q i

1.52 x 10 i

1.40
2.25 x ].Oi

TABLE I. Strong-decay widths of the q". In the above G is the Fermi constant, 8~ is the
Cabibbo angle, and f is the pseudoscalar decay
constant. If a massive charged lepton (I ) of mass
=1.8 GeV (Ref. 13) exists, then (3.3) and (3.4) with

V'y~(l+y5) vg replaced bp I y~(1 4'y5)v would describe
the I",D-Lv decays. " The lepton decay rates of
the E and D are listed in Table II.

Now using the vector, hadronic current in (2.28)
we see that for the dominant semileptonic decays
K„, D„, and I'„, the hadronic part of the matrix
elements al e

III. KEAK DECAYS OF MESONS

Using the Glashow-Iliopoulos-Maiani (GIM) mod-
el" for weak interactions, and using the axial-
vector hadronic current in (2.29), we construct
the following effective Lagrangian density for the
semileptonic decays of the pseudoscalar mesons:

8 (w) =I—cosHc fs w 71,y, (l+y, )v„,
W2

(4P,~,)'~'(w-(q) ~(V,'). ~fc,(I )& =—q. ,
v'2

(4P. .)' (ff'( ) ~(&,'). ~D'(I')& = e.,

(4I.q.)'"«-(q) ~(~:).~D'(I )&=q. ,

(4I'aeo)'"(n, (q)
~

(I",).~~(p)& = II,.Q. ,

9 =-(I'+q) .

(3.8)

(3.8)

2 (K) =i —sinHc f8 R p, y (1+y,)v„,
6

v2

2 (D)= i —sinHcfs -Il Py (1+y,)v„Q

V2

(8) =i —cosHc fso~Ay ~(I + yg) v„.
C

W2

(3.2)

(3.3)

(3.4)

Using (3.5) we find that I'(Kw -w'e v) = 7.34 x 10'
sec ' as compared with the experimental value of
7.52 x 10' sec '. The other semileptonic rates are
listed in Table II.

For the nonleptonic decays" "we shall assume
that the effective weak Lagrangian density is pro-
portional to the 20-dimensional GIM interaction
as follows.

TABLE II. Weak-decay rates f'or two- and three-body final states of charmed mesons. Here
I. is a heavy meson of mass -1.8 GeV.

O+

Rates in sec"
Do

Rates in sec
F+

Hates in sec

I'(O' —p'v) = 1.57 x 108

r (D+ I +v) =4.72 x 10

1 (D —K e'v) = 1.09 x loii
I'(O' K p'v) =1.06 x 10ii

r(O'-K'~') =2.25 x 10«

I (D+ K 7('+m'+) =6 16x 10ii
r(O'-K'~ 8}=2 OO x10"
r (O'-K'~'q} = 2.28 x 1O"
I (O' —K ~ g')=6.84 x 109

I'(D —K e'v) = 1.09 x 10ii
I'(D K p v) = 1.06 x 10

r(O'-K-~ ) =S.12 x 10i2

I'(D -K ~0)=2.89x 10"
I'(D -K q) =1.23x 10
r(O, -K'q') =3.O6 x 1O"

r(D'-K-~ q) =3.O2 x 10«
r(O'-K-~ ~') =2.47 x ].Oi'

r(O'-K'~ &) =2.03 x 10"
r (O'- K'~'~) =1.89 x 1Oii

r(O'-K'qq) = 9.91 x 10'
r(O'-K'~'q') =2.5O x 1O'

I'(E' p'v) = 3.08 x 10~

r(F+-I.+v) =3.3S x 1O"

I'(E' —,qe'v) = 5.05 x 1Qio

I'(E' qp, 'v) =4.91 x 10io
r(F' q'e'v) = 2.O3 x 1Oio

1 (E g'p'v) = 1.91 x 1Qio

I'(E'- K'K'} =4.83 10"
1 (E'—7I'q) =1.89 x 1Qi2

1 (F r'q'} = 1.51 x 10i~
r(F'- ~ 7I') =o

I'(F' —K'K~7| ) = 3.29 x 10ii
I'(E'-K'K ~') =2.66 x 10"
r (E+ 7I+ m' ~) = 1 77 x 1Qii

r (F'-K%'~'}=1.O9 x 1O"
r(F'- ~'Hq') =7.OO x 1O'0

I'(E —K'K q) = 5.20 10 0

r(F'-~'qq') =1.62 x 1O«
r(E'- ~ qq) =1.56 x1O«
I'(E'- ~~ ~ )=7.85 x10'
I'(E m'm m ) =2.49x 1Q
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X[sin8e cos8e(j;,j,' —2j'„j,' +2j,',j,' )+eos' c(j,' j,' j'„—j,', )
2~2

—sin'8c(j~ j", j'-j', ) +sin8eeos c(j~ j', j,' -j', -j4 j' +j,' j', )]+H.c. (3.10}

Here 7 is a dimensionless parameter to be taken
from the K~ -2m rate. The currents j,' are the
lef t-handed currents

j,', =(V.'} +(P,') -~Q(V;) +(P;) ), (3.11)

T(K,'-w'w ) = —7sin8c cos8cf(K'-w'), (3.12}

T(D"-K w') = -i—7cos'8cf(D'-w'), (3.13)
vZ

T(DO-K q,) = -i—~ eos28e
W2

xf[{R„-R„)(q,' K)—
+ (ft„ft.,)(D' q,-') ], (3.14)

T(D'- K'w') =i x cos'8c f(K' —w'),2'

where {V,') and (P,) are defined in (2.28) and
(2.29). We have chosen the 20-dimensional part of
the GIM interaction since it contains the rg = ~

octet part of the SU(3)
~
b,S

~

= 1, dC = 0 nonleptonie
decays.

Some typical two-body decay matrices are given
below:

spin= 0 while the P' and m' both have V spin= ~.
Bose symmetry requires the K m' to be in a V spin
= 1 state, while the Lagrangian density has only a
V= 0 part. Since SU(3) symmetry is broken in the
mass spectrum, the rate for D'-K'7t' is propor-
tional to the SU(3) mass breaking.

Finally contributions to the three-body nonlep-
tonic decay amplitudes in tree approximation arise
from both four-point weak vertices and from two-
point weak vertices and four-point strong vertices.
The relevant four-point strong interaction is given
by (2.30). As an example of this, consider the de-
cay D -X m'm" shown in Fig. 2. First there is the
direct four-meson term from the current-current
VV and PP terms in (3.10). This is zeroth order
in 1/f In add. ition we have strong K-K-w-w,
D D w w, a-nd -D -K E wv-ert-ice-s of order 1/f'in
combination with weak D-K and I'-m terms of or-
der f'. These are the only contributions to zeroth
order in 1/f and all must, in general, be con-
sidered in calculating an amplitude. The relevant
three-body T matrices are listed below:

T(K'(P) -w (k,) + w'(k, ) + w'(k, ))

G
x sin8e cos8e( —S, +K'+w');

2&2
T(E' -w'w') = 0, (3.16) (3.20)

T(E' K'K') =i 7 cos'8e f(E' -K'),
2~2

(3.17) for the D' we have

T(E'- w'q. ) =i 7 cos'8cf(It., -&„)(E' n.')-
2&2

(3.18)

From the experimental rate for (3.12) we find that

7=2.14/sin8e cos8c. (3.19) 0 ~ K
~N

The decay rates for the nonleptonie two-body final
states are listed in Table II.

It is interesting to note the suppression of the
E' m'n' and O'-FPm' decays. Both of these sup-
pressions can be understood in terms of Bose
symmetry for the fi.nal states. " For the I'- m'm'

mode, Bose symmetry requires the 2m state to be
an I= 2 state, while the I"' is a singlet and the ef-
fective Lagrangian density for a AS= hC decay has
only a bI = 1 part. Since we are assuming isotopic-
spin invariance, T(E'-w'w') = 0. We have a simi-
lar situation for the D -P'm' Inode, but in this
case we are dealing with V spin. The Do has V

K
~N

FIG. 2. Feynman diagrams in tree order for the decay
Do Xo~+x . The 8 represents a strong vertex, while
8'represents a weak one.



2F
T(D'( p) -K (k, ) + w'(k, ) + w'(k, )) = — X cos'ec 1 —, , (-8, +D'+ IP),1 2 3 ~ C y2 ~2

T(D'(P) -IP(k, ) + w'(k, ) + q,(k,))

2~2
+ 3[(S, —w' —q, ')(2R„—R„—R,~) + (8, K' —-D')(R„+R„—2R„)

+ (8, D' ——w')(-R„—R„+2R,~) + (8, K' —-q,')(R„—2R„+R„)
+ 2(S, —w' —K~)(R„—R„)]

+—, ~[R„(-38,+3D'+IP+w +g,')+R„(-38,+2D'+K'+2w~+g, ')

+ R„(-3S,+ 2D'+ IP + 2w'+ q, ') ]

3 [R,~(-38, + 2D + 2K + w g, '}+R,~(-38~+ 3D + 2K +g, )

+ R„(-3S,+ 2D~+ 3K'+ q,~)] (3.22)

fox the D ere have

T(D'(p)-w (k,)+w'(k, )+IP(q,))= icos'&c 8, , ~ -S. . . +S. . . -w'G, K' O' F',E~+ g'

r(D'( p)K-(k, )+w'(k, )+ n.(k,))

2&2
icos 0~ A~-R~ S3 —S~ + R~-R~ S~ —S,

+ 3[(8, —q, ~ —w~)(2R„-R„—R,~)+(S, —O' IP)(R„+R„——2R,~)

+ 2(8 D' w')(R„—R„)+ (8, —K~ —w')(2R„—R„—R,4)

+ (8, —q, ' —D')(R„+R„—2R„)]

+ R„(-3S,+D~+ 2IP + 2w + q, ') ]

, [R„( 38, 2D+'+2IP+ '
wq, +') +R„(-38,+ 3D'+ 2IP q,+')

T(D'( P) - IP(k, ) q, (+k,) + q, (k,))

B ( Bs2D „3z-l,l, ')]'I, (3.24)

-cos 8, (R„R.,)(R„,-R„)(8,-8,)+(R„-R,.)(R..-R,.}(8,-8.}

R„)(8, —,'D' K') + (R., -R.,)(R„-R,.)(8, -D' —3K')

[(R„R.,)(R„-R„)(38,+D'-IP —n.'- n, ')+ 2R.,R,.(2D'- w') 2R. R~.w']

, [(R R }(Rq~ Rq~)(38, -D~+IP -q, ~ —q~')+ 2R +~3(2IP —w )+ 2R,+q~w ]

fox the E'me have
(3.25)

gE'(p)-w (k„)+K'(k,)+w'(k, )) = icos'ec, , (-8, +&'+w'},
2 3 ~ Cgo ~2 1 (3.26)
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T(F'( p) -w'(k, ) + K'(k, ) + K (k,)) = — x cos'&c(-S, +K'),C

2&2

T(E'(p} K'(k, )+K'(k, )+w'(k, ))= 7. cos'Hc — » S,+F»S,—,~S,+»(E' —~w')
6 ~

n' D2 K'

2~2

QE'( p) -K'(k, ) + K'(k, ) + q,(k,))

icos'sc I(R„-R~)(S,-S,)+(R„—R„)(S,—S,)

(3.27)

(3.28)

+ 3 [(S, —E —K2)(2R„—R„—R„)+ (S, —q, —K )(R„—2R„+R,4) + 2(S, —E -K2)(R„—R,4)

+(S, —E —q ')(-R„—R„+2R„)+(S,—2IP)(-2R„+R, +3R,~)]

+—, , [(R„+R„)(-BS,+F'+3K'+w'+7), ')+(R„)(-BS,+D'+4K +@,')]

+
3 D2 K, [R„(-BS, 2+E' B+K'+ q, ') R+,~(-BS,+BE'+K + w'+ q ')

+R„(-BS~+2F'+ 2K'+w2iq ')]
r

T(F'( P) -w'(k, ) + q, (k,) + q, (k,))

«os'Sc (R„R,.)(R„, -R„)(S, -S,)+(R„--R,)(R„R„,)(S, S )

+ (R„—R„)(R», -R„)(-S,+ gE' w+')+(R„R„)(R„—R~}( S, +E'y —', w')

(3.29)

+—, , [(R,~ —R,~)(Rq~ —Rq, )(BS, —E -Bw —q, —qq ) + 6w (R„Rq, +R,Qq, )]

+—, 2 [(g4 —R 3)(Rq4 —Rq, )(BS, —BE —w —q,
' —7), )+(4D +4E —2w')R, 4Rq,

(3.30)

Calculation for the K-3m' mode in (3.20) gives the
standard result that I'(K' w w'w') =3.82 && 10' sec ',
which is about 15% below the experiments. l value of
4.52 x 10' sec '. The rest of the three-body decay
rates are listed in Table II.

One of the methods used to look for charmed
particles is a search for peaks in invariant-mass
spectra. In the case of the D' and D' mesons such
peaks have been found in the K"m' and the K m'w'

systems. "'" Reference to Table II shows that
1'(Do-K w') and 1 (O'-K w'w') are each, respective-
ly, the largest rates in the Do and D' systems.
The rate O'-E n'm' is not enhanced in this model,
but rather it has a relatively large branching ratio
due to the suppression of the two-body state D+

K m'. A search for the I' meson would then seem
easiest in the K'K' mode since it has the largest
rate, or in the more detectable m'K+K mode. The
r+~+m mode is gxeatly suppressed and it should not
be experimentally detectable at this time. In gen-
eral the search for the I"' meson should be much

haxder than the searches for the D' and D' since
(1) one must look in a three-body charged anal
state in lieu of a two-body state as in Do decay and
(2) there is no dominant three-body charged final
state as was the case with the D'.

Another possible test for charmed mesons is
v„-induced p. e' events. Again such events have
been seen. "" Here the e"s are assumed to have
come from semileptonic decays of eithex E"s,
D"s, or D"s. Reference to Table II shows that
only the D' has an appreciable semileptonic branch-
ing ratio. Again this ls due to the suppx'esslon of
the O'-K m' mode. Therefore each time a p e'
final state is observed, it has most probably come
from

e'+P+ v, .
Thus each ij, e' event should be associated with at
least one neutral kaon. Experimentally there are
now 1.8+ 0.7 neutral K's per each p. e' event. "
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