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We present a model based on chiral SU(3) X SU(3) for the nonleptonic decays of mesons and baryons. The
model is fully gauge-invariant and renormalizable. The basic fields in the model are the spin-1 and spin-0
mesons. All symmetry-breaking effects, including the nonleptonic weak mixings, are achieved through the
spontaneous-symmetry-breaking mechanism. Our choice of the Higgs-Kibble scalars automatically ensures
octet dominance for the nonleptonic weak vertex. Since we find it hard to include baryons in the model, a
phenomenological treatment of the baryon decays, assuming SU(3) invariance of the baryonic couplings, is
presented. In the model we calculate the two-pion and three-pion decays of the kaon, the s-wave amplitudes
for the hyperon decays, and the K;-Kg mass difference. The results for K —27 and K — 37 decay widths are
in excellent agreement with experiment. The slope parameter for the K — 3 decay, however, comes out with
the wrong sign. The s-wave amplitudes for the hyperon decays agree reasonably well with experiment. The
estimate for the K, -Kg mass difference is of the correct order of magnitude. K * —m*7° decay is calculated by
asing the known current-algebra estimate of nm° mixing. The decay width obtained by us is rather low. Our
conclusion is that na° mixing alone is not sufficient to explain the K * decay. On extending the model to chiral
SU(4) X SU(4), we predict the existence of a component transforming as the 15 representation of SU(4) in the
nonleptonic Hamiltonian. Therefore, the nonleptonic decays of charmed mesons will provide a definitive test
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for the model.

I. INTRODUCTION

In weak-interaction phenomenology the non-
leptonic decays have long occupied an important
position. This is due to the difficulty in theoreti-
cally implementing the Al=3 selection rule ex-
hibited by these decays. All the available data on
the nonleptonic decays [excepting the data on the
(K — 3m)-decay slope parameters] satisfy the Al=3
rule within a few percent.! The ordinary current
X current theory (that explains semileptonic de-
cays so well) requires a considerable admixture
of AI=% in the nonleptonic decay Hamiltonian.
Traditionally the AI=3 rule, or its SU(3) generali-
zation, the octet-dominance phenomenon, has been
explained either by attributing it to the dynamics
of strong interactions, or by invoking the existence
of neutral hadronic currents that do not couple to
the leptons and result in a pure Al =3 character of
the nonleptonic Hamiltonian.?

During the last few years, the major problem of
the current X current theory, its nonrenormaliza-
bility, has been solved by embedding it, as the
lowest-order phenomenology, in the unified gauge
theories of weak and electromagnetic interactions.
However, the explanation of the octet-dominance
phenomenon still proceeds on the traditional lines.
Many authors have exhibited the dynamical sup-
pression of the AI=3 and enhancement of the Al
=3 parts of the weak-interaction Hamiltonian, es-
pecially as a consequence of the asymptotic free-

16

dom of the non-Abelian gauge theories of strong
interactions.® There has also been attempts to
obtain the pure SU(3)-octet structure of the non-
leptonic Hamiltonian by introducing neutral vector
bosons.* But in all these attempts to obtain the
nonleptonic decays from the current X current theo-
ry, the predicted decay rates turn out to be an or-
der of magnitude smaller than the actual values.®
Besides these conventional solutions, there is
another way of approaching the Al =3 problem.
One need not insist on the current X current form
of the Hamiltonian for the nonleptonic decays.
This implies treating the semileptonic and the
nonleptonic processes on different footings. The
Al=3 rule is thus looked upon as a basic symme-
try of the nonleptonic Hamiltonian, and notas merely
the design of strong-interaction dynamics or of fortu-
itous cancellations. One must then search for
other mechanisms in the weak-interaction model
that may give rise to an octet-dominant nonleptonic
Hamiltonian.® In the context of gauge-symmetric
models, Lee and Treiman’ were the first to ex-
plore this possibility. Taking an eight-quark ver-
sion of the Georgi-Glashow model,® they showed that
the nonleptonic decays can proceed through the
Higgs-Kibble scalar exchange, and that this pro-
cess will compete successfully with the vector-
boson exchange (i.e., current X current contribu-
tion) provided the masses of the Higgs scalars are
smaller than or at least comparable to the other
masses in the model. In a realistic model with
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physical hadrons (rather than quarks) as basic
fields, the Lee-Treiman approach requires the
Higgs-Kibble scalar-meson masses to be of the
same order of magnitude as the hadron masses.
This is an unpalatable feature of the Higgs-Kibble
scalar-exchange mechanism.

Here we have the objective of showing (i) that a
purely octet-type, renormalizable, nonleptonic
Hamiltonian can be constructed, and (ii) that if this
Hamiltonian were the only term contributing to the
nonleptonic processes, a good fit to most of the
known experimental data can be obtained.

We have ignored all discussion of leptons and
have avoided adding the nonleptonic contributions
of the current X current term that would have
arisen if we had tried to include leptons in our
scheme in any of the known ways. For example,
if we follow the unified lepton-hadron models of
Bars, Halpern, and Yoshimura,® we shall end up
with W* mesons reproducing the conventional cur-
rent Xcurrent theory results. The effects of add-
ing the current-current contribution are about 20%
violation of the AI=3 rule in the hyperon decays
and an order-of-magnitude larger value for the
width I'(K*~7*7°). These consequences are clearly
unacceptable.

With this fact in view we have adopted the phil-
osophy that the nonleptonic interaction Hamiltonian
is primarily octet-type and contains no significant
admixture of current-current terms. We are not
the first to suggest this; Marshak et al.'° have
already recorded this possibility. Some works
in the literature show that the suppression
of the Al=% piece of the current-current contribu-
tion comes from strong-interaction dynamics
(e.g., Mathur and Yen, Ref. 3). But this suppres-
sion alone is not enough to explain the observed
widths. As Salam® has noted, the AI=% component
of current-current theory gives amplitudes which
are much lower than the observed ones. One needs
a mechanism for enhancing the AI=3 contribution.
The mechanism proposed in the present work can
be considered as the required enhancement term.

The model we are going to discuss is based on
chiral SU(3) X SU(3) symmetry. It can be trivially
extended to chiral SU(4) X SU(4) symmetry. This
extension will not affect the results presented
here. However, it will have interesting conse-
quences for the nonleptonic weak decays of
charmed mesons. The SU(4) version of this model
predicts the nonleptonic Hamiltonian to transform
as the 15 representation of SU(4), while the effec-
tive nonleptonic Hamiltonian generated by the cur-
rent-current interaction is known to have no com-
ponent transforming as the 15 representation.
Hence presence of a piece transforming as the 15
representation in the nonleptonic decays of o

charmed mesons will be positive evidence in favor
of our model.

In this paper we generate the AT =3 symmetric
nonleptonic vertex in a realistic model of strong
interactions of spin-0* and spin-1* mesons pro-
posed earlier by one of us (A.K.K.).** (This
model isdescribed in Sec. II.) Thisisachieved by
adding to the strong-interaction Lagrangian terms
that violate strangeness when Higgs-Kibble scalars
are allowed to develop nonzero vacuum expectation
values (VEV’s). As only bilinear combinations of
Higgs-Kibble scalars couple to the hadrons, the
requirement of renormalizability guarantees octet
dominance for interactions of hadrons in the case
when Higgs-Kibble scalars are triplets of hadronic
SU(3)."* By making a suitable choice for the VEV’s
of the scalar fields it is possible to arrange that the
couplings involving only hadrons remain SU(2) in-
variant and conserve strangeness, the nonleptonic
interactions arising solely from the mixing of
various particles. The weak-interaction model is
discussed in Sec. III.

The weak-interaction Lagrangian thus generated
is used to study K- 27 and K — 37 decays. Since
there is no Al=3 term in the nonleptonic vertex,
the decay width for K*—~7*7° is zero if we consider
weak interaction alone. An attempt is made to
study this decay by attributing it to the electromag-
netic effects. Parity-violating decays of baryons
are considered phenomenologically. We find it dif-
ficult to write the model with baryons as basic
fields,'® so we assume the baryonic couplings to be
SU(3) invariant and we attribute the parity-violat-
ing parts in the amplitudes for hyperon decays to
the K*- and Sy-pole terms. The K;-Kg mass dif-
ference is also evaluated as a second-order weak
effect.

Our results for K - 27 and K — 37 decay widths
agree with experiment. The predicted slope pa-
rameters for K— 37 decays are in rough agree-
ment with experiment as to their magnitude, but
have the wrong signs. However, this is a piece
of data that seems to violate the octet-dominance
hypothesis. For the K; -Ky mass difference our
numbers are of the correctorder of magnitude.
Parity-violating baryonic decays are fitted within
20% of the experimental values. This resultis incon-
formity with the earlier current-algebra predictions
using K* pole alone.!® Oneplace where our analysis
fails completely is the K* decay. Using a current-
algebra estimate of the electromagnetic mixing
given by Cicogna et al.,'* we obtain the K* decay
width to be orders of magnitude smaller than the
experimental value. The electromagnetic mixing
alone is apparently not sufficient to explain the
K* decay.

The paper is organized as follows. In Sec. Il we
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sketch the strong-interaction model and fit various
masses and parameters in the model. Section III
extends the strong model of Sec. II to the weak
case. In Sec. IV, parity-violating nonleptonic ef-
fects, viz., K~ 27 decay and s-wave baryonic de-
cays, are discussed. Section V deals with the

K - 3m decays. The K, -K¢ mass difference is cal-
culated in the same section. Finally, in Sec. VI,
we present a discussion of the model postulated in
this paper.

II. THE STRONG-INTERACTION MODEL

We start with the strong-interaction part of the
model proposed earlier by one of the authors.!*
We redevelop it here for the sake of completeness.
The model is written for scalar and pseudoscalar
(0*) meson nonets with vector and axial-vector
(1*) mesons as gauge fields. The full symmetry
group of the Lagrangian is

G ~SU(3), ®SUB)z ®U(1)y, @ UL, ® Ull)g, -

The SU(3), ® SU(3) is the usual chiral-symme-
try group of hadrons. The scalar and pseudoscalar
nonets u, and v, (¢=0,1, ...8), respectively, are
assumed to transform as (3, 3*) and (3*, 3) repre-
sentations of the chiral group. We define

8
Ay .
M=3%" \/—_z(uk+wk) ,
k=0
which transforms as
-exp(+z Z ek >Mexp<—z E eF 2>

The other pieces in G are U(1), , the symmetry
under the ninth vector transformaotlon and
U(I)KQ, U(I)Ky, the symmetry groups belonging to
the new quantum numbers K, K, that must be in-
troduced in order to obtain a suitable charge as-
signment for Higgs-Kibble scalars. K, K, shall
be defined later in the text. The invariance of the
Lagrangian under the ninth axial-vector transfor-
mation is not insisted upon, because a study of the
meson masses shows that the term (detM +detM")
which breaks the symmetry under this transforma-
tion must be added to the Lagrangian if the n mass
is to be explained satisfactorily.

Gauge fields. The whole group G with the excep-
tion of U(I)KQ and U(1), is gauged. We do not
need to gauge the subgroups U(I)KQ and U(I)KY be-

cause we are not interested in the photon couplings.

The gauging requires introduction of 17 spin-1
fields. We choose XZ+* X%* (2=1 to 8) corre-
sponding to SU(3), ® SU(3); and V9 corresponding
to U(l),,o. We define the matrices

8 .
L L, A
Xu=z xLk R

2 ’
k=1

Further, the vector and the axial-vector fields
may be defined as

5 1 o sryo_1 - ®
VH—FZ:(XH-*.XM)—_\/—Z;‘;VUAIQ’

A 1

A== v" -XR)=
respectively.

Higgs-Kibble fields. Higgs-Kibble fields are

chosen to be 3 X 3 matrices &, p whose columns
<I>;‘”R (@=1,2,3) are triplets transforming as (3,1)
and (1, 3), respectlvely, under SU(3)® SU(3).
Since ®‘@’s are triplets with fractional charges in
general, and these are to be assigned nonzero
VEV’s, we must redefine the charge and hyper-
charge operators if these are to be conserved. We
define

ZA" Ay,

1
Q=F3+T—§'F8+KQ’
Y=%—F8+Ky.

The new quantum numbers Ky, K are zero for
known hadrons. For Higgs-Kibble scalar fields,
however, we choose

1 . ~_L 2
éL,R‘ KY——3, KQ -3
@) . _ 1 1
b R Ky==3, Kg=+3,
2 1

3% Ky=+35, Ko=+3.

This assignment makes the charges and hyper-
charges of the diagonal elements of &’s zero.
The Lagrangian of the model is

L=L,+L,+L,,

where L, is the Lagrangian of 0* fields, L, is the
Lagrangian of 1* fields and the Higgs-Kibble fields,
and L, is the interaction Lagrangian of 0* fields
and the auxiliary Higgs-Kibble fields. These
pieces are written in detail below:

L,=-3Tr{D ,M'D M} -z Tr {M "M}
—3a(detM +detM ') — b Tr{M MM M}
—c(Tr{M M})?,

where

DY =0,M —ig(XEM - MX();

Ly=-3 Tr{D, 8} D,8,} - 3 Tr{D, 84D, &5}
—V(®,, 85) - Tr{XL XL, +XR X7}
-i0,V3-0,VO),
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where

XL =9, XL 0, XL _ig[XL X1],

D, &,=0,8, —i <g}2g +g0}29Vﬂ> 3,
(similar definitions hold for X% D &.);

L,=-Tr{A(e! M&,)} +H.c.,

where A is the 3 X3 matrix

€, 00
A= 0 € O
0 0 g

Of the auxiliary Higgs-Kibble scalars, the “would-
be” Goldstone bosons are eliminated by the Higgs-
Kibble mechanism.!® The masses of the remaining
® fields are assumed to be very large, so that the
® and M mixing coming from L, can be ignored.
In this limit of taking the masses of the partners
of the would be Goldstone bosons to infinity, L,
reproduces the Gell-Mann-Oakes—Renner'® and
Glashow-Weinberg!'” type (3, 3*)&(3*, 3) symmetry
breaking.'®

VEV’s and consistency conditions. To generate
the masses of gauge fields and of the pseudoscalar
nonet, the following VEV’s are given to the Higgs-
Kibble fields:

f, 0 0
<®L>0=<¢R>0= 0 fz 0
0 0 f;

As usual, new fields with zero VEV’s are defined
such that

& 2= (@ »)o -

On neglecting the mixings between M and &', i.e.,
on assuming the remaining ®’’s to be highly mas-
sive, we are left with only a linear term in M,
viz., 3 Tr{A’(M+M ")}, where A’ is a new constant
matrix involving A and f’s. The presence of
linear terms in M indicates that M also has non-
zero VEV’s. We set

ppb 0 0
(M)o=| 0 p, O |=p.
0 0 p,

Define M’ =M - (M), such that (M'),=0. Equating
the linear terms in M’ to zero, we get the consis-
tency conditions

pip+a(detp)p +4bp® +4c Tr{p%p=4'. (2.1)

In this model we do not consider the isospin-vio-
lating effects, so we set p,=p,, €, =¢€,, and f, = f,.

Spin-0 and spin-1 mixings. When the Lagrangian
is written in terms of M’ there is a mixing between
spin-1 and spin-0 fields arising from the
Tr{D,M'D M} term in the Lagrangian. This
mixing is of the type V8 4 and A 8 v, and is re-
moved by defining new fields

Vi=Vi-CYd,u,;,

Ad _ i A
A=A, -Ci0 ;.

2.2)

The coefficients C are determined by ensuring that
there is no mixing between the spin-0 and the new
spin-1 fields. This redefinition modifies the ki-
netic-energy terms for the spin-0 fields. The cor-
rect kinetic-energy expressions are restored by
renormalizing spin-0 fields as

Si=ZS--1/2ui
Ya/e fori#0,8,
Pi=ZPi Vi
and
Si=§fj“j
for i=0and 8.
P,=thv,;

¢’s are defined so that there is no mixing between
singlet and octet fields and the kinetic-energy ex-
pressions have the correct form.

Masses and pavameters. The vector and axial-
vector meson masses are

m‘;z:nglzy
mK*2=%82(f12+f32)+%82(91—Pa)zy
m,412=g2f12+2g2P12,
%gz(f12+f32)+%gz(pl+p3)2’
%gz(f12+2f32)+%‘82(912'*'2/)32)-

1}

2
m
Ky

mA:
The mass matrix for the eight and zeroth mesons
is

(my%)oo =5 &%,*+8°F)(2o/8),

(my)os=3V2 (8°11% -8°f,)(8,/2)

(my?)es =5 (8212 +2 8%F) .
The eigenvalues of this matrix give m 2 and m 2.
The scalar- and pseudoscalar-meson masses are

ms ? =Zs (1*+120p,® -ap,),

ms, 2 =ZsK[uz+4b(pl2 +pyps+ ps) —ap,],

m,*=Z,(n*+4bp,*+ap,),

my’=Z [ pu?+4b(p,® - p1Ps +p57) +ap,],
where

pZ=po +4c@p® +ps);

and the renormalization constants are
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Zs'=1,
2
=1 (P,—Pa)
ZSK + 12+f32 ’
25 2
Zr=1+7ij'%_s

ZK=1+—J—3—--(p +0g)° .

f12 i f32

The neutral-scalar-meson masses, msn2 and msn,z,
are obtained by diagonalizing the matrix:

(Wlsz)ss=[U-2 - %apl(‘l - 6) +4bp,*(1+20%)
+}5§0912(1 -071,

015 =1+ apy 2400+ 409,22+ )
+ %Cplz(z +5)7] ’

(m32)08="§}2‘33-[24b( p, +ps) +16¢(2p, +p,) - 2a] .
Here 6 is (p,/p,). The neutral-pseudoscalar-
meson masses are determined by simultaneously
diagonalizing the kinetic-energy matrix K and the
mass matrix:

(K)gg =1~ 28°p,*(1+20)*/9m, *,

(K)go=1 - 48%p,%(1 - 6)2/97;1"482 ,

(K)oa=—=2V2 g%,*(1 - 8)(1 +28)/9m,, ?,
(mp%)gs =12+ 5ap, (4 - 0)+ £bp,2(1+26%)] ,
(mpoe=[n? - ap,(2+6)+4bp,*(2+6%)],
(mpz)of[ %am(l - 5)+£——7bp12(1 - GZ)J .

Inputs. The parameters gf,,£f,,8p, are fixed by
taking m,, my*, and m, (1100 MeV) as inputs.
g,/g is fixed by using (m?+m,?) as input. p? b, a
are fixed by taking m,, m, and (m,?+my®) as in-
puts. 6=p,/p, is varied over a suitable range. The
best values are obtained for 6=1/0.80. g is fixed

from the K*Kn width.

All masses come out to be in very good agree-
ment with experimental numbers. The predicted
masses and their experimental values are tabu-
lated in Table I.

III. THE WEAK-INTERACTION MODEL

In extending the strong-interaction model of Sec.
II to weak interactions, we have two objectives in
mind. First, we want to obtain mixings between
various particles, so as to generate an “octet-
dominant” nonleptonic vertex. Second, we do not
want this mixing to break the SU(2) invariance of
the strong couplings involving only hadrons; i.e.,
we want to keep the SU(2)-invariant strong vertices
of Sec. II intact.)® The first of our objectives can
be met by any one of the following prescriptions.

(i) Add additional terms in L, that violate total
Y as defined by us.?° These are the terms like
@M etc. All of these terms can be in-
cluded by redefining the constant matrix A as

€, 0 0
A= 0 € €,
0 € €,

(ii) Make the VEV’s nonzero for even those &’s for
which total Y as defined by us is not zero, viz.,

L0 0
<¢L>0=<¢1}’3>O= 0 f2 f4
0fs fs

It is easy to see that either of the above pre-
scriptions will generate a strangeness-violating
weak vertex. Since only bilinear combinations of
Higgs-Kibble scalars couple to the hadrons, and
our Higgs-Kibble scalars are only triplets under
SU(3), octet dominance of the weak vertex is
guaranteed in the second case. However, on car-
rying out any one of the above prescriptions we

TABLE I. Meson masses in MeV. Experimental values for me,, myg, (m,,2+mxoz), My, Mk,
(mw2 +m¢2), and my, are used as input to fix various parameters. Experimental values are taken

from Ref. 1.
Predicted Experimental Predicted Experimental
value value value value
T 140 140 P 770 770+10
K 494 494 K* 892 892.2
n 548 548.8 w 795 782.7
n 958 957.6 ) 1010 1019.7
Sy 979 976 £10 Ay 1100 ~1100
Sk 1019 ~1100 Ky 1252 1242 +10
S, 1050 993 +5 Ag 1304 1286 +10

Spe 718 ~700
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shall end up with terms linear in %4 and v, and we
shall be forced to assign nondiagonal VEV’s to M.
This will defeat our second objective of keeping
the hadron vertices intact. We must demand that
coefficients of u4 and v, remain zero when we gen-
erate weak mixings. This can be done in accor-
dance with the consistency condition (2.1) only if
we execute both the prescriptions detailed above
simultaneously. Thus we change both A and & as
indicated, and assume f,,f; < f,,f,,f; and €,, €
«<E€,, €,, €;,. This assumption is only a statement
of the fact that the weak mixings are much weaker
than the strong couplings.

The nonleptonic Lagrangian that we obtain is
depicted below. The parity-conserving part is

LYY =—28°(f'+f")
XSV, Vit (Vi + Vg ) Vi,
+A Ay + Ay, + Ay A, ]+ Hee.
and the parity-violating part is
LY% =-38*(f - f")
XSV, Ayt (Vi +Vag Mg,
+A, Ve, + Ay, +A45,) Ve, ] +He.,

and
f’=%(f2f5+f4f3) ’ andf”=%(fzf:1+f5f3)‘

The V, and A, are to be expressed in terms of
physical fields through Egs. (2.2).

We may remark here that having fixed all the
strong parameters from masses in Sec. II, we here
encounter only two unknown parameters, i.e.,

goe, =(f'+f") and 55 = (f - "),
one each for the parity-conserving and parity-vio-

lating parts. We fix these by introducing one
K3 - 27 width and one K -~ 37 width as inputs.

IV. PARITY-VIOLATING EFFECTS

In this section, first we discuss K§ —27 decays.
One of the neutral kaon decay widths is used to fit
the parity-violating nonleptonic parameter in the
model, viz., gi% . K*decay is calculated using

this parameter and current-algebra estimate of
the strength of electromagnetic coupling. Parity-
violating baryonic decays are also discussed.

A K3—2m
The decay width for the two-meson decay process

is given by

k
N g G b . 2
(K" - 1% —Q-ﬂ-—sﬂ - Iml . (4.1)

Here, m, is the mass of the decaying kaon.

n .
k..m. is the center-of-mass momentum of the final
particles given by

2 _lmy?—(m, +m, )?]my? - (m, -m, )]

k
c.m, 4"’K 2

(4.2)

and m is the S-matrix element defined by

1 m
a. b n\ _ 5 4 - -

(ron®|S|K™y =i(@7)*0 (&, - b, pb)(zﬁ)g,2 Bogw)V?

(4.3)

The graphs contibuting to K¢ decay are drawn in
Fig. 1. Of these the contribution of p-pole graph
is zero. Of the other graphs a typical matrix ele-
ment is transcribed below:

(ron® |m |K™ =1 g47%, 7%],,85% C, 2, ?

DV
1

X
mK*Z

[gMkem 2 +8 B g@m,2 -m )] .

(4.4)

Equation (4.4) is the matrix element for the K*-
pole contribution. In this equation C,,Z, are the
renormalization constants introduced in Sec. II.
Zx*ke S are strong coupling constants. 7’s are
Pauli spin matrices. The widths I'(K$—7*r") and
(K3 —27°) are related by a factor of 2. We have
the relation

IKg—~m'n")=3T(Kg—21°),
which follows from the AI=% rule.
B. K*'=>n'n®

The AI=3 rule, built into the model, prohibits
all of the diagrams in Fig. 1 from contributing to

FIG. 1. Feynman graphs contributing to the two-pion
decay of neutral kaon. 0 denotes weak parity-violating
vertex.
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K* decay. As can be readily seen from (4.4) the
isospin factor is zero for K"=K*, Since we do not
introduce any current X current term in the model,
only violations of AI=} can arise from the electro-
magnetic mixing.

We assume electromagnetic mixing of 7° to be of
the type g% nm°. The graphs that contribute to
K* decay are shown in Fig. 2(a). The graphs of
Fig. 2(b) are proportional to the 7*-7° mass differ-
ence and are taken into account by using the ex-
perimental value of m,. — 1,0 and using estimates
of other (strong) vertices from the model. On
evaluation of the matrix element with g77=0.79
X 10*/V3 (Ref. 14) we obtain

T(E*— 7*719)

m=1/17000’

which is to be compared with the experimental
number 1/670. In the context of our model elec-
tromagnetic effects do not seem to be sufficient
to account for the K*—7*r° decay.

C. Baryon decays

Since it is not feasible to start with baryons as
the basic fields in the model (see Ref. 13), we
treat their decays phenomenologically. We assume
SU(3) invariance of the baronic couplings. The
coupling of the vector mesons to the baryons is of
the form?!

%En[vu,B] ) 4.5)
B stands for baryon field. g is the strong coupling

ot
o+ _+
K* K", Sk

* m ° K*
SKLK° 7
°
(a)
° *
K-Q'
sk T s

(b)

FIG. 2. Feynman graphs showing contributions to
K*'— 7" 1% decay. Graphs in Fig. 2(a) are proportional
to the 17-7° mixing and those in Fig. 2(b) are proportion-
al to 7" -1 mass difference.
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constant already described in the case of mesons.
Use of the same strong coupling constant as used
in the case of mesons is justified on the basis of
the conservation of vector charge. For the K*
pole, Eq. (4.5) becomes

ig g pix BV BIKY . (4.6)

The coupling of scalar mesons to baryons is as-
sumed to be

Tr{D(BIB,s],) +F (B[S, BL)}, @.7)

where D and F are fixed from experimental scalar-
meson coupling strengths.

The baryon decays then proceed through K* and
Sy poles. The graphs contributing to the decay
processes are shown in Fig. 3. In these the
Sy-m,K*-1 couplings are the nonleptonic couplings
already evaluated in Sec. IV A.

On evaluating the decay amplitudes, we observe
(Table II) that the Sg-pole contribution is negligible
compared to the K*-pole contribution. There is
some ambiguity as to the experimental values of
scalar-meson couplings. But none of the available
values raises the S -pole contribution to any signi-
ficant level. The models ascribing the S, pole an
important role are thus not favored by our anal-
ysis.??

The total predicted amplitudes of baryon decays
are systematically lower than the experimental
value by about 20%.

At this point one can try to estimate the effect
of the current-current contribution. We have done
this in context of the Bars, Halpern, and Yoshi-
mura model.” There is no new contribution to
K¢ —2n° decay coming from the current-current
interaction. So the parameter g3% , which was
fixed from I'(Kg —27°) remains unchanged. The
ratio I'(Kg —7*1")/T'(K s —~ 27) changes to 0.73.

This in itself is not very far off from the experi-
mental value 0.69. However, the width I'(K*
—7*r° comes out approximately ten times larger
than the experimental value. For the baryon de-
cays there is about 20% violation of the Al=%

rule. These results are clearly unacceptable. One
can, at best, only add the AI=3 part of the cur-

FIG. 3. Feynman graph giving rise to s-wave baryonic
decays.
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rent-current interaction, assuming the AI=3 part
to be suppressed by the strong-interaction dynam-
ics. However, this is a small correction.® We
are ignoring it in our further analysis.

V. PARITY-CONSERVING EFFECTS

In this section decay widths and slope parame-
ters for the 37 decays of kaon and the K9-K% mass
difference are calculated.

A. K- 3w decay width

We consider the three-pion decay

K, k)=7,(p,)+m,(py)+7 (D).

The graphs contributing to this process are drawn
in Fig. 4. The amplitude A of the process is
written as a function of Mandlestam’s variables

s, t,u defined as

(5.1)

=-(k _pc)2=mK2+m,c2—2wc°mK ,
=._(k-pa)2=m,(2+m,a2-2wa°m,{, (5.2)
==~(k _.pb)z=m,(2+m,b2 - 2w, My .

In terms of the S-matrix element of the process
(5.1) the amplitude A(s, ¢, u) is defined as

e[S =i @m0tk = py = py ~p.)(1/27)°
1
XWA(s,t,u) . (6.3)

The decay width for the K — 37 process is then
written as??

1 “max Wy
rx,—- nanb‘nc)=m f dwa dw,|AE,
m, w
b

where

Mt +m,b2 - (m, +m,c)2

w =
max ZmK
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m

FIG. 4. Feynman graphs contributing to K— 37 decay.
® denotes parity-conserving weak vertex.

and w, are the solutions of the quadratic equation
X +Yw+Z=0,

where

X =4[ (w, - my)?*+ wbz+m,b2] ,

Y =4(w, -my)Q,

Z=Q%+ 4m,a2 (w2 - m,bz) ,
and

Q=m 2 -m, 2+m, 2+m,b2-2mxw,, .

[ a
Isospin structure of A(s,t,u). Since we have the

Al=3 rule, the final pions can be only in the I=0
or I=1 state. The I=0 state is not relevant to K,
and K*decays.* So the final pions must be in the
I=1 state and the amplitude for the process K,

- 7,7, can be written in terms of only one ampli-
tude f(s, t,u) as follows:

TABLE II. The s-wave baryon decay parameters. g%‘f;_ is fitted from the K%— 27 width. All
amplitudes are dimensionless numbers. The definition of the s-wave amplitude A and the ex-
perimental values are taken from Ref. 1. Our sign convention is the same as the one followed
in Ref. 13. Input BBS couplings are NNS*=7.9 MeV and NNS=1.0 MeV [G. Ebel et al., Nucl.

Phys. B33, 317 (1971)].

K*-pole Sg-pole Total amplitude Total amplitude
Process contribution contribution (predicted) (experimental)
Ad—pr 1.13 0.01 1.14 1.48
=T— AT -1.30 -0.02 -1.32 ~2.04
Zt—nr* 0.00 0.00 0.00 0.06
ZT—nm" 1.31 0.02 1.33 1.93
zt—pr' -0.93 -0.01 -0.94 —1.48
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AE, ~mmm) = 2R ), K,
where
A(s, t,u)=f(s,t, )@, T 7, + f(s,u, )@, 77,
+f(t,s,u) @, T )T, . (5.4)

Defining functions F 4 and F, symmetric and anti-
symmetric, respectively, under interchange of

Ty Ty Mgy ViZe,

Fg=3[ f(s,t,u)+ f(s,u,t) + f(t, s,0)], (5.5)
F,=32f(s,t,u) = f(s,u,t) - ft, s,u)];

the amplitudes for the four K-decay processes can
be expressed as

AR = 1T) =—\/}—2=(2FS _F,),

1
AK* =110 =—=(Fs +F,),
2 (5.6)
AK, ~m1'1")==(Fs+Fy),

1
Al ;= 37°) = === (3F5)..

On integrating over the whole phase space the in-
terference of Fg and F vanishes for K*—=n"r"r*
and K, —~ 3r° It is small, approximately 2 to 4%,
for K*~n*r%° and K, — 7*7"7°. The contribution of
F,, to the decay rates is of the order of 1%. The
widths are calculated by performing phase-space
integrals separately for each process, taking into
account the available phase space. The parame-
ter g0k is fixed from one of the decay widths. As
displayed in Table III, all decay widths are in
good agreement with experiment. We emphasize
that the covrect prediction of the bvanching valios
is a success of the model beyond the consequences
of the Al=7% rule alone. As is obvious from (5.6),
the Al=3 rule does not relate all the amplitudes
with one another.?®

B. Slope parameters
The slope parameter, o of Dalitz plot, is defined
through a linear expansion of the amplitude A in
the variable ¢ as

A=A (0){1 +§7;—,2(t -to)} ,

TABLE III. K— 37 decay widths in MeV. Experimental
values are taken from Ref. 1.

Predicted decay Experimental decay
Process width width

K*— 0 0.9205x 1015 0.9205% 10715 (input)

K*—rr*r* 0.282x 107 0.2974x 10714
Kp— mor*r" 0.152x1071 0.1512x 101
Kp— %0 0.287x 10714 0.2707 x 10714
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KL ™ .8, A8 Ky
p.c. p.c

K} R prw. N KL
S S
p.v. p.v.

FIG. 5. K9 self-energy graphs.

where £,=3 m 2 +m,*= (s, =u,) is the symmetric
point s =u=t=30m 2 +3m,?), and A(0) is the ampli-
tude at this point. We compute the slope
parameter by differentiating A with respect to ¢

at t=%,. Though the model gives excellent results
for total widths, the situation in the case of slope
parameter is not encouraging. We obtain values
correct in order of magnitude, but wrong in sign.
(Table IV). It must be emphasized here that the
slope-parameter prediction is independent of the
strength of weak vertex assumed. In the present
model, the slope parameter depends only on the
structure of the weak nonleptonic vertex and the
strong vertices. The situation is not entirely hope-
less since, in principle, one can add terms of
form

(@E"MM'e+L—~R),

which satisfy all requirements we have imposed
on the model (see Sec. III). This means one extra
parameter in the model which can be used to fit
the slope parameter. However, we will not dis-
cuss this possibility any more.

C. K9 -K% mass difference

We compute the K9 -K$ mass difference by con-
sidering it as a second-order weak effect, and
using the weak coupling constants evaluated in
Secs. IV and VA,

The K$-K$ mass difference can be written as

Am = (mKL —mKS)= (AE), - (AE)q,
where (AE); and (AE)g are self-energies of K,

and K¢ arising due to second-order weak process-
es. As is well known, only pole-term contribu-

TABLE IV. Slope parameters for the K — 37 decays.
Experimental values are taken from Ref. 1.

Predicted slope Experimental slope

Process parameter parameter
K*—r*r0n? —0.27 0.52
K*—rr*n* 0.135 -0.213
Kp— r'r*r" -0.27 0.61
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tions to the self-energy are important®®, In case
of K, the only pole terms consistent with CP in-
variance are S,0 and S, poles. However, in our
model there is no K-S,, or K-S, coupling. Hence,
all the mass difference arises due to K; self-en-
ergy terms. The graphs contributing to this self-
energy are depicted in Fig. 5. On computing all
the graphs we obtain Am =~ 3 X 10'° sec™?, which
is of the same order of magnitude as the experi-
mental value 0.5398 X 10'° sec™ (see Ref. 1), and
has the correct sign.

VI. CONCLUSION

We have developed a realistic, fully gauge-in-
variant model for the nonleptonic weak decays.
Treating the AI=3 rule as a basic symmetry of
the nonleptonic decays we have arranged the non-
leptonic vertex in the model to be of explicitly
octet type. We have tried to reproduce most of the
available information about the nonleptonic de-
cays from the model. In this we have been modest-
ly successful. While the two-pion decays of the
neutral kaon, s-wave baryonic decays, parity-
conserving kaon decays, and K9 -K$ mass differ-
ence are explained reasonably well by the model,
it fails to explain the data on K*—7*1° decay.

One aspect of the nonleptonic decays that we have
completely neglected is the p-wave baryonic de-
cays. A phenomenological treatment of these de-
cays, on the lines of the s-wave decays, would
have required computing complicated loop dia-
grams with baryon poles (Fig. 6). This is, per-
haps, stretching the phenomenology too far. An
explanation of these decays must await the develop-
ment of a gauge-invariant model with baryons as
basic fields.

We may remark here that the fit of the theory
with the experimental information can be improved
by adding the AI =% part of the current Xcurrent
interaction to the interaction proposed in this
model. In the case of baryon decays, a fit along
these lines has already been tried by some au-

FIG. 6. A typical Feynman diagram for the B—B’r
parity-conserving (p-wave) amplitude.

thors.?” They include both the K*-pole and the
octet part of the usual current-algebra contribu-
tion. However, this type of exercise in fitting
shall increase the number of parameters and de-
stroy the simplicity of our model.

The model proposed in the text can be easily ex-
tended to chiral SU(4) X SU(4): Start with basic
fields M transforming as (4, 4*) + (4*, 4) of the
SU(4 X SU(4); for the Higgs fields choose four
quartets tI)}j‘"R, a=1 to 4. The Higgs fields now
transform as (4, 1) and (1,4) representations.
Going through all the other manipulations, we shall
end up with a nonleptonic Hamiltonian that trans-
forms as the 15 representation of SU(4). This is
in marked contrast to the current X current inter-
action. The effective nonleptonic Hamiltonian in
the latter case does not have any component trans-
forming as the 15 representation.?® If, experimen-
tally, the nonleﬁonic decays of charmed mesons
exhibit any 15 dimensional component, it shall be
definite evidence in favor of the model proposed
here.
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