
PHYSICAL REVIEW 0 VOLUME 16, NUMBER 7 1 OCTOBER 1977

Angular distribution of dileptons in high-energy hadron collisions*
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%e give the general form of the angular distribution of lepton pairs produced in hadron collisions, where
each dilepton is assumed to come from the decay of a virtual photon, The Drell-Yan model extended to
include parton transverse momentum (with on-shell quarks} is then used to calculate the three coefficients in
the distribution.

I. INTRODUCTION

We consider the angular distribution of high-
mass muon pairs produced in high-energy colli-
sions of unpolarized hadrons. We mill first dis-
cuss the form of the general angular distribution,
assuming only that the dimuon arises from the de-
cay of a virtual photon. As we will see, the angu-
lar distribution is described by three coefficients,
&„(s,Q', y, gr') with n = 0, 1,2. We will then dis-
cuss these coefficients in the Drell- Yan' parton
model extended to take transverse momentum into
account.

In the Drell- Yan model, the virtual photon that
decays into the dimuon is assumed to arise from
the annihilation of a quark parton from one of the
two hadrons with an antiquark from the other had-
ron. As Drell and Yan pointed out, one test of the
model is to measure the angular distribution of the
muons. At asymptotic energies the quarks move
parallel to the incident hadrons, so the angular
distribution of the dimuons is 1+ cos'8, where 8 is
the angle between the muon momentum and the
beam axis in the dimuon center-of-mass frame.

A complication arises from the unexpectedly
large dimuon transverse momenta g„observed in
recent experiments. ' ' For instance, at a dimuon
mass (Q')'~' in the range 4 to 10 GeV the average
transverse momentum is' Q~- 1.5 GeV. Indepen-
dent of any model, one notes that if Qr' were neg-
ligible in comparison to Q', then the beam momen-
tum and target momentum would be collinear in the
dimuon center-of-mass frame, and the angular
distribution could be a function only of the angle 8
between the muon momentum and a z axis placed
parallel to the beam momentum. However, when

Q~ is not negligible, the beam and target momenta
are not collinear in the dimuon center-of-mass
system, and the angular distribution ean depend
on two polar angles 8 and f. Thus the possibilities
for experimental information are richer.

One must, of course, define the axes with re-
spect to which the angles 8 and (t) are to be mea-
sured. A convenient choice is to place the z axis

half way between. the beam and target axes, and to
measure the azimuthal angle P with respect to the
plane formed by the beam and target axes.

As we will see in Sec. II, the general angular
distribution with respect to these angles is

—CC 1+cos 8+ (-, ——,cos 8)A
dN 2 & & 2

dQ 0

+ 2 cos8 sln8 cosfA~+ g sin 8 cos2$A2,

where the three coefficients A„are functions of
&, Q', y, and Qr'. When Jr=0, the scattering has
azimuthal symmetry and one finds A, =A, = 0.

The Drell- Yan model applies in the limit Q'- ~
with Q'/s, gr, and the dimuon rapidity y held
fixed. It predicts A„-0 in this limit. In any rea-
sonable model one would expect power-law correc-
tions to this limit:

&.= Q 'f.(Q'/s, y, 0,')+ O(Q"),

&, = Q 'f, (Q'/s, y, 4;)+o(Q '),
&,=Q 'f.(Q'/s, y, Q, ') O(Q ').

It would clearly be useful to have some theoretical
control over how large the correction coefficients
f„are. We present a parton-model prediction for
these coefficients in Sec. DI.

The parton-model prediction arises as follows.
Imagine the time evolution of the scattering pro-
cess as described by time-ordered perturbation
theory in the dimuon center-of-mass frame. Two
quarks with opposite momenta annihilate to form
two muons. Since we are using time-ordered per-
turbation theory, these quarks are on their mass
shells, and we take them to have zero mass. The
quark axis will, in general, not lie either along the
beam momentum or the target momentum or along
the z axis defined above. Instead the quark axis
will be randomly distributed near these axes ac-
cording to a distribution function that is related to
the transverse-momentum distributions of the
partons within each hadron. Thus the 1+ cos'8
distribution of the angle between the muon axis
and the quark axis is smeared according to the
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parton transverse- momentum distributions.
The angular-distribution coefficients A„are thus

related in this model to the parton. transverse-mo-
mentum distributions. These distributions can be
estimated from the dimuon Qr distribution mea-
sured in the same experiment. For instance, a
typical parton transvex se momentum seems to be
about 1 GeV.

It seems unlikely that this parton model, tells the
whole story about I/Q corrections to the 1+ cos'8
angular distribution. For instance, there is the
competing bremsstrahlung process in which a quark
from one hadron emits a photon that decays to the
muon pair; the quark then annihilates with an anti-
quark from the other hadron to form a gluon.
There are also corrections to the xnodel from ini-
tial- and final-state interactions between the par-
tons in one hadron and those in the other. It is
difficult to give a reliable theoretical analysis of
the other contributions to the angular coefficients
A„. They appear to be of the same order in I/Q
as the contributions in the model of this paper.

In our opinion, this problem would benefit from
furthex theoretical study. For instance, the com-
peting bremsstrahlung process involves a large en-
ergy denominator and large momentum transfer in
the subprocess quark+ antiquark- gluon. Does this
imply that bremsstrahlung process is suppressed by
a factor of the quark-gluon running coupling con-
stant at a momentum of roughly Q'P It mould also
be of interest to see what angular distributions are
predicted by other models.

In the meantime, the quark-annihilation model
discussed in this paper has the virtues that it is a
simple extension of the Drell- Van model and has
some predictive power. In particular, Eq. (4.4)
gives a relation in the model between directly mea-
surable quantities.

This paper is laid out as follows. In Sec. II we
set up the kinematics and discuss the angular dis-
tribution assuming only a one-photon model. In
Sec. III we relate the angular distribution to the
parton distribution using the parton model dis-
cussed above. In Sec. IV we integrate over gr and

P to obtain a particularly simple result, (4.4).
Finally, conclusions and some discussion are con-
tained in Sec. V.

beam direction and, for any vector with compon-
ents V" in the c.m. frame, we define Vr= (V', V')
and V' = 2 '~'(V'+ V'). It wiQ be convenient not to
specify the x- and y axes and to use a notation that
is manifestly covariant under rotations about the
z axis. Denote momentum components in the c,m.
frame by

P„"for beam xnomentum,

P~ for target momentum,

l" for p, momentum,

l" for p,
' momentum,

Q" =—l"+l" for dimuon momentum.

We make the approximation P„'=P~'=l2=l =0
throughout this paper. This amounts to neglecting
M„' and M~' in comparison to s and neglecting
M 2 in comparison to Q'.

By measuring the tmo muon. momenta one can
determine five I.orentz- invariant kinematic vari-
ables: the dimuon mass Q, rapidity y = —,

' ln(Q'/Q ),
transverse momentum squared Qr', and the polar
angles 6) and P with respect to appropriately
chosen axes in a rest frame of the dimuon.

We find it useful to choose these axes, which de-
fine the 6' reference frame, as follows: In gener-
al the beam momentum P„' and target momentum

Pa will not be collinear. [As we will see later,
the angle between P~ and -P~ is 8», whexe
tan(z 8„a)=

~gr /Q. ] Let us choose the z axis of
the 6' frame so that it bisects the angle between
P„' and -P~, as shown in Fig. 1. I.et 8 be the
angle between the muon momenta and this z axis.
Let the azimuthal angle P of 1' be measured rela-
tive to a. transverse unit vector gr that lies in the
(P„', Pa) plane in the direction away from (P„'+ Pa) r.
Thus T' gr= ~1'~sin8cosg. (We again do not spec-
ify the direction of the x and y axes of the 6' coor-
dinate system, preferring to maintain a notation
that is manifestly covariant under rotations about
the z axis. )

These muon polar angles 8 and $ are given in

II. KINEMATICS

We will use two coordinate frames in this sec-
tion: (a) a center of-mass frame of the incident
hadrons, which we mill normally simply call the
c.m. frame; (b) a particular rest frame 8' of the
muon pair.

We choose the z axis of the c.m. fraxne along the
FIG. 1. Illustration of the definition of the reference

frame 6'.
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(1+ l "l 'rT'r)
16m

(2.2)

where l '=1'/l 1'l and the lower-case latin indices
i,j are summed from 1 to 3. The array T'~ is a
tensor under rotations in the dimuon rest frame
and depends on Q' and the vectors p~ and PB but
not, of course, on l. It is normalized to T"= 1,
so that J dQ(dN/dQ) =1.

Since T'~ depends on the two vectors P„' and

PB, covariance under rotations and parity imply
that it can be decomposed in terms of three scalar
coefficients. For example, one might write

T&f erPHPir+ PPrrPil+ y(Pi&Par+ PiiP IJ)
A A B B A B B

+ (1 —cr P„"—liPs' —2yP~ Ps) 6

A more useful set of three scalar coefficients,
Ao A j and A„can be def ined by writing, in the
8' coordinate system,

terms of c.m. frame variables by

cos8=2Q '(Q'+g ') ' (l'l -l l'),
sin'8=Q 'Zr' —Q '(Q +t4}r') '(Zr ~ Qr), (2. 1)

(Q2+Q 2)1/2

~r Qr
A,

where 4 = l —l, Q~ is a transverse unit vector
in the direction of gr, and Rr is a transverse unit
vector in the direction of P„xQ. (Notice that the
right-hand sides of these equations are manifestly
invariant under z boosts, so that the equations ap-
ply equally well using laboratory-frame variables. )

Assuming that the muon pair arises from the de-
cay of a virtual photon, the muon angular distribu-
tion must have the form

dN dv der

dQ dQ'dy der dQ dQ'dyer

cordingly, A, and A, must vanish at t4) =0. (In
fact, one expects' that A„ l&rl" as

I
rl-o. )

Therefore, if transverse momenta are neglected,
one expects in general an angular distribution
1+ ~A, + (1 ——.'A, ) cos'8. One must have a, model
for the process in order to predict A, . Drell and
Yan predicted' that Ao 0 in their parton model
(neglecting the effects of parton transverse mo-
mentum). As we will see in the next section, the
Drell- Yan model with parton transverse momenta
included leads to two changes from this prediction. .
First, Qr need not vanish, so that two new coeffi-
cients, A, and A„appear. Second, A, need not
vanish.

III. THE ANGULAR DISTRIBUTION IN A PARTON MODEL

In this section we seek to evaluate the coeffi-
cients A„A„and A, in the extended Drell- Yan
model described in the Introduction. These coef-
ficients vanish if partons have no transverse mo-
mentum. As we will see, if k~ is a typical parto~
transverse momentum, A, and A, vanish like
kr'/Q', and A, like kr/Q, as kr/Q-0. The Drell-
Yan model describes the leading behavior of the
cross section as k r/Q-0; thus we will be able to
express the leading behavior of A„ for small k r/Q
in terms of parton distribution functions.

In the Drell- Yan model, one views the muon pair
as arising from the annihilation of a quark of type
a, with momentum k,", from hadron A with a cor-
responding antiquark b, with momentum k~, from
hadron B. The quarks are approximately on mass
shell and we take them to have negligible mass.
Initial-state interactions between hadrons A and B
and final-state interactions among the leftover
quarks are ignored in the model. ' Thus the cross
section is

Tar rlrA 1 y

Tlz br', (glq J brj)A

7'3= 1 —Ao,

(2.3)
do' do(a+ b - tr'p, )

4
——Q k,d'k~L, (k„k ) 44

t2

(3.1)

where the capital latin indices take the values 1,2.
The corresponding angular distribution is

16m dN

3 dn
—= 1+ cos28+ (2 ——cos'8)A

+ 2 cos8 sin8 cosQ A, + & sin'8 cos2$A,

(2.4)

Here L,(k„kg is the luminosity of the quark-anti-
quark colliding beam (per unit dk,dk, ) divided by
the hadron beam luminosity, da(a+ b- p.'tr )/
d~QdQ is the quark-antiquark cross section, and
there is a sum over all flavors and colors of
quarks a, with b=a.

We discuss the quark-antiquark cross section
first. It is

The coefficients A„are functions of the variables
s, Q', y, and gr'.

Notice that if t4%r = 0, so that P„' and Pie both lie
along the z axis in the 6' frame, there is no pre-
ferred direction for the transverse unit vector gr.
Thus dN/dQ must be independent of @, and, ac-

da(a+ b —tr'tr ) 4rrrr' e,',
( „„„)

QdQ 3 Q2 a+ b

x (1+ l "l"t"),
16m

(3.2)
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ti~ = (k,' —k»)'(k,' —kl»)~/(k, ' —kg . (3.3)

= [q'- {".r- k»r)']'"

or, to lowest order in transverse momentum,

(tt' —k')' =q (3.5)

Using (3.4) and (3.5) we can write t'~ in terms of

The primes here indicate vector components in the
muon-pair rest frame 8' described in the previous
section. This is the cross section with unpolarized
quarks. (Symmetry under parity times time re-
versal forbids a net quark polarization. )

In order to use this result, we must reexpress
t'~ in terms of the components of k," and k," in the
c.m. frame. This task ls simplified by the fact
that in order to extract the coefficients A„ to low-
est order in transverse momenta we need only
evaluate t'i and ti~ (for I,Z= 1, 2) to lowest order
in transverse momenta.

To begin, one verifies that the 8' reference
frame is reached from the c.m. frame by the fol-
lowing two steps. First, boost along the z axis to
an intermediate frame 8* in which (q')» =0. The
vectors P~k and P~~ thus remain parallel to the ~k

axis, while Q»r=gr remains nonzero. Second,
boost in the -Qr direction through a boost angle

with s inbred =
I ~r I

/'q to the 8' frame. In the 8'
frame, Q'=0 and (qo)'=q. The vectors P' and

Ps now make equal angles (t)' = arctan((grI/q)
with the z' axis. This method of obtaining 8' de-
fines its transverse axes in terms of those of the
c.m. frame. Thus the vector i) r, defined in the
previous section to be a transverse unit vector
lying in the plane of P„' and P~ in the direction
away from {P„'+Pls) r, is in fact equal to Qr/(Qr ~,
as suggested by the notation chosen for it.

Now consider the vector (t~,'- k~)" in the 8'
frame. Its p, =0 component is zero and its three-
vector part has length

~
k,' —k,' ~= q. The boost

through the small angle & relates 8' components
to 8~ components':

i.-i,=i:-i;~ (),[o, (i:-i;),] „-().
Since cosh&a 1=0(gr'/q') =O((k, „+k,r)'/q'), we
can neglect the second term above. %e also note
that transverse components of k, —k~ are unchanged
by the ~ boost from the 8* frame to the c.m. frame.
Thus

(k,' —k~)i= (0, —k»)i, I= 1,2,
where the unprimed vectors denote components in
the c.m. frame. Finally, for (}'t,' —it~»)3 we have

(~: ag =[q' (k:, k;,)']'t'

c.m. variables as (I,X=1,2):

t"=q"(t. uP'(t. t,—)',
t'& = q-'(t . (3.6)

x 64(k".+a", q"). (3.7)

The normalization N is such that (1& = 1. With this
notation, the cross section [Eqs. (3.1) and {3.2)] is

Etc do' 3
d4qdQ d»q 16)i (3.8)

(3.9)

x 6'(k", +0", q").
The coefficients A„ that determine the angular

distribution can be extracted by using their defini-
tion, Eq. (2.3):

A, = (t")
(yt tsl&

A, = 2(fir )~~t")—A, .
Using fr=fr/IQ~)=(k, r+k»)/(gr (

and the ex-
pressions (3.6) for to, we obtain

A, =q '&(k, r- k, r)'),

A, =q '(qr( '&k.,'-k»'&, (3.10)

A, =2q-~q, ~-&[q, k„]& A. .

For kr/q small, A, and A, are of order (kr/q)2
and A, is of order (kr/q); the corrections to Eq.
(3.10) are smaller by a factor (kr/q)'.

The cross section do/(f'q and the expectation
values &f) are expressed in terms of the quark-
antiquark luminosity function I.(k„k»), about which
nothing has been said so far. Consider hadron A,
which has a large + component of momentum P'„
= [-,'s]'I' and has P»=P„= 0. Let S,t„(x„k,r') be
the probability of finding a parton of type a in A

For the sake of completeness we note that T'3 is
given, correct to order kr'/q', by

t~s = 1 —t'ai= 1 —(k r- ki, r)2/q2.

We can now return to the cross section d(i/d'qdQ.
We define for any function f(k„k,) of the quark mo-
menta the expectation value (f& weighted according
to the probability that a muon pair of a given Q"
was produced by quarks of momentum k, and k~.

V)=)(Q,' f d'),',d'),', f(k„k)L,(k„),)
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carrying transverse momentum k, ~ and+ compo-
nent of momentum k;=x, P„'. Similarly, hadron 8
has PB= [-,'s]' ' and we define 5'bf B(x„kbr') with
ka +aP~.

In terms of (P(x, kr') we have, in the Drell- Yan
model,

d'k, d kbLb(k„kb)5 (ak,"+kb —Q")

=—dx, 5(x,—Q'/P„')dxb5(xb- Q /P(, )d'k rad kbr

x (Paf A(xak kar )(ybf B(x»kbr )5(kar+ kbr tk)T)-.

There are corrections to this relation that are
smaller by factors of kr/Q. However, in order to
use Eq. (3.10) to calculate the A„ to leading order,
we need only this leading approximation to L.

(There is, for instance, a relativistic correction
to L due to the fact that the quark and antiquark do
not collide head-on in the c.m. frame. Such kr'/Q'
corrections cannot be reliably calculated within
the model since it is kinematically inconsistent to
assume that a massless hadron consists of free
massless constituents with k, rkk0. Thus it is for-
tunate that the corrections are not needed. )

We thus obtain'

der 4mn'
ad db 3 qbp ea d aT bT ( aT+ bT 4T)+a/A( ak aT )5 /B( bf bT (3.11)

withx, x, =Q'/s and x,/x, =Q'/Q =e". The expec-
tation values defined in Eq. (3.7) can be replaced
by

(f)=a Jd'k, d'k, f(k, , k, )d(k, ~ k, —4 )

x p e,'(P, f A(x„k, r')

(4.3)

Using Eq. (2.4) integrated over Q to eliminate A,
and A„we can write this result as

We can simplify (4.1) because there is no angular
correlation between k, r and kbr. Since (&k,T

~ kbr»
=0, we have

f2, = &((k...k.,)'»/Q'= «0;)&/q'

2X(p-, f B(x„k,T ) . (3.12) do ' do

dQ dy dQ dydcos9

IV. DISTRIBUTIONS INTEGRATED OVER Q~

The calculation of the coefficients A„ in (3.10)
would require a detailed knowledge of the parton
distribution functions. It is convenient to integrate
the results over QT so as to eliminate the
5(k, r+ k»- QT) in (3.12) and the QT dependence of
the coefficients. In the case of A, we find an in-
teresting result involving mea, surable quantities,
while for A, we find a result in terms of the expec-
tation value of k, ~' —k»'.

First we define

do'

dQ'dy dQ dyd'Q

„1«4,», , 3«4;»,...,
8 2 Q2 2 Q2

(4 4)

Notice that «QT'» is the measured average of fk)T':

do'

dQ'dyd'Q

(4.5)

Thus (4.4) provides a test of the parton model used
in this paper that is independent of any specific
model for the parton distributions (P(x, kr').

To obtain a simple result for A„we weight the
cross section by iqri. Define

Then dQ2dy

do iQ„J
T dQ2dyd 2Q Q

]. 0

t2.= «(k.,—k„)'»/q',

where

(4.1)
which is a weighted average of the azimuthal
asymmetry. Then, using Eq. (3.10) we find

(4.6)

((f))=9( d'k, fd'k f(k, , k )

x Q e, '(P, f A(x„k, r')
a

2x(P / g(xQy k()p p ) (4.2)

e, = (&k.;—k„'»/q'. (4 7)

Thus 8, measures the difference between the
mean square transverse momenta of the annihila-
ting partons.

A third relation, involving A, integrated with a
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factor gr', can be derived, but it does not seem to
have such a straightforward interpretation.

V. CONCLUSIONS

We have given the general form (2.4) of the angu-
lar distribution, assuming only that the dimuon is
formed from a single virtual photon. We have then
related the coefficients A» A„and A, that appear
in this general expression to parton distribution
functions, working to lowest order in transverse
momenta. [See Eq. (3.10).)

These coefficients A.„are calculated in an ex-
tended Drell- Yan model. The original model was
proposed to describe muon pair production in the
limit s-~, Q2-~ with Q2/s fixed and Qr' fixed or
integrated over. In this limit, the coefficients A.„
vanish and the angular distribution. becomes 1
+ cos'8. The coefficients A„describe corrections
to the Drell- Yan angular distribution to first and
second order in jar~/Q. We have argued that
these corrections can be calculated within the ex-
tended model in a straightforward fashion and with
no apparent ambiguities. (This is essentially be-
cause we are calculating each A.„ to the lowest or-
der in Qr'/Q' at which it does not vanish. ) Never-
theless, one can well worry, as discussed in the
Introduction, that our analysis stretches the Drell-
Yan model beyond the limits of its validity. De-
spite these misgivings, we proceed on the grounds
that any reasonable model is better than no model
at all as a guide for the interpretation of experi-
mental results.

I,et us use the experimental. and theoretical in-
formation at hand to estimate the sign and approxi-
mate magnitudes of the coefficients A„ in this mod-
el. The coefficient Ao is

A, = Q~((k, r- k,r)')

in the model. Clearly, A, &0. Typical dimuon
transverse momenta observed at beam energy 400
GeV and Q 4-10 GeV are2 Q~-1.5 Geg. Thus
typical parton transverse momenta must be of or-
der A ~-1 GeV, and we expect

Ao 2 GeV'/Q'.

A precise result in the model for the average val-

ue 8, of A, (integrated over Qr) is given in Eq.
(4.3):

ff, = ((0;»/Q',

where ((Qr'» is the measured average Qr'. The
coefficient A, is

&, =q '(q,
~

'(k. ,'-k„'&
in the model. For the reasons given above, we
expect the magnitude of A, to be roughly

~X, ~

—1 Gev/q.

The sign of A, is quite interesting. If the beam
partons that contribute to the cross section at a
given Q' and y have more transverse momentum
than the target partons, then A, &0. Suppose, for
example, that the dimuon rapidity y is positive.
Since the momentum fractions of the observed par-
tons obey x,/x, =e", the condition y &0 implies that
the beam parton has greater x than the target par-
ton. The kinetic "energy" k of a (right moving)
parton is k = k, '/2 x P'. In order to keep the "en-
ergy" of wee (i.e. , small-x) partons from being too
large one must demand that the transverse momen-
tum of wee partons is small. Thus one expects"
that the typical transverse momentum of partons
with momentum fraction x is an increasing func-
tion of x. (In other words the large-x valence
quarks form a tight bundle in transverse position
space, surrounded by a large cloud of wee sea
quarks. ) Experimental support for this expecta-
tion comes from the observation that the average
dimuon transverse momentum ((~ Qr~&& increases
a.s Q /s=x, x~ increases. " Therefore, we expect
that A, is positive for positive y and negative for
negative y. It will be very interesting to see if
this qualitative prediction is borne out. The final
coefficient A, is

A, =2q '~q
~

'((k, ' —k ')'&-A,

in the model. Thus we expect A.,+Ao to be positive
a.nd of order 2 GeV'/Q'.
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