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The minimal rule for hadron scattering, proposed by Chou and Yang as a basic part of their fragmentation
model, is tested for high-energy pp and m p data, %'e also calculate charge transfer for m p, In addition, we

investigate the behavior of the fragmentation contribution to inclusive distributions in the central region, the
rate of increase allowed by the minimal rule for extra energy-dependent contributions there, and factorization
within the fragmentation concept.

I. INTRODUCTION

Several years ago Chou and Yang' proposed a
minimal rule for hadron collisions, which states
that only infinitesimal longitudinal momentum
transfer is allowed at asymptotic energies. The
rule is supposed to hold independent of a detailed
dynamical mechanism and hence is model inde-
pendent. It is a necessary condition for the suc-
cess of the fragmentation model.

This minimal rule has been expressed in the
form of a sum rule and tested' for CERN ISR data
at ~s= 53 GeV. Now that new experiments have
provided a more complete data set for pp and p p
collisions, we can compare the fragmentation
model to experiment more fully. In particular, we

have again calculated the minimal sum rule for
pp and also w p and a range of energies (Sec. II),
and found that the model's asymptotic prediction
is well satisfied (at least within 10%%up) at the high-
est available energies. We also investigated a
charge sum rule for p p collisions. The fragmen-
tation model requires' that charge transfer drop
to zero at asymptotic energies. We calculated
how much charge is "carried through" in z p col-
lisions by the pion and found that at these energies
(up to 40 GeV) there is still significant deviation
from the fragmentation prediction. m p is a con-
venient case to study as the initial charges are
not symmetric, although the experimentally avail-
able energies are still relatively low.

The experimental verification of the minimal
rule as calculated in Sec. II provides a solid basis
for its incorporation into the specific form of' the
fragmentation model. This is outlined in Sec. 3,
for single-particle distributions.

It is known that the fragmentation mechanism is
probably not sufficient to account for behavior of
inclusive spectra in the central region. However,
even if it is not dominant, the basic features of
the model dictate that there should be a fragmen-
tation contribution there, and in Sec. IV we in-
vestigate its importance by observing the energy

dependence of the difference between particle and
antiparticle cross sections at x=0. Now the veri-
fication of the minimal rule sum (in Sec. II) is not
affected if other processes apart from fragmenta-
tion contribute to the central region, Rnd in fact
it can impose an upper bound on the amount of
nonscaling mechanism that can contribute to in-
clusive cross sections in a finite region of rapidity
around y* = 0.

We also examine the problem of factorization in
fragmentation (Sec. V) and derive the criteria for
when the cross section approximately factorizes.

II. SUM-RULE CALCULATIONS

(i) In the fragmentation model hadron-hadron
collisions are viewed' as two extended objects
pRsslng thl ough eRch other Rnd breRklng into f1Rg-
ments in the process. At infinite incident energies
the longitudinal momentum transfer is predicted
to be only infinitesimal. ' Therefore one can write
the minimal rule

A~= Q x;=I as 8
x. &0

for processes

where a'=Q, a, , b'=g, b, with sums . o. ver all stable
products in the right (R) hemisphere. The Feyn-
man variable x,. =p, ,~/pg is the ratio of the longi-
tudinal momentum of a,. to a in the c.m. system.
Note that kinematics alone only requires (Xs( «I;
for example' if all secondary particles are pro-
duced Rt rest ln the c.IQ, system then X = 0, or lf
the two clusters are massive M, ++M„= &26PO*
then %~=1 —n.

Equation (1) can in principle be tested from pres-
ent high-energy inclusive data by writing

where the sum is over all stable particles y (with
x&0). A lower bound' for Ãz from pp collisions
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FIG. 1. Minimal rule sum X& versus total energy
Ws forpp (crosses) and 7r p (dots). The dashed line is
only to guide the eye.

was found to be

for P - x ~ as calculated by Chou and Yang. '
Their sum rule calculates g,.M, '(E' -p, ~~)

in the
laboratory frame. The sum is over the fractions
of E, which become energies of fragments. As-

ymptoticallyy

for data at the then highest available ISR energies
(& 53 GeV, depending on the product type). We
have recalculated this value with more complete
data, and also evaluated X~~~ at other energies. '
The PP points in Figs. 1 and 2 show the behavior
of X~~~ as a function of available energy ~8. With-
in data and calculation errors the minimal-rule
prediction X„-1is well satisfied at the highest
present ISR energies. At intermediate energies
the increase in X~~~ with ~s appears to be loga-
rithmic, as shown in Fig. 2.

Table I shows the values calculated for X„, to-
gether with the contributions to the sum rule' by
different species of product particles. Errors are
estimated to be not greater than 10% throughout,
and the centered dots mean that the higher-energy
data were not available. The last row shows the
"rough estimates" of "fragmentation fractions"

where the right-hand side is calculated in the c.m.
frame (R hemisphere) as before. Our calculated
values of Q, x,. agree quite well with their esti-
mates of Z,Mt '(E

%e repeated the minimal-rule calculation for
m p as a case of unlike projectile and target. The
results are shown in Table II and Fig. 1. The
points for X~ ~ are only lower bounds as the data
set' is very incomplete and so do not have error
bars; however, it can be seen that the minimal
rule is at least very close to being satisfied at
these energies. The values for X~ ~ are higher
than those for X~~ at comparable energies, possi-
bly indicating relative transparency of the pion.

(ii) At finite incoming energy the fragmentation
model also requires that charge exchange go to
zero for hadron-hadron collisions. ' Explicitly
this means that for processes a+ b a'+ 6', the

TABLE L Xs~ versus v s, where Xs are the fractions of XP for pp c&+ (anything).

~s (GeV) K's A' s

4.93
6.84

30.6
45
53

Chou and pang

0.41
0.42
0.40
0.40
0.48

0.40

0.03
0.06

G.ll
0.12

0.15
0.20
0.38
0.37
0.41

0.40

0.004
0.01
0.03
0.04

0.05

0.003
0.01
0.01

0.001
0.01
0.01

0.01
0.01

0.02

0.57
0.67
0.91
0.92
1.09
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TABLE II. As in Table I, for X& &.

~s (GeV) A' s K's X' P
R

5.56
8.72

13.73

0 0.253
0.386
0.488

0.100
0.144

0.078
0.144

0.005
~ 0.006

0.002
0.006

0.036
0.124

0 0.606
0 0.858
0 0.910

total charge of a' (II-hemisphere products) should
be the same as a. One can in principle examine
this hypothesis event by event, but a more con-
venient way is to take the set of single-charged-
particle inclusive cross sections and evaluate the
charge of a' by means of a sum rule. In partic-
ular, we used the n P data' to calculate the charge
sum rule, defined in analogy to Eq. (3):

Q*= Ef Q. ~ (2.6)

where the sum is over all stable (charged) pro-
ducts, charge Q' (A, L, stand for right or left gap
particles, respectively, as always) from s p-c
+ ~ ~ . We chose z P for definite reasons. The pp
interactions will automatically yield Q~ = Q~ = 1,
owing to symmetry properties independent of
whether there is charge transfer or not. The z'p
data is also possible, but since the two particles
are positive Q~+ Q~ = 2, and the charge exchange
would not show up as prominently as in w P pro-
cesses. Now for p p, Q„= -1 for zero charge
transfer, so one expects in the fragmentation mod-
el that Qs(Ws) should approach -1 as ~s- ~. Only
two sets of data were suitable; the results are
shown in Table III (errors are estimated +10%).
It is obvious that these values do not yet show any
trend towards -1, and so charge exchange is still
an important effect at these energies. Therefore,
in the terminology of the fragmentation model, at
low energy the "spill-over effect'" still contrib-
utes More .realistically, the low ~qs~ probably
indicates the presence of other nonfragmentary
central processes, e.g. , clusters. The 100-GeV
data set for ~ p will be important to establish any
asymptotic trend, when available. The small drop
in ~qs ~~ going from incident laboratory momentum
16 GeV/c to 40 GeV/c, as shown in Table III, is
due to the unusually large dv' /dx (40 GeV) dis-

III. FRAGMENTATION MODEL FOR SINGLE-
PARTICLE SPECTRA

Following Refs. 8 and 9, we denote the limiting
single-particle distributions by

p, (x)dx = lim —dx,4T

.-- dx

and then, using the minimal rule,

p, (x) =c,(x)+~,(x), x) 0,
where

o, (x) = const && 6 (1 —x)

and
l max

~,(x) = Q p„(x) .
& =& min

(3.1)

(3.2)

The &x(x) comes from the fragmentation a-'a which

tribution at x= 1 from Serpukhov, and is probably
not a real effect.

Figure 3 shows the behavior of the sum charge
of particles with momentum &xy..

(x,)~=- g q' dx, 0
1 ', der'

Xg

(2 'I)

at 16 GeV/c incident laboratory momentum, as x,
increases from zero. This means that one is look-
ing at the decrease in iqs~ as first the central re-
gion and then larger x are gradually excluded from
the sum. iqs~ drops steeply away from its full
va. lue [as in (2.4)] in the small-x region and then
flattens out, indicating that by far the largest
charge contribution comes from the central re-
gion. This will maximize the effect of small-x
spill-over and central processes in reducing

TABLE III. Qz versus vs, where Qz are the fractions of Qz p for x P c;+(anything).

P 0 (GeV/c) Ws(G V) elastic inelastic QI' P

16
40

5.56
8.72

—0.170
—0.135

—1.064
-1.422

+ 0.576
+ 1.025

+ 0.035 —0.62
—0.53
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is composed of elastic and single diffractive
events, and the r(x) is a summation over all ex-
clusive reactions a-'PI, a;. So

p„I*)=p,f f Q p*;IMpI'

l

xg 1 — x,. (x) 0
4 =l min

(3.3)

5'p
Q(x)

R I-

0.6

0.2

Q (0)=.6I5

where the 5 function represents the minimal rule,
and (Mf, ~' is the matrix element squared for frag-
mentation into l particles. All transverse mo-
mentum dependence, plus all left-hemisphere
(x, &0) terms have been integrated out. The nor-
malization' is

I

0.2
I

0.4
!

0.6
I I

0.8
XI

I.O

FIG. 3. Qs ~(x&) versus x& for PI ——16 GeV (vs=5. 56
GeV) .

p„(x)dx=a(l)n, (3.4)

for a-~c+ (l —1) other particles, where n, is the
number of particles of type c produced, and o (l ) is the
exclusive cross section for a-'(l particles). We
adopt a general polynomial form'

)IV„['= Q . c. . „x,'~ .xt~, (3.5)

where {c . . .„jare some constants. Then the in-
tegral can be done exactly, and one has

p, (x)=a gc . d,d, d,x '(1 —x) "''' r' ' ' (3.6)

with constants d, ~
= d(p, ~, p, + ~ ~ + p, ,+,+ k —1)and

ll
( 1)P!bf

~~, (b —k)!k!(a+k+ 1)
(3.7)

(3.8)
l =l min

which have the property d(0, a) = I/(a+ 1).
Then, from Eqs. (3.2), (3.4), (3.6) for a- c+ (anything) the limiting distribution has the general form

p', (x) = const x5(1 —x) + P o(l)n, ("

The simplest case is for [Mz, j'= 1, then the inclusive spectrum p(x) reduces simply to

l max

p'(x) =constxb(1 —x)+ g o(l)n, (l —1)(1—x)' ' .
l=lmin

(3.9)

IV. CONTRIBUTION TO THE CENTRAL REGION FROM FRAGMENTATION

(i) It is interesting to note that although the fragmentation mechanism is well known and studied in the
x&0 region, "' it should also contribute, in some degree if not exclusively, to the central region. Here
we investigate the fragmentation contribution to the central region at x= 0.

For a general polynomial matrixelement squaredasin(3. 5), (3.6) showa as x —0 that allterms inthe matrix
element sum with p, ~0 will go to zero as c &. So considering for simplicity only one term exp~ xl
then the limiting single-particle distribution for the fragmentation process for a+ b - c+ (anything) is

pi(x)
X~P

0, P~0

o(l)n, (p, + + p, +l —1), p, =0
l =lmin

(4.1)
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and its slope ls

&p&(x)
dx ~~o o(I)s,(P, + ~ ~ +P, +I 1-)(P,+" P, +I-2), p, =o.

&= min

~ ~

(4.2)

For example, ~M„, ~

'-x „„„'is found to be suf-
ficient' to fit pion data pp - v'+ (anything) in the
laxge-x region, so in this case the fragmentation
contribution der /dx at x = 0 would be

= 1 from (2.3). (The sum is over all stable pro-
ducts with x, & 0, as usual. )

In order to discover how the minimal rule (4.6)
restricts do'/dx, we expand do'/dx into a series:

d + n'~

dx, o

l max

x =o E =/min
cr(l)n„~(1+2), (4.3) (4.7)

which goes roughly as o„,(l') with ~s."
(ii) However, correlation measurements in the

central region suggest that the fragmentation
mechanism, which can provide long-range corre-
lations, seems insufficient by itself" to account
for the existence of short-range coxrelations. It
is then natural to presume that there should exist
some other mechanism in addition to the fragmen-
tation mechanism which can contribute to the cen-
tral region (for example, multiperipheral produc-
tion, bremsstrahlung-type process, or specific
cluster model) a.nd produce an energy-dependent

. part of the inclusive cross sections centrally and
which will give rising central pion distributions.
As experimentally one finds thai the minimal rule
is well satisfied, it is an interesting question to
ask what sort of upper bound it would place on the
enexgy dependence of such a contribution to the
cross section in the central region.

We split up do/dx into a fragmentation contribu-
tion do~/dx which is to scale with Ws at infinite en-
ergies, plus a central contribution do'jdx which in-
creases with ~s, and then investigate what rate of
increase is allowed for da'/dx without violating the
minimal x'ule. That is,

d0 =0, x)c .
dx

(4.5)

e is some point 0 e«1 beyond which the cross
sections are observed to scale at high energy.
Here I: stands for the fragmentation mechanism
and c stands for the contribution from other mech-
anisms in the central region. The minimal rule
{2.3) can be rewritten in the i'orm

J
do'

o dx

where X~ is the fractional contribution to X~ for
the product particle c,. concerned such that g,-Ã„'

~2 ao ~j+2
c ~t +co

2
+ Qc~ . ~ —Xgo(0( —F

j=1
(4.6)

where F = J,'x(do~/dx)dx and X'„are almost inde-
pendent of ~s at high energy. Therefore the fast-
est increase with ~s allowed for the coefficients
Cj ls

This means that the most rapid increase at high
energy allowed by the minimal rule for the con-
tribution by central mechanisms is

da' . g ~k oo

-X' "' -' —a+ ~ — (4 10)dx 6 x+ cx

where the {k,}are some constants (independent of
both x and Is). This behavior depends crucially
on the meamng of e, as will be discussed in (a)
and (b) below.

(a) We first consider the case where the energy-
dependent central mechanism contributes to da/dx
over some small, but nevertheless finite region in
x even at high energies, so that do'/dx contributes
in (4.4) for x~ e, where e is a constant. " This
would mean that inclusive distributions would al-
ways only scale over part of the full x range
{~xj&e). For e a constant, (4.10) gives the most
rapid increase of do'/dx allowed by the minimal

with {c,.}~ 0 and (o, ,}-0asymptotically, so that all
the terms in the first sum with nonzero coefficients
will become singular at x=0. It is then easy to
show that substitution of (4.7) in (4.6) at asymptotic
energies x'equix'es that all c;=0 for i~ 2. There-
fore the most slngulax' limiting behavior allowed
by the (experimentally verified) minimal rule for
distributions at x= 0 is approximately 1//x. This
is consistent with the experimental trend for pion
production. To be more precise, we calculate ex-
plicitly in the following.

At asymptotic energies substitution of (4.5) and
(4.7) into the minimal-rule integral (4.6) (using
c,. = 0 for ~ ~ 2) gives
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rule as

dg oo

R tot X+~ 0 (4.11)

where

k,'=, ,', (independent of mls) .g+2

Therefore, in terms of rapidity,

der' k' oo'- .1:.E1;*) .
dy* " ps x+n (4.12)

So in this case, do'/dx does increase with ~s.
However, remembering that e -0 as ~s- ~ prob-
ably at least as fast as 1/1l s, once Xa is near its
limiting value do/dy* then decreases with v s in
the region —,'1t so. 6y*s —,'~se (and n «e at high en-
ergies}. This disagrees with the experimentally
observed behavior of inclusive pion distributions
where, except in the fragmentation region
(y*~ —,1/sr), the do/dy* distributions are rising
slowly with ~s.

(b) We can alternatively demand only that any
energy-dependent mechanism contribute to do/dx
over a finite region iny* at high energies. That
is, do'/dy* contributes to da/dy* for ~y*~ ~ L,
where L is a constant, so do'/dx in (4.4) is non-
zero for xs e = K/p f, and e -1/1l s in this case
(using pf = 2& s). If we identify the energy-depen-
dent central mechanism as a cluster contribution,
then L is the correlation length and L, =1 unit of
rapidity. For pion production, c = K/P0* with K
= 0.4. So as 1 s- ~, ~x~ s e -0 and the analysis in
(a) (for constant c) which disagreed with experi-
ment does not now apply. The most rapid increase
allowed by the minimal rule is now

// OO

dx Xac1o1 Po + ko'Po + Po k,"(xpo}'x+0

In (a) and (b) above, we have analyzed the con e-
quences of allowing an energy-dependent produc-
tion mechanism in the central region in addition
to the fragmentation contribution within the re-
striction of the minin:al rule (4.6). We found that
the experimentally observed rising behavior of
do/dy* pion distributions in the central region is
allowed by the minimal rule if the energy-depen-
dent mechanism is restricted to a finite region in
rapidity space as & s- ~. The mechanism cannot
however, be allowed to apply asymptotically over
a finite-x region.

(iii) It is interesting to note that the simple
cluster model" or the like generally require that
cross sections for production of particle and anti-
particle be equal in the central region, e.g. ,
p, (p —c+ anything) =p, (p - c+anything). Now the
fragmentation process must contribute to the cen-
tral region as well as any such cluster-type pro-
cesses, so it is nice to look at the difference be-
tween the two cross sections from the fragmenta-
tion mechanism for specific products c and c.

Experiment" shows that the invariant cross sec-
tions for pp -p + and pp -p + ~ are approach-
ing each other at x=0 as ~s increases. To in-
vestigate what behavior the fragmentation model
predicts for the fragmentation contribution at
x=0, let us just look at terms Cx, 1 x, 1 in ~M/,.~'

again, so that the model gives

do' 1 c (0)dx, , ~"
& max

Q o(l)n, (P, + +P, +I —1) (4.16)
l =/min

(if p, = 0) for pp - c, + (anything) at x = 0. We now

investigate exclusive processes which will con-
tribute to

(4.13)

from (4.10), where (k,". j are again independent of x
and ~s. In terms of ra,pidity,

C // OO I

—Xsg „, ' + ko'P o +P o Q k)'(xP o }x+Q j =1

(4.14)

where (xpf)' ~ (epg)' = (0.4)" so the sum in (4.14)
converges. Equations (4.13), (4.14) show that do'/
dx, do'/dy* can now both increase with ~s; the
fastest rates allowed are roughly

da&"'& . do&-'&

dx

~ ~ ~ ~

dx

Now the exclusive processes

P -P&

p p7r n

P —P+ (l —1)s'

(4.1'I)

(4.18)

and

Xao1o1(Po}dx

cRT

~R+tot PO 7 ~ POdy*

(4.15)
all contribute to do~ ~' '/dx a.nd are positive, but
do not all to dv&-~' ' ', so they provide a positive
and increasing (with 1l s) term in n~ p. The ex-
clusive processes
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p -p(Pp),

(4.19)

p '--p + --—— pp

P—
contribute to both dvP P' ' '/dx and doP P' ' '!dx, and
their difference at x= 0 is not zero because nP
=n , +—1. We have no= ,'(1+-1), n~ = —,'(l —1) from
(4.19), so, if we substitute these in (4.16), we ob-
tain a term

o(l)(P., + . + P, + l —1), (4.20)
l =&, 5, . . .

which increases with 3,„, i.e. , increases as fs
increases. (The form of the energy dependence
may be slightly modified by an overall+( )C(„) if
(Mz,. (' has more than one term. )

Another significant set of processes which will
also contribute to (do& a' '/dx) ~„o is

(4.21)

p -p(pp)+ (l —3)v"s .

p-p+ n, (v' v- v'),

p -nv'+ n, (v'v wo),

p -p v+ n(

'vms')

(4.24a)

(4.24b)

(4.24c)

as candidates, only (4.24b) contributes to h(do/
dx) ~„o in the fragmentation model, because it is
the only one where n, + x n, [see (4.16)]. As in
Sec. IV (iii), we use (4.16) and n, + = —,(I+1), n,
= —,'(l —2) to obtain

dOP " ''' dVP~ ~ ~ ~ ~ ~

Qx GX

v(l)(p + ~ + p +l-1)

a lower bound on that for the inclusive A~P —. In

Fig. 4 we use the pure phase-space approximation

~M~, ~'= const (i.e. , all P,. =0) and cr(l)-1/l(l —1) to
graph the energy dependence of (4.20) (dashed
line) and compare it to the data, ." The error bars
are too large to be quantitative, but we suggest
that the data is entirely consistent with our picture
of a significant fragmentation contribution to the
do/dx distributions in the central region.

(iv) We also investigated the difference between
the distributions for fragmentations p —m'+ ~ in
the central region. Considering the exclusive pro-
cesses

Here nP = 2, n~ = 1, and these processes give a term
III8X

o(l)(2' + P, o, + + P,o, + I —1),

~ ~ ~ ~

+ (p„+1)o(2), (4.25)

f =4, 5, ,

(4.22)

I jul & I I I l

which again increases with Ws in a rather similar
form to (4.20). Processes such as

8—)
4)

E
p -p(pp)(v'v ),
p -p(pp)(v'v-)(v'v-),

p-p(pp)+ (x'v )
$ —3

(4.23)

I
Q

LIJ
4

Q

/
0 ~ ~

r

and the equivalent kaon processes give similar be-
havior to (4.20).

Therefore the fragmentation contribution at x=0
predicts that

x=0
p= 0.7GeV

T

~ ~ ~ ~ ~P P—
ggP~P' ' ' ggP~P'gP-P— (4.17)

0-
I

I I I s ~ I I ~ I I I I I

l00
p (GeV)

shouM at least increase with ~s. Processes like
(4.18) with nop's produced contribute constructive-
ly to doP P ' '/Cx alone; those that contribute to
both p and p inclusive distributions, such as (4.19)
and (4.21), still give increasing functions of /s,
as shown by (4.20) and (4.22), for example. Fur-
ther, the dependence of (4.20) on ~s should give

FIG. 4. This figure shows
P P

4f g P o P ~ ~ e g g P P ~ ~ ~

po E ~ s -POE ~p3dp gp x=o, Pf
——0. 7

versus po. Data are taken from Ref. 14. The closed
and open circles refer to different experiments. The
dashed line is the po dependence predicted in the text
for a purely phase space ~m&&~2.
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2192 MARGARET M. MAI. OA E AN D SHUI- YIN LO

For pp collisions,

p-XII*;I-XII*,II) ( *,p *&,p»-5 *; 2*,)
( SV — I .'i j p

for x»
p +

for negligible spill-over. Therefore

5(2- Z x; Z x;) 5(-gx,. -gx, )
p 0 i j

6(1-+x,) 5(- 1 -gx, )
~pg ~pg ~ p~i+

(5 5)

(5.6)

Replacing (5.6) in (5.3) and writing the matrix elements (ITI& =&IITII&Ill where &II TII& has o»y x de-
pendence, then after some rearrangement

I&nil Tile&l'5 (1-Zx;f)
6 ~-,~- M 1&~Ii Tll 5& I'6 (-1-Zx) .

~f *.II «2I;l&(pl)" ' ' ~p*.II(2l, l&(p.*)

(5.'t)

for x» (nz, 'p ')'~'/p, *. Factorization of the matrix element squared gives IM~I'= IM~, +I'IM~p+I' and, inte-
grating out the p ~' dependence, explicitly

d(n, m)

dx dx dx dx
(5.8)

where

x". (»" *.)=1(pllpll &I'() (' —Q*)
g =1

d'. (dl *.')=I( IIPII»1*()$-( —Qj =1

~a*.g(2lx, l)

(5.9)

p ~ pl ~~+

So, except for the x& (m'+p, ')'~'/pod' region, the x-dependent part factorizes completely The p.,(m, n) re-
mains to be investigated. Further, for weakly s-dependent average transverse momentum, (5.8) and (5.9)
imply that scaling of the inclusive distributions gives

l&sll Tlls&&~ll TII5& I
-P o . (5.10)

To investigate the transverse-momentum part of (5.8) we use the requirement that fragmentation only al-
lows a finite amount of transverse momentum transfer as p,*-~, and consider exchange of transverse mo-
mentum q as shown in Fig. 5(b). We assume a simple Gaussian form for the transverse-momentum matrix
element

n

Iyg IP = e-p(Zpd i e-d(Zpdj e 8((

where e, P do not depend strongly on s, and write

(5.11)

Pt ~ m SC

p (, )=f1*pe ' f lid'p;d 'pp ' d p; t( '' f lid'p;d '~ ~'& ll Fp; —t(). (p. lp)
. i

It is then easy to show that

n-1 fj 1 F m-1

p, (m, n) = ——
n n 2P+ o (1/m+ 1/n) m o.

(5.13)

dg(n, m) p-1
1 v m

g'„(x, . x„ p
Xm Xl Xm)dx ~ ~ dx„dx,' ~ dx' n e " ' " 2P+ n(1 m+1/n m a ™I m~ (5.14)
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(5.18)

for the process

a+ 5-a'+ (anything in the I.hemisphere),
(5.1V)n

a'= a, ,

with n particles to the right and any particles to
the left, as shown in Fig. 5(c). Using these defi-
nitions we obtain the relations

D
(okg~ Ay, kptot

CJk, ,kPk2- ~k2, k2CJk, y

(5.18a)

(5.18b)

for identical a, b.
Thus, in contrast to a two-body scattering pro-

cess, one notes that a factorizable scattering am-
plitude in the fragmentation process does not auto-
matically give a factorizable cross section [be-
cause of the term in large square brackets in
(5.14}]. However, for a reasonable approxima-
tion to factorization of the cross section, one
needs to have the term in large square brackets
in (5.14) split up, e.g. , P»-2o. This condition is
satisfied as long as the average transverse mo-
mentum transfer is small at high energies, e.g. ,
(q) s 0.3.

However, the other restriction on factorization
ls the condition xg» (m~ +p ~ ) /Po ~ Forplonpro-
duction at ISR at ~s=53 GeV, this gives roughly

x,. » 0.02. Therefore even the fragmentation model
will not factorize in the central region.

Assuming that we can make the rough P»-,'a ap-
proximation, then if we restrict ourselves to
x,. » (m,. '+p, ')' '/Po, i.e. , tothefragmentationregion
then we can integrate up (5.14) to give various re-
lations between the fragmentation cross sections.
We denote

1 d (n, m)

0n fft d d d I d f dXg dXf1 dX1 dX
Xg Xn Xg Xnt

(5.15)

and, on summing out the left hemisphere (that is,
the m-dependent part), define

D
kl~k2 +k2~ kg+1 (5.18c)

For k, = 1, it is easy to test the consequences of
(5.18a). Then it gives

(ol) c1,lc tot (5.19}

and we represent it as in Fig. 6, so that one iden-
tifies

1
0~ =O'e) + 2Ct'SD

0~, ~ =&e»
D

&101 = 0'et + &SD+ &DD y

where

(5.20a)

(5.20b}

(5.20c)

2
~SD

C}DPP e~

(5.21)

then substitution of (5.21) into (5.19) after some
rearrangement gives the result K=4. This agrees
with the experimental estimate" of the double-dif-
fractive cross section

CrDD (5.22)
el

i.e. , K=4, at the c.m. energy /s =55 GeV. We
conclude that factorization appears to work quite
well in this framework for the fragmentation re-
gion (without any significant nondiffractive con-
tribution). Now o„ is well known at available ISR
energies, and —,0» is estimated by integrating the
diffractive peak in the inelastic pp -p+ ~ ~ spec-
trum —see Fig. 7, showing the inelastic peak
(taken from Ref. 18). Combining these in (5.22) and

(5.20c) one finds that the total diffractive cross
section graf„ is approximately 16 mb, leaving
roughly 28 mb for the contribution from the cen-
tral region.

For more general k=n, it is not so easy to com-

v» is the single-diffractive cross section,

crDDis the double-diffractive cross section,

oat„ is the total diffractive cross section .
Note that o„, does not refer to the central region,
as we are using the condition x, » (m, '+p, ')'~'/p, *.

If one uses the definition

FIG. 6. Diagram representation of the formula 0 &2=0& &g ta,t from Sec. V.
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CHLM
p=0, 8 GeV/c

F halo'

dp
3

(mb/GeV)

p(X...X)
n I n

~s=226ev
3l

X +X+...+X
I 2 n

0.9
o.i

x

FIG. 8. Predicted form of p„(x& . x„) as a function
of (x&+x2+ ~ ~ ~ +x ) at high energies.

FIG. 7. Single-diffractive excitation as observed by
the CERN- Holland- Lancaster-Manchester Collaboration.
Data are taken from Bef. 16.

pare (5.18) to experiment at present. It is inter-
esting to note, however, that for the n-particle
favored fragmentation, the minimal rule requires
that the inclusive spectrum behave like a 5 func-
tion

p„(x, x„)- 6(x„+ + x„—1)

as shown in Fig. 8. Other models do not expect
this peaking. "" %e urge that experimental work
be done to look for this striking behavior.

VI. CONCLUSIONS

Our calculations of the minimal rule sum for pp,
p p collisions verify that it is an essential at-
tribute of such high-energy hadronic collisions.
The fragmentation model expresses this in a nat-
ural way. However, we found that charge exchange
is still an important ingredient at the presently at-
tainable m p energies, and so the asymptotic en-

ergy region predicted by the fragmentation model
has certainly not yet been reached for m p. For
pp collisions we investigated how well the model
approximated factorization at the (much higher)

pp ISR energies.
The central region is often regarded as a special.

case where the fragmentation process is not sig-
nificant; however, we have shown that the frag-
mentation model does at least qualitatively pro-
vide a natural explanation for the behavior of some
particle-antiparticle distributions at x= 0, be-
havior which i8 not so obvious with purely cluster-
type processes. Therefore we strongly suggest
that the fragmentation process makes a signifi-
cant contribution to the central region. Also, the
verification of the minimal rule was shown to still
allow any other energy-dependent central process
also occurring to contribute to the pion dv/dy dis-
tributions in a small -Y* region which can in-
crease approximately as fast as p,*v,.,
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